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Abstract

In recent years, there have been some interesting stud-
ies on predictive modeling in data streams. However,
most such studies assume relatively balanced and sta-
ble data streams but cannot handle well rather skewed
(e.g., few positives but lots of negatives) and stochastic
distributions, which are typical in many data stream ap-
plications. In this paper, we propose a new approach to
mine data streams by estimating reliable posterior prob-
abilities using an ensemble of models to match the dis-
tribution over under-samples of negatives and repeated
samples of positives. We formally show some interesting
and important properties of the proposed framework,
e.g., reliability of estimated probabilities on skewed pos-
itive class, accuracy of estimated probabilities, efficiency
and scalability. Experiments are performed on several
synthetic as well as real-world datasets with skewed dis-
tributions, and they demonstrate that our framework
has substantial advantages over existing approaches in
estimation reliability and predication accuracy.

1 Introduction

Many real applications, such as network traffic monitor-
ing, credit card fraud detection, and web click stream,
generate continuously arriving data, known as data
streams [3]. Since classification could help decision mak-
ing by predicting class labels for given data based on
past records, classification on stream data has been ex-
tensively studied in recent years, with many interesting
algorithms developed [10, 14, 7, 2]. However, there are
still some open problems in stream classification as il-
lustrated below.

First, descriptive (non-parametric) and generative
(parametric) methods are two major categories for
stream classification algorithms. Existing algorithms
simply choose one from them, and have not explained
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why descriptive model is chosen or vice versa. Second,
many stream classification algorithms focus on min-
ing concept-drifting data streams, however, they recog-
nize concept drift as change in P(y|x), the conditional
probability of class y given feature vector x. In real-
ity, however, we could only observe the changes in the
joint probability P(x, y) and it is hard to tell whether
the changes are caused by changes in P(x) or P(y|x).
Third, some algorithms would predict a class label for
a given test example. This may work well for determin-
istic problems, yet is not reasonable for a stochastic ap-
plication or previously deterministic problem unknow-
ingly evolving into a stochastic one. Compared with
deterministic problems, where each example strictly be-
longs to one class, stochastic processes assign labels to
test examples based on some probability distribution.
In this scenario, a model that could generate accurate
probability estimates is preferred.

Another important issue is that existing stream
classification algorithms typically evaluate their perfor-
mances on data streams with balanced class distribu-
tion. It is known that many inductive learning methods
that have good performances on balanced data would
perform poorly on skewed data sets. In fact, skewed
distribution can be seen in many data stream applica-
tions. In these cases, the positive instances are much
less popular than negative instances. For example, the
online credit card fraud rate of US is just 2% in 2006.
On the other hand, the loss functions associated with
classes are also unbalanced. The cost of misclassifying
a credit card fraud as normal will impose thousands of
dollars loss on the bank. The deficiency in inductive
learning methods on skewed data has been addressed
by many people [15, 5, 4]. Inductive learner’s goal is
to minimize classification error rate, therefore, it com-
pletely ignores the small number of positive examples
and predicts every example as negative. This is defi-
nitely undesirable.

In light of these challenges, we first provide a sys-



tematic analysis on stream classification problems in
general. We formally define four kinds of concept
changes in stream data, and show that an effective
method should work equally well in each of the four
cases. Also, we argue that a descriptive model that
could approximate posterior probability P(y|x) would
be most desirable for real stream classification prob-
lems. Although these observations are applicable to dif-
ferent scenarios, we are particularly interested in skewed
stream mining problem since it is an important problem
and no existing methods can handle them well. The
main contributions in this paper are as follows:

1. The concept drift in data streams is formally de-
fined and analyzed. We show that the expected
error rate is not directly related to concept drift
and could be reduced by training a model on the
most up-to-date data.

2. We analyze several important stream classification
problems systematically. By comparing descrip-
tive models with generative models, label predic-
tion with probability estimation, we draw the con-
clusion that in concept-drifting stream mining, a
descriptive model that could generate high quality
probability estimates is the best choice.

3. We propose an effective and efficient algorithm
to classify data streams with skewed class distri-
bution. We employ both sampling and ensem-
ble techniques in the algorithm and show their
strengths theoretically and experimentally. The
results clearly indicate that our proposed method
generates reliable probability estimates and signif-
icantly reduces the classification error on the mi-
nority class.

The rest of the paper is organized as follows. Section 2
analyzes different kinds of concept drifts and discusses
important problems in stream classification. In Section
3, we introduce an ensemble approach for mining skewed
data streams and demonstrate its advantages through
theoretical analysis. Experimental results on the en-
semble approach are given in Section 4. Finally, related
work is presented in Section 5, followed by conclusions
in Section 6.

2 Inductive Learning on Concept-Drifting

Data Streams

In this section, we point out three unattended problems
in stream classification and provide a thorough anal-
ysis for these problems, namely, the possible concept
changes, the model of inductive learning and the poste-
rior probability estimation.

2.1 Concept-Drifting Data Streams In this sec-
tion, we describe different kinds of concept changes and
discuss how error rate changes as the result of concept-
drifts. Assuming that the true probability distribution
P(x, y) = P(y|x)·P(x) is given, then the expected error
by a model is Err =

∫
(x,y)∈P(x,y) P(x)(1 − P(yp|x))dx

where yp is the predicted class label and is chosen to
be equal to argmaxyP(y|x, θ) under 0-1 loss. Note that
P(y|x, θ) refers to the estimated probability by a model
θ, and it can be different from the true conditional prob-
ability P(y|x). Let yM = argmaxyP(y|x), then those
examples with yp 6= yM are “rooms” for improvement.
Concept-drift is best described as changes in P(x, y).
Since it is composed of feature probability P(x) and
class label conditional probability P(y|x), the change of
the joint probability can be better understood via the
changes in either of these two components. There are
four possibilities, as discussed below. In each case, we
demonstrate that building a new model on the most re-
cent data could help reduce Err. We define ‘the most
recent data’ as the data held in memory at current time
among continuously arriving stream data. It is opti-
mal to always update the model according to the most
recent data no matter how concepts evolve.

No Change: In this case, both P(x) and P(y|x)
remain the same. By definition, the expected error will
not change. However, it is still useful to train a model
on the most recent data since the old model may not
have achieved the minimum yet (such that there are
examples with yp 6= yM ) due to many reasons, such as
the original training data is not sufficient that incurs
variance in the model’s prediction.

Feature Change: Feature change happens when
P(x) changes but P(y|x) remains the same. In other
words, some previously infrequent feature vectors be-
come more frequent, and vice versa. As P(x) changes,
the expected error may move up, move down, or stay the
same, and it depends on specific combination between
P(x) and the corresponding P(y|x) values. Model re-
construction can improve the estimated probability on
those examples whose yp 6= yM in the past due to small
number of training examples.

Conditional Change: P(x) remains the same
but P(y|x) changes. Under this condition, however,
the minimum expected error rate integrated over all
instances could go either way. The reason is that the
error on an individual feature vector is dependent on
P(y|x), and could increase, decrease, or remain the
same. Thus, expected error cannot be used as an
indicator of conditional change. When P(y|x) evolves,
it is normally necessary to reconstruct the model.

Consider the problem on how to rebuild the model
to match the new conditional probability. If the size



of new data is large enough to train an accurate new
model by itself, old examples are not expected to help
due to the concept evolution. However, if the new data
is trivial in size, the error of a model trained from new
data mainly comes from the variance and more training
data can help reduce the variance. Existing approaches
solve this problem through either weighted combination
of old examples or selection of consistent old examples
[7].

Dual Change: Both P(x) and P(y|x) change.
Depending on the combination of P(x) and P(y|x),
the expected error could increase, decrease or remain
unchanged, thus cannot be used to indicate dual change.
Similar to conditional change, since P(y|x) has evolved,
it is normally necessary to train a new model.

Summary There are two main observations from
the above hypothetical analysis. First, there isn’t
a general correlation between expected error of the
previous model and any types of concept-drifts of the
data stream. Thus, observing changes in expected error
is not a reliable indicator of concept-drift. On the other
hand, even when the expected error of the previous
model does not change, there is usually still room of
improvement by proper model reconstruction. Thus, an
effective stream-mining algorithm shall not assume any
particular type of concept-drift, but ought to assimilate
new data as soon as possible, and consistently produce
highly accurate models. However, stream data with
skewed distribution is hard to handle since there may
not be enough examples for the minority class in new
data. We discuss about this problem in section 3.

2.2 Descriptive Model vs. Generative Model

The stream classification methods generally fall into
two categories: generative and descriptive. Generative
methods, such as Naive Bayes and logistic regression,
assume that P(y|x) follows certain form of distributions
whose parameters are to be estimated from training
set. On the other hand, descriptive methods, such as
decision tree, make little or no assumptions about the
true form of P(y|x). Instead, both the structure and
parameters of the hypothesis are learnt from training
set. When applying on real data, descriptive models are
expected to be more accurate than generative models.

First, for many stream applications, we have little
or no prior knowledge about the data distribution, so it
is hard to predefine the true form of P(y|x). Also, the
form of distribution may evolve as data continuously
arrives. For example, the underlying distribution may
change from Gaussian to Beta. In reality, we never know
when and how the underlying form changes. Therefore,
it is rather risky to assume a certain kind of distribution
for the data. Usually, a wrong assumption about the

distribution form can lead to poor performances of
generative models.

Second, the training data may not be balanced. In
some real applications, the class distribution is highly
skewed, there are insufficient examples for minority
class. Typically non-parametric models require larger
amount of data than parametric models. However, it
is hard to learn parameters accurately from limited ex-
amples. If the training examples are far from sufficient,
the parametric model would overfit the data and have
low generalization accuracy [9].

Therefore, descriptive methods provide a more
favorable solution to stream classification problems.
Building a descriptive model does not require prior
knowledge about the form of data distribution. The
data speaks for itself. Also, no matter how the under-
lying distribution changes, the descriptive model would
be easily adapted to the new distribution.

2.3 Probability Estimation vs. Label Predic-

tion There are two ways to classify test examples. One
is to directly classify them into several categories, i.e.,
predict on their class labels. The other approach is to
estimate P(y|x) and choose the best threshold to opti-
mize on some given criteria. We would favor the second
approach for the following reasons.

First, it is typically not known in advance if a
problem is deterministic or stochastic without domain
knowledge, and a previously deterministic problem may
evolve into a stochastic one. The labels we observe
for stochastic problems are not deterministic, instead,
follow a certain distribution P(y|x). A specific feature
vector x may appear in the training data with class label
c, but this does not imply that x always belongs to class
c. An example could be assigned to several classes with
different probabilities. For example, if the chance of
precipitation is 30%, then there is 70% probability that
no rain falls. In this case, estimation of P(y|x) is more
reasonable than predicting class labels.

Second, the predicted labels may not be accurate.
Categorizing one example into a wrong class will invoke
a huge amount of loss in some cases. Probability
estimates, on the other hand, provide some information
about uncertainties in classification. To ensure the
accuracy of probability estimates, some calibration and
smoothing methods could be used [16]. We would
have high confidence in the prediction of an example
with 99% posterior probability while are not sure about
the prediction on an example with estimated posterior
probability around 50%. This uncertainty information
is very useful in decision making.

Finally, estimation of posterior probability provides
a more flexible analysis scheme. Subjective or objective



criteria could be applied on probability estimates to find
out the optimal decision threshold. For example, the
threshold could be chosen so that the resulting precision
and recall are balanced.

In summary, we argue that in real-world stream
classification problems, a descriptive model that can
output accurate probability estimates is preferred. The
main reason is that it covers many situations of data
streams than any methods we are aware of.

2.4 Desiderata In the above, we have argued that
(1) concept-drift could happen in each sub-component
of the joint probability distribution of the data stream,
(2) expected error is not a reliable indicator of concept-
drift, (3) mining new data chunk is expected to im-
prove accuracy in most situations, (4) descriptive model
is preferred over generative model for general purpose
stream mining over a wide variety of problems, and (5)
estimating probability is more suitable without strong
assumption about the unknown true probability distri-
bution. Although these observations are applicable to
many situations of predictive mining in data streams,
for the rest of this paper, we extend these ideas to de-
sign and evaluate a general framework to mine skewed
concept-drifting data streams.

3 Mining Skewed Data Stream

In this section, we propose a simple strategy that can
effectively mine data streams with skewed distribution.
The choice of methods incorporates the analysis made in
Section 2. Also, we provide a formal analysis on several
aspects of the proposed framework.

3.1 Stream Ensemble Framework Skewed distri-
bution can be seen in many data stream applications. In
these cases, the positive examples are much less popular
than the negative ones. Also, misclassifying a positive
example usually invokes a much higher loss compared
to that of misclassifying a negative example. There-
fore, the traditional inductive learner, which tends to
ignore positive examples and predict every example as
negative, is undesirable for skewed stream mining. To
handle skewed class distribution, we propose a simple,
systematic method that applies on both deterministic
and stochastic data streams. We will start with prob-
lem definition, and then present the algorithm.

In some applications such as credit card application
flow, the incoming data stream arrives in sequential
chunks, S1,S2, . . . ,Sm of the same size n. Sm is the
most up-to-date chunk. The data chunk that arrives
next is Sm+1, and for simplicity, we denote it as T.
The aim of stream classification is to train a classifier
based on the data arrived so far to estimate posterior

probabilities of examples in T. We further assume that
the data comes from two classes, positive and negative
classes, and the number of examples in negative class
is much greater than the number of positive examples.
In other words, P(+) ≪ P(−). In this two-class
problem, only the posterior probability of positive class
P(+|x) is computed, then that of the negative class
is simply 1 − P(+|x). To have accurate probability
estimation, we propose to utilize both sampling and
ensemble techniques in our framework.

Sampling. We split each chunk S into two parts
P, which contains positive examples in S, and Q,
which contains negative examples in S. The size of
P is much smaller than that of Q. For example,
in network intrusion detection data, there are 60262
normal examples, but only 168 U2R attacks. Also, it
should be noted that in stochastic problems, a given x

could appear in both P and Q for several times. The
count of x in each class will contribute to the calculation
of posterior probability P(y|x).

In stream mining, we cannot use all data chunks
as training data. First, stream data is huge in amount
and it is usually impossible to store all of them. Second,
stream mining requires fast processing, but a huge train-
ing set will make the classification process extremely
slow, thus is unsatisfactory. In Section 2, we show that
model reconstruction on new data reduces the expected
error. In other words, the best way to construct a
model is to build it upon the most recent data chunk.
This works for examples in negative class since these ex-
amples dominate the data chunk and are sufficient for
training an accurate model. However, the positive ex-
amples are far from sufficient. An inductive learner built
on one chunk will perform poorly on positive class. To
enhance the set of positive examples, we propose to col-
lect all positive examples and keep them in the training
set. Specifically, the positive examples in the training
set are {P1,P2, . . . ,Pm}. On the other hand, we ran-
domly under sample the negative examples in the last
data chunk Qm to make the class distribution balanced.
Though the strategy is quite simple, it is effective in
skewed classification, as shown in Section 3.2.

Ensemble. Instead of training a single model on this
training set, we propose to generate multiple samples
from the training set and compute multiple models from
these samples. The advantage of ensemble is that the
accuracy of multiple model is usually higher than that
of a single model trained from the entire dataset. The
error of an inductive learner comes from both bias and
variance. As shown in the next section, the variance
could be reduced by training multiple models. The
samples should be as uncorrelated as possible so that the
base classifiers would make uncorrelated errors which



Ensemble algorithm:

Input: Current data chunk S, test data T, number of
ensembles k, distribution ratio r, set of positive examples AP

Output: Updated set of positive examples AP, posterior
probability estimates for examples in T, {fE(x)}x∈T.
Algorithm:

1. Split S into P and Q according to their definitions.

2. Update AP as {AP, P}

3. Calculate the number of negative examples in the sample
nq based on the values of r and np.

4. for i = 1 to k do

(a) Draw a sample of size nq from Q without replace-
ment, O.

(b) Train a classifier Ci on {O, AP}.

(c) Compute posterior probability estimates
{f i(x)}x∈T using Ci

5. Compute posterior probability estimates by combining
ensemble outputs {fE(x)}x∈T based on Eq. (3.1).

Figure 1: Ensemble algorithm framework

could be eliminated by averaging. To get uncorrelated
samples, each negative example in the training set
is randomly propagated to exactly one sample, hence
the negative examples in the samples are completely
disjoint. As for positive examples, they are propagated
to each sample. We take a parameter r as input,
which is the ratio of positive examples over negative
examples in each sample. r is typically between 0.3
to 0.6 to make the distribution balanced. Let np be
the number of positive examples in the training set,
then the number of negative examples in each sample
is: nq = ⌈np/r⌉. Suppose k samples are generated,
then a series of classifiers C1, C2, . . . , Ck are trained on
the samples. Each classifier Ci outputs an estimated
posterior probability f i(x) for each example x in T.
We use simple averaging to combine probability outputs
from k models:

fE(x) =
1

k

k∑

i=1

f i(x)(3.1)

It is worth noting that this differs from bagging: 1) in
bagging, bootstrap samples are used as training sets,
and 2) bagging uses simple voting while our framework
generates averaged probability for each test example.
The outline of the algorithm is given in Figure 1. We
assume that each data chunk can fit the main memory.

3.2 Analysis of Ensemble Framework We ex-
plain how the use of sampling and ensemble techniques
contributes to error reduction. Also, we analyze the
complexity of the algorithm.

3.2.1 Error Decomposition We expect that a well
trained classifier could approximate the posterior class
distribution. However, the estimate of posterior proba-
bility is not necessarily the true probability. Therefore,
in classification, besides Bayes error, there are remain-
ing errors, which could be decomposed into bias and
variance. The bias measures the difference between the
expected probability and the true probability, whereas
the variance measures the changes in estimated proba-
bilities using varied training sets. As stated in [12, 14],
given x, the output of a classifier can be expressed as:

fc(x) = P(c|x) + βc + ηc(x)(3.2)

where P(c|x) is the posterior probability of class c given
input x, βc is the bias introduced by the classifier and
ηc(x) is the variance of the classifier given input x.

In two-class problem, x is assigned to positive class
if P(+|x) > P(−|x). The Bayes optimal boundary
is therefore represented by a set of points x∗ that
satisfy P(+|x∗) = P(−|x∗). However, since fc(x) is
different from P(c|x), the estimate of Bayes boundary
is incorrect, the boundary error is b = xb −x∗ where xb

are the estimated boundary points that have f+(xb) =
f−(xb). In [12], it shows that classification error rate is
linearly proportional to the boundary error. So we will
focus on the analysis of boundary error from now on. In
analogy with bias-variance decomposition described in
Eq. (3.2), the boundary error can be expressed in terms
of boundary bias and boundary variance:

b =
η+(xb) − η−(xb)

s
+ βb(3.3)

where s = p′+(x∗)−p′−(x∗) is independent of the trained
model, and βb is (β+ − β−)/s. If ηc(x) is independent
and has Gaussian distribution with zero mean and
variance σ2

ηc
, then b is also normally distributed with

mean βb and variance σ2
b where

σ2
b = (σ2

η+
+ σ2

η
−

)/s2(3.4)

3.2.2 Error Reduction by Sampling We show
that sampling techniques in the proposed framework
reduces variance in skewed data classification.

Our sampling approach could reduce σ2
b not at the

expense of increase in βb. If only the current data chunk
is used to train the model, the positive examples are
so limited that the error of the classifier would mainly
come from the variance. In the proposed framework,
the positive examples in the previous time shots are
incorporated into the training set. Adding positive
examples would reduce the high variance σ2

b caused by
insufficient data. When there are concept changes, the
bias may be affected by adding old examples, but it may



increase very slightly. The reason is that the negative
examples of the training set are from the current data
chunk, which are assumed sufficient and reflecting the
current concept. Therefore, the boundary between the
two classes could not be biased much by including old
positive examples in the training set. Even if the bias
βb is increasing, the reduction of variance is dominant
and the overall generalization accuracy is improved.

3.2.3 Error Reduction by Ensemble The use of
ensemble could further reduce the variance of single
classifiers. According to Eqs. (3.1) and (3.2), the
following formula holds on:

fE
c (x) = P(c|x) + βc + ηc(x)(3.5)

where βc and ηc(x) are average bias and variance
respectively. If the noise error of each ensemble is
independent, the variance of ηc(x) is:

σ2
η

c

=
1

k2

k∑

i=1

σ2
ηi

c

(3.6)

Based on Eq. (3.4), it can be derived that the boundary
variance can be reduced by a factor of k2:

σ2
bE =

1

k2

∑
σ2

bi

Therefore, our proposed framework would greatly
reduce variance by employing both sampling and en-
semble techniques into skewed stream classification. As
shown in the experiments, the improvements gained in
accuracy are significant.

3.2.4 Efficiency Analysis In addition to error re-
duction, the benefits of ensemble over single classifica-
tion model involve efficiency improvements. Suppose
the base learner is decision tree and the dimension of
data is d. As denoted above, the number of positive ex-
amples in each sample is np and the number of negative
examples is nq. Then the training size of each sample is
np +nq, so the time complexity of a decision tree-based
learner would be O(d(np +nq) log(np +nq)). If these en-
sembles are executed sequentially, the training time for
multiple model would be O(dk(np +nq) log(np +nq)). If
we train a single model on the whole data set, the train-
ing size is np+knq, then the time complexity is O(d(np+
knq) log(np + knq)). Since the class distribution in each
sample is balanced, we assume that np = nq = ne.
Then the time complexity of single model and ensem-
ble could be represented by O(d(k+1)ne log((k+1)ne))
and O(2dkne log(2ne)) respectively. k is the number of
models in the ensemble, and is typically greater than 3.
Since log(k+1) > 2 log 2 and k+1 > k, we can conclude

that the ensemble is more efficient than the single model
even if the ensemble is executed in sequence. In real-
ity, since each classifier in the ensemble is independent,
they can be computed in parallel. The gain in efficiency
would be more significant for parallel ensembles.

4 Experiments

We have conducted thorough experiments on both syn-
thetic and real data sets. We analyze the proposed
stream ensemble method from the following perspec-
tives: (1) our proposed method would have good per-
formances no matter how the concept changes, P(x),
P(y|x) or both; (2) for a series of real data sets where
the forms of distributions and concept changes are both
unknown, the stream ensemble method we propose is
able to provide accurate probability estimates; (3) with
reliable estimation of posterior probability, our method
could gain great improvements on prediction accuracy;
(4) besides gains in accuracy, the efficiency is also im-
proved through ensemble framework.

4.1 Experiment Setup

4.1.1 Synthetic Data Generation We generate
synthetic data streams with different kinds of concept
changes. The data is of the form (x, y) where x is a
multi-dimensional feature vector and y ∈ {0, 1} is the
label of the example. We describe in the following how
we simulate P(x), P(y|x), and their changes.

Form of P(x). x follows a Gaussian distribution,
i.e., P(x) ∼ N(µ,Σ), where µ is the mean vector
and Σ is the covariance matrix. The feature change
is simulated through the change of the mean vector.
Suppose µi is the mean on the i-th dimension, then it is
changed to µisi(1+ t) for each data chunk. Specifically,
t is between 0 to 1, representing the magnitude of
changes, si ∈ {−1, 1} specifies the direction of changes
and could be reversed with a probability of 10%.

Form of P(y|x) in deterministic problems. The
probability of having a label y is either 1 or 0 in this
case. Let xi be the value of x on the i-th dimension,
and ai be the weight assigned to the corresponding
dimension. In [14], a hyperplane is used to characterize
the boundary between two classes, which is defined
as a function of xi and ai. In this experiment, a
more complicated boundary is used to generate datasets
which are difficult to learn. The boundary is defined
using function g(x) =

∑d

i=1 aixixd−i+1 − a0. Then
the examples satisfying g(x) < 0 are labeled positive,
whereas other examples are labeled negative. Weights
ai(1 ≤ i ≤ d) are initialized by random values in the
range of [0,1]. We set the value of a0 so that the
number of positive examples is much smaller than that



Table 1: Description of Data Sets
data sets two classes #inst #feature #rare class inst #chunk chunksize

Thyroid1 Class 1 vs. Class 3 6832 21 166 6 1138

Thyroid2 Class 2 vs. Class 3 7034 21 368 6 1172

Opt each class vs. rest 5620 64 554-572 6 936

Letter each class vs. rest 20000 16 131 6 3332

Covtype Class 2 vs. Class 4 28604 54 274 11 2599

of negative examples. A skewness ratio r is used to
control the degree of skewness. The concept change in
P(y|x) is represented by the change in weight ai. ai is
changed to aisi(1 + t) for every data chunk, where the
parameters t and si are defined in the same way as in
the feature change described above.

Form of P(y|x) in stochastic problems. The label
could be stochastically generated, where P(y|x) is be-
tween 0 and 1 for each y. We use a sigmoid function to
model the posterior distribution of positive class:

P(+|x) =
1

1 + exp(g(x))

The skewness is also controlled by r as in deterministic
problems. In fact when g(x) = 0, the posterior
probability of x belonging to positive class is 0.5.
Therefore, if r is small, e.g., 0.01, examples that have
0.5 or above posterior probability only account for 1%.
The concept changes are also realized by the changes of
weights as illustrated in the deterministic scenario.

We generate b data chunks of size n. As stated
in Section 2, there are three kinds of changes: feature
change, conditional change, and dual change. The
changes are simulated by adjusting the parameters as
described above. The distribution within a data chunk
is unchanged. Between data chunks, either one of the
three changes occurs.

4.1.2 Real Data Sets Besides synthetic data, we
use a series of real data sets from UCI machine learn-
ing repository. Although these data sets do not directly
correspond to skewed data mining problems, they can
be converted into rare class problems by taking one
small class as the rare class and taking the remain-
ing records or the biggest remaining class as the second
class. To simulate a data stream, the data is randomly
partitioned into several chunks with skewed distribution
maintained in each chunk. The data sets are summa-
rized in Table 1.

4.1.3 Measures We would evaluate the proposed
method in two perspectives: (1) are the probability es-
timates accurate? and (2) is the classification accurate?

There are some standard measures for evaluating

the quality of probability estimation. A popular one is
mean squared error, defined as:

L =
1

n

n∑

i=1

(f(xi) − P(+|xi))
2(4.7)

where f(xi) is the output of ensemble, which is the
estimated posterior probability of xi, and P(+|xi) is the
true posterior probability of xi. Since in skewed mining
problems, rare class is more interesting and usually
associated with higher classification cost, we would like
to have a low L for examples in the rare class.

In skewed mining problems, classification error is
not a good measure since the examples in the major-
ity class will dominate the result, and it is hard to tell
whether rare examples are classified correctly. There-
fore, for this kind of problems, the following evaluation
metrics are typically used: Precision (Detection Rate),
Recall, and False Alarm Rate. To show how these met-
rics are correlated, we use both ROC curve and recall-
precision plot to demonstrate the experimental results.
The ROC curve represents the trade-off between detec-
tion rate and false alarm rate and plots a 2-D graph,
with x-axis as the false alarm rate and y-axis as the de-
tection rate. The ideal ROC curve has 0% false alarm
rate and 100% detection rate. In other words, the area
under ROC curve is 1 in the ideal case. Therefore, a
good algorithm would produce a ROC curve as close to
the left-top corner as possible. So the area under ROC
curve (AUC) is an evaluation metric, where a better al-
gorithm will have an AUC value closer to 1. Another
method to evaluate the results is to plot the correlation
between recall and precision. The recall-precision plot
will have precision as the y axis and recall as the x axis.

4.1.4 Baseline Methods In Section 3.2, we show
that both sampling and ensemble techniques could help
reduce the classification error. Therefore, the baseline
methods we are comparing with are:

No Sampling + Single Model (NS). Only the
current data chunk is used for training, which is highly
skewed. A single model is trained on the training set.

Sampling + Single Model (SS). The training set
is the same as that used in our proposed ensemble



Table 2: Mean Squared Error on Deterministic Stream Data
Decision Trees Naive Bayes Logistic Regression

Changes
SE NS SS SE NS SS SE NS SS

Feature 0.1275 0.9637 0.6446 0.0577 0.8693 0.4328 0.1501 0.8117 0.5411
Conditional 0.0943 0.9805 0.5500 0.0476 0.8830 0.4380 0.1301 0.8944 0.5729

Dual 0.0854 0.9521 0.5174 0.0664 0.8596 0.4650 0.1413 0.8371 0.5525

Table 3: Mean Squared Error on Stochastic Stream Data
Decision Trees Naive Bayes Logistic Regression

Changes
SE NS SS SE NS SS SE NS SS

Feature 0.0847 0.6823 0.4639 0.0314 0.5371 0.2236 0.0974 0.5311 0.3217
Conditional 0.0552 0.6421 0.4463 0.0299 0.5675 0.2449 0.1029 0.6578 0.4151

Dual 0.0684 0.6758 0.4107 0.0301 0.5981 0.2556 0.0887 0.6388 0.4075

methods. It is obtained by keeping all positive examples
seen so far and under sampling negative examples in
the current data chunk. The difference lies in the
classification model which is a single model in this
method, but a multiple model in our proposed method.

Accordingly, we denote our method as Sampling

+ Ensemble (SE), which adopts both sampling and
ensemble techniques. By comparing with the above
two baseline methods, the strengths of sampling and
ensemble could be illustrated well.

In the experiments, the base learners include both
parametric and non-parametric classifiers: Decision
Tree, Naive Bayes and Logistic Regression. We use the
implementation in Weka package [13]. The parameters
for single and ensemble models are set to be the same,
which are the default values in Weka.

4.2 Empirical Results In this part, we report the
experimental results regarding the effectiveness and ef-
ficiency of our proposed method. The results demon-
strate that the ensemble method could improve both the
quality of probability estimates of the positive class and
the classification accuracy in terms of the ROC curve
and recall-precision plot, and is efficient according to
training time comparison.

4.2.1 Test on Concept-Drift Streams We gener-
ate synthetic data streams with different kinds of con-
cept drifts. Six kinds of stream data sets are generated,
each of which is either deterministic or stochastic, and
has either feature, conditional, or dual concept changes.
Each data set has 10 dimensions, 11 chunks with chunk
size 1000. The percentage of rare examples is 1%, and
for each data chunk, two dimensions are chosen ran-
domly to change 10%. The last chunk in the data set is
recognized as the test data, and all other data chunks
are used for training. Since we are more interested in
probability estimates of the positive class, the mean

square error of the positive class is reported for each
kind of stream data. The results are obtained by cal-
culating errors of 10 randomly generated data sets. We
use C4.5, Naive Bayes, and logistic regression as base
learners. The results are shown in Table 2 (determinis-
tic) and Table 3 (stochastic), respectively.

It is clearly seen that, no matter how the concept
changes, our proposed method (SE) greatly improves
the mean square error of the positive class in both de-
terministic and stochastic data streams. The decrease
in error rate is significant, from 0.9 to 0.1 on the de-
terministic data, and from 0.6 to 0.06 on the stochas-
tic data on average. NS performs badly since only the
current data chunk is used for training and it is highly
skewed. When training on a skewed data set, the induc-
tive learner would build a model that tends to ignore
positive examples and simply classify every example as
negative. Therefore, NS generates an error close to 1
regarding mean square error on the positive class. Ac-
cording to the performances of SS, the mean square er-
ror of the positive class is reduced to around 0.5 after we
oversample positive examples and under sample nega-
tive examples. The reason is that the class distribution
is more balanced after incorporation of more positive
examples. This helps improve the performances on the
positive class. However, the single model would still
have a high error rate caused by classification variance.

Although SE utilizes exactly the same training sets
as used in SS, the performances of SE are much better
since the ensemble could reduce the variance of classifier
by averaging the outputs. As seen in Tables 2 and 3,
for our proposed method, the mean square error on
the positive class is usually less than 0.1. The most
significant reduction in error rate is 0.45 (SE vs. SS)
and 0.88 (SE vs. NS). On average, the error decreases
around 40% after using sampling and further reduces to
10%-20% if we use both sampling and ensemble.

It can be observed that Naive Bayes has the best



Table 4: Mean Squared Error on Real Data
Decision Trees Naive Bayes Logistic Regression

Data Set
SE NS SS SE NS SS SE NS SS

Thyroid1 0.0000 0.0799 0.0003 0.0057 0.0655 0.0366 0.0105 0.2001 0.0634
Thyroid2 0.0001 0.0266 0.0047 0.0505 0.4774 0.2323 0.0044 0.2443 0.0391

Opt 0.0147 0.1160 0.0414 0.0106 0.0972 0.0106 0.0025 0.1131 0.0225
Letter 0.0191 0.2290 0.0653 0.1024 0.2459 0.1567 0.0595 0.4091 0.2061

Covtype 0.0003 0.2500 0.0834 0.0000 0.4496e-7 0.0001e-7 0.0008 0.0835 0.0417

performance on synthetic data set. This is due to the
fact that synthetic data is generated using a Gaussian
distribution with a diagonal covariance matrix, which
guarantees independence between features.

Thus we conclude that our proposed method con-
sistently improves posterior probability estimates of mi-
nority class under feature, conditional, and dual concept
drifts in both deterministic and stochastic applications.

4.2.2 Test on Real Data In this part, we conduct
experiments on several real life data sets. For “thyroid”
data set, we select either class 1 or class 2 as the
rare class and class 3 as the majority class. Similarly,
for “covtype” data set, the biggest class—class 2 is
identified as the majority class while the smallest class—
class 4 corresponds to the rare class. Data sets “letter”
and “opt” are used for recognition of 26 letters and 10
digits respectively. For these two data sets, we simply
choose each class to represent the rare class and collapse
the remaining classes into one majority class. By this
way, from the original data sets, 26 and 10 skewed data
sets are generated and the results are averaged over
these generated data sets.

From Table 4, it can be observed that our proposed
method SE consistently outperforms NS and SS on real
life data sets. The improvements are not that significant
compared to those on the synthetic data sets. This is
probably due to the learning complexity of data sets.
The concepts of synthetic data sets are changed every
data chunk, which makes them harder to learn. NS and
SS are both unable to handle these fast-changing, highly
skewed data sets. By balancing the training data and
using multiple models, the improvements of SE on the
synthetic data are more apparent.

In real data sets, the concept changes are not
intense, so the error rates of NS and SS are typically
around 0.2 and less than 0.1 respectively. This leaves
a small space for SE to improve. Nevertheless, SE
successfully achieves an error less than one tenth of
the error generated by NS most of the time. When
NS and SS have high error rates of around 0.4 and 0.2,
SE could reduce the error to 0.05. Another interesting
observation is that no base learner is globally optimal.

Table 5: Decision Tree as Base Learner
SE NS SS

Synthetic1 0.9464 0.5175 0.6944
Synthetic2 0.9337 0.4840 0.6611

Thyroid1 1.0000 0.9999 0.9999
Thyroid2 0.9998 0.9998 0.9996

Opt 0.9942 0.9495 0.9777
Letter 0.9931 0.9467 0.9782

Covtype 1.0000 1.0000 0.9999

Table 6: Naive Bayes as Base Learner
SE NS SS

Synthetic1 0.9532 0.8220 0.9525
Synthetic2 0.9558 0.8355 0.9556

Thyroid1 0.9982 0.9979 0.9982

Thyroid2 0.9551 0.9054 0.9145
Opt 0.9926 0.9722 0.9898

Letter 0.9395 0.9389 0.9389
Covtype 0.9997 0.9995 0.9997

Table 7: Logistic Regression as Base Learner
SE NS SS

Synthetic1 0.8801 0.8363 0.8737
Synthetic2 0.8992 0.8102 0.8854

Thyroid1 0.9977 0.9774 0.9909
Thyroid2 0.9949 0.9593 0.9930

Opt 0.9971 0.9940 0.9953
Letter 0.9545 0.9448 0.9517

Covtype 0.9995 0.9989 0.9994

Decision trees have good performance on “thyroid” and
“letter”, Naive Bayes is suitable for “covtype”, and
“opt” is best classified by Logistic Regression. This
demonstrates that these real data sets have different
characteristics with different sizes, skewness degrees,
and distributions. Such a diverse testbed shows the wide
capabilities of our proposed method.

4.2.3 Model Accuracy Analysis The purpose of
this experiment is to compare the model accuracy in
terms of detection, recall, and false alarm rates. Tables
5 to 7 show the results of applying our proposed method
and two baseline methods on a series of synthetic and
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Figure 2: Plots on Synthetic1

real data sets. The measure is the area under ROC curve
(AUC). The data sets “synthetic1” and “synthetic2”
refer to deterministic and stochastic data sets with dual
concept change generated as described above. Again,
the greatest enhancements are achieved on synthetic
data sets. When the base learner is Decision Tree, SE
increases AUC to over 0.9 while AUC of NS and SS are
only around 0.5 and 0.6. On real data sets, NS has
already gained an AUC over 0.9. Yet, our proposed
method is still consistently better than its competitors.

We further show the ROC curves and recall-
precision plots of data sets synthetic1 and Opt in Fig-
ures 2 and 3. The parameter setting is the same as
described above and the base learner is C4.5. Clearly,
in both synthetic and real applications, our proposed
method consistently improves precision. The synthetic
data set is hard to learn due to highly skewed distribu-
tion and concept changes, thus the precision obtained by
single model is extremely low, around 0.02 in the recall
range of [0.4 0.6]. Our method has achieved nearly ten
times as much precision as the single model and an ROC
curve with an area near 1. It justifies that the sampling
and ensemble techniques used in our method effectively
improve the probability estimates and thus lead to a
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Figure 3: Plots on Opt

better classification model. The improvements in Opt
data set are not that significant. The reason is that
the data set is not sharply skewed (nearly 10% of posi-
tive examples), so the single model has already obtained
a high precision (nearly 90%). However, our proposed
method succeeds in improving both ROC and recall-
precision graphs by 10% increase in precision since the
classification variance is reduced.

4.2.4 Effect of Data Size and Skewness First,
we study the impact of chunk size on the reliability
of probability estimates. The data sets we used are
synthetic1 with skewness degree 0.01 and the base
learner is C4.5. We vary the chunk size from 1000
to 5000. The results are shown in Table 8. In
general, the classification errors of all three methods
decrease with respect to both MSE and AUC when
chunk size increases because more training examples
lead to reduction in classification errors. But in real
applications, the chunk size is usually fixed, which is
the number of examples that could be held in memory.
It is noted that SE always outperforms NS and SS
when chunk size varies. For example, when chunk size
increases from 1000 to 5000, MSE of SE decreases from



Table 8: Effect of Chunk Size
MSE AUCChunk-

size SE NS SS SE NS SS

1000 0.0731 0.6999 0.3575 0.9259 0.4991 0.7384
2000 0.0533 0.6759 0.3680 0.9522 0.5379 0.7555
3000 0.0556 0.7015 0.3354 0.9557 0.5061 0.7578
4000 0.0478 0.6749 0.3565 0.9643 0.5580 0.7432
5000 0.0423 0.6243 0.3107 0.9710 0.5913 0.7425

Table 9: Effect of Skewness
MSE AUCSkew-

ness SE NS SS SE NS SS

0.01 0.0401 0.6862 0.3486 0.9527 0.4820 0.7417
0.02 0.0461 0.6852 0.3517 0.9623 0.5107 0.7433

0.03 0.0424 0.6481 0.3235 0.9688 0.6175 0.7422
0.04 0.0383 0.6071 0.3238 0.9718 0.6281 0.7535
0.05 0.0346 0.6190 0.2810 0.9750 0.5954 0.7773

0.0731 to 0.0423 while MSE of NS is much higher,
changing from 0.6999 to 0.6243.

Then, we show the effects of skewness on classi-
fication error. The data set is synthetic1 with chunk
size 1000 and base leaner is decision tree. According to
Table 9, classification errors of NS decrease when the
percentage of positive examples increases from 0.01 to
0.05. For example, AUC of SS increases from 0.4820 to
0.5954. The reason is that for NS, though the train-
ing size does not change, more positive examples would
help reduce the classification error. The same trend is
observed for both SS and SE, whose AUC increases from
0.7417 to 0.7773 and from 0.9527 to 0.9750, respectively.
Although training sets in SS and SE are made balanced
by sampling, the skewness degree in the original data set
would still have impacts on the training size. If the per-
centage of positive examples is low, we need to greatly
under sample the negative examples to make distribu-
tion balanced. However, if the percentage of positive
examples is high, we could incorporate more negative
examples into the training set. With a larger training
set, a more accurate classification model is expected.

4.2.5 Training Efficiency We study the time com-
plexity of the ensemble approach compared with single
model. A synthetic data stream with 10 chunks is gen-
erated. The chunk size is varied from 1000 to 5000 and
the number of ensembles is 5. The training times of
both parallel and serial ensembles are reported in Figure
4. As expected, ensemble outperforms the correspond-
ing single model significantly, especially when the chunk
size is large. With chunk size 1000, serial ensemble re-
duces the training time by half. The reduction becomes
more significant as chunk size increases. With chunk
size 5000, the training time of single model is four times
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the training time of serial ensemble. When the training
set has a high cardinality, training a single model on
this huge data set would cost a large amount of time.
The ensemble method, on the other hand, divides the
large training set into several small sets, and thus saves
lots of time on training even though these classifiers are
trained sequentially. The gain in efficiency is more sig-
nificant if the classification processes are executed in
parallel. The results verify that our proposed method
not only improves on classification accuracy, but also on
efficiency and scalability.

5 Related Work

Class imbalance has become an important research
problem in recent years since more people have realized
that imbalance in class distribution causes suboptimal
classification performance [15, 5]. Several workshops,
such as those at AAAI 2000 and ICML 2003, and a jour-
nal special issue at SIGKDD Exploration 2004 are ded-
icated to class imbalance problem. Many solutions have
been proposed to handle this problem by preprocessing
data, transforming algorithms or post-processing mod-
els [1]. Among them, balancing training set distribu-
tion is the most popular approach. Specifically, many
sampling algorithms have been developed to either un-
der sample majority examples or oversample minority
examples [4, 1]. These methods may improve the pre-
diction accuracy of minority class, however, they are
greatly challenged by stream applications where infi-
nite data flow and continuous concept drifts are present.
Therefore, a general framework for dealing with skewed
data stream is in great demand.

Skewed stream problems have been studied in the
context of summarization and modeling [6, 11]. How-
ever, the evaluation of existing stream classification
methods is done on balanced data streams [10, 14, 7, 2].
In reality, the concepts of data streams usually evolve
with time. Several stream classification models are
designed to mine such concept-drifting data streams
[14, 7], however, they regard concept drifts as changes



in conditional probability. In our work, it is shown that
concept changes may occur in both feature and condi-
tional probability. In [8, 17], two application examples
of skewed data mining are studied. But we provide a
more general framework for building accurate classifica-
tion models on skewed data streams.

6 Conclusions

This paper has two important and related parts. In the
first part, we analyze several requirements and choices
of techniques for general predictive modeling on data
streams, which are not clearly understood previously.
A comprehensive understanding of these requirements
helps design better algorithms and evaluate the per-
formance of these algorithms in an environment close
to reality. To be specific, first, we argue that concept
drifts of data streams could involve changes in either
P(x) or P(y|x). We show that when concept evolves in
either form, the expected error could decrease, increase,
or stay the same. However, the most up-to-date data
could always help reduce classification error. Second,
we explain why descriptive models should be preferred
over generative models for stream mining. Descriptive
models could represent the true concept more accurately
especially in data streams because: (1) many applica-
tions have skewed distribution, and (2) both the under-
lying true distributions and concept evolution patterns
remain unknown either before or after mining. We also
discuss about the benefits to use posterior probability
estimation as compared to direct class label prediction
for data stream classification. The probability estimates
provide more refined information to users for better de-
cision making. Also, for stochastic problems, estimation
of P(y|x) is more meaningful.

Although these analyses are helpful for inductive
learning on many stream mining problems, we are par-
ticularly interested in applying them to mine skewed
data streams. We design an effective framework based
on sampling and ensemble techniques. The algorithm
first generates a balanced training set by keeping all
positive examples and under sampling negative exam-
ples. Then the training set is further divided into sev-
eral samples and multiple models are trained on these
samples. The final outputs are the averaged probability
estimates on test data by multiple models. We show
that both sampling and ensemble techniques contribute
to classification variance reduction. The error reduc-
tion is significant according to experimental results, e.g.,
for concept-drifting streams, the mean square error de-
creases from around 0.9 to 0.1. It is also demonstrated
in both formal analysis and experiments on synthetic
and real-world datasets that the proposed method is
not only effective in error reduction, but also efficient

and scalable with respect to training time.
The method introduced in this paper mainly focuses

on two-class problems, but it could be easily extended
to multi-class problems. Directions for future work
include applying the framework to multi-class data with
skewed class distributions and analyzing the strengths of
ensemble methods in stream environments with various
kinds of concept changes.
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