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Sensor sharpening [J. Opt. Soc. Am. A 11, 1553 (1994)] has been proposed as a method for improving compu-
tational color constancy, but it has not been thoroughly tested in practice with existing color constancy algo-

rithms.

In this paper we study sensor sharpening in the context of viable color constancy processing, both
theoretically and empirically, and on four different cameras.

Our experimental findings lead us to propose a

new sharpening method that optimizes an objective function that includes terms that minimize negative sen-

sor responses as well as the sharpening error for multiple illuminants instead of a single illuminant.

Further

experiments suggest that this method is more effective for use with several known color constancy algorithms.
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1. INTRODUCTION

Sensor sharpening refers to using a linear transformation
of camera responses [red—green—blue (RGB)] to improve
computational color constancy methods based on indepen-
dently scaling the three sensor channels.! Here the scal-
ing, or diagonal map, is applied to all the sensor re-
sponses of a scene under one illuminant to estimate the
corresponding responses under a standard, canonical illu-
minant. Using the appropriate linear transformation be-
fore the scaling and its inverse after the scaling reduces
the rms mapping error. The original work! thus sug-
gested that some color constancy algorithms could, in
theory, benefit by sensor sharpening. However, the prac-
ticality of sharpening remains unclear because determin-
ing the sharpening transform requires knowledge of the
scene illuminant (database sharpening), strong conditions
on scene illuminant and scene surfaces (perfect sharpen-
ing), or optimizations that are not directly related to color
constancy error (sensor-based sharpening). Further-
more, the error in scene illuminant parameter estimation
is often much larger than the reduction in error that is
possible ‘to achieve by sharpening, even assuming that
the illumination is known. Finally, color constancy pro-
cessing is not necessarily independent of sharpening.
For example, sharpening may help color constancy pro-
cessing above and beyond the possible reduction in map-
ping error by improving the estimation of the required
mapping. Alternatively, sharpening may work against
the color constancy algorithm.

In preliminary work we applied sharpening to several
algorithms? and found that sharpening could improve
performance in a few cases. The difficulties we encoun-
tered led us to propose a new sharpening method
(multiple-illuminant-with-positivity sharpening), which
we describe here. We also analyze the relationship be-
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tween sharpening and color constancy error for several
color constancy algorithms. We then provide detailed re-
sults using an improved experimental protocol.

The efficacy of sensor sharpening is expected to be de-
pendent on the camera sensors. Thus we provide results
for four different cameras: a Sony DXC-930 CCD video
camera,’ a Kodak DCS-460 digital camera, a Kodak DCS-
200 digital camera,® and a Kodak DCS-420 digital
camera.* Our general conclusion is that when the sen-
sors are already relatively sharp (e.g., the Sony camera),
further sensor sharpening is not helpful and can have a
detrimental effect. However, when the sensors are not
sharp (e.g., the DCS-460, the DCS-200, and the DCS-420),
sensor sharpening can have a substantial positive effect,
depending on the algorithm, especially when the proposed
new method is used.

2. SENSOR-SHARPENING FORMULATION

We begin with an explanation of sensor sharpening.!
The motivation for sensor sharpening is the observation
that many of the most effective current color constancy al-
gorithms employ a diagonal model of illumination change.
To understand this model, consider a white patch under
two different illuminants. Suppose that under the first
illuminant the color is (r, g, b) and under the second illu-
minant the color is (r’, g’, b’). It is possible to map the
color of white under the first illuminant to the color under
the second by postmultiplication by a diagonal matrix:

(r',g',b") = (r,g, b)diag(r'/r, g'/g, b'/b).
If the same diagonal matrix transforms the (r, g, b) of all

surfaces (not just the white ones) to a good approxima-
tion, then we say that we have a diagonal model of illu-
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mination change. It turns out that the accuracy of the
approximation is a function of the vision system’s sensors.

The idea of sensor sharpening is to map the data by a
linear transform 7T into a new space where the diagonal
model holds more faithfully. Color constancy algorithms
that rely on the diagonal model can then proceed more ef-
fectively. The final result is then mapped back to the
original RGB space with the inverse transformation 7 1.
Working in the transform space is like having new sen-
sors that are linear transformations of the old ones.
Generally speaking, the sensitivity functions of sensors
that support the diagonal model tend to look sharper in
the sense that they have narrower peaks than ones that
do not. For the limiting case—that of Dirac delta func-
tions as sensors—the diagonal model holds exactly.
From these observations, we get the name “sensor sharp-
ening.”

The main technical result in sensor sharpening is how
to find the transformation 7. Finlayson et al.! propose
three methods for finding 7© “sensor-based sharpening,”
“database sharpening,” and “perfect sharpening.” In da-
tabase sharpening, RGBs are generated by using a data-
base of reflectance spectra, together with an illuminant
spectrum and the sensors. This is done for two separate
illuminants. Let A be the matrix of RGB for the first il-
luminant and B be the matrix for the second, with the
RGBs placed rowwise. In the sharpening paradigm, we
map from B to A with a sharpening transform, followed
by a diagonal map, followed by the inverse transform. If
we express each transform by postmultiplication by a ma-
trix we get A~ BTDT !. In database sharpening the
matrix 7 (and implicitly D) is found that minimizes the
rms error, | A — BTDT !||,. The sharpening transform
gives exactly the same error as the best linear transform
M. In fact, 7 is found by diagonalizing M, where M
minimizes | A — BM|.

Sensor-based sharpening finds the transform 7 by us-
ing an optimization designed to capture the intuitive no-
tion of sharpness. This optimization requires specifying
in advance a sharpening interval and the value of a
Lagrange multiplier. For this work we chose database
sharpening over sensor-based sharpening because of the
unambiguous correspondence between the sharpening
method and a color constancy error measure, as well as
the difficulties in relying on user-specified parameters.

Perfect sharpening computes the sharpening transform
on the assumption that surface reflectances can be fitted
by using a three-dimensional linear model and, more
critically, that illuminant spectra can be fitted by using a
two-dimensional linear model. Although one of the
strengths of this method is that it applies to a range of
illuminants, it did not work well for us because our test
illuminant set did not meet the key requirement of being
two dimensional, partly owing to the inclusion of fluores-
cent lights.

Regarding database sharpening, two implementation
issues should be noted. First, the above procedure can
lead to complex numbers in 7. Fortunately, this does not
occur too often, and when it does occur, the imaginary
components tend to be small. We set all imaginary com-
ponents to zero.

A second implementation issue is as follows: The re-
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sult of the diagonalization is ambiguous up to scaling and
swapping of the columns of 7. As is standard, we use col-
umns of norm 1. Furthermore, we put the element of 7 of
largest absolute value on the diagonal by swapping col-
umns and ensure that it is positive by multiplying the col-
umn by —1 if necessary. Then in a similar way we at-
tempt to make the other diagonal elements as large as
possible. This procedure is used to reduce the number of
negative components of sharpened data.

In this paper we view color constancy as the transfor-
mation of an input image of a scene taken under an un-
known illuminant to an output image representing the
same scene as though it were taken under a known, “ca-
nonical,” illuminant.? A priori, the nature of the trans-
formation is open, but most algorithms find a diagonal
transform, and it is these algorithms that interest us
here. Of course, the best linear transformation, if it
could be found, would by definition always do as well as or
better than the best diagonal transformation, but clearly
the generalized diagonal transform 7D7 ! gives us a
chance of doing as well with a diagonal model.

It could be argued that the need to improve diagonal
color constancy through sharpening indicates that the di-
agonal model itself should be reconsidered. In short,
why not find a linear transform? We argue that sharp-
ening is important for several reasons. First, a number
of promising algorithms are defined in terms of diagonal
models, and effective counterparts for linear transforms
are not available. Sharpening allows us to use these al-
gorithms even when the diagonal model is not a very good
approximation. Second, we have found empirically that
when a camera with sharp sensors is used, the error in
finding the best diagonal transform far exceeds that due
to the subsequent mapping. Put differently, if we could
consistently find the best diagonal transform with such a
camera, the color constancy problem would essentially be
solved (assuming spatially uniform illumination). This
indicates that the simplifications afforded by reducing the
number of parameters to be estimated can easily justify
the less accurate model.

3. SENSOR SHARPENING IN PRACTICE

Database sharpening transform is defined in terms of an
illuminant pair. In the context of color constancy, this
presents a problem since we know only one of the illumi-
nants (the canonical). The other is the scene illuminant,
which is unknown and is precisely what needs to be found
by any color constancy method. Therefore, for sharpen-
ing to be useful in color constancy, we need to find a sub-
stitute for the unknown illuminant.

One simple approach, introduced here to provide a
baseline for later comparison, is to use the average of a
database of common illuminant spectra™® to represent
the second illuminant. The illuminant spectra must be
normalized with respect to overall magnitude so that the
different illuminants make comparable contributions to
the average spectra. We will refer to this method as
average-illuminant sharpening (“ave” sharpening).

Another approach is to find a smaller set of feasible il-
luminants and then average their spectra to derive a rep-
resentative illuminant for sharpening. The feasible illu-
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minants are found by using gamut-mapping color
constancy.>® The estimates can then be refined by re-
peating this process: The average illuminant is used to
recompute the sharpening transform, which is then used
to recompute the feasible set of illuminants. Although
this iterative method has some intuitive appeal, we found
that the results were not much better than using the
simple average, and thus we do not include this method in
the experiments reported here.

To determine the upper bound on color constancy per-
formance by using sharpening, we also computed the best
database sharpening transform 7 on the basis of correctly
guessing the illuminant spectrum. Since 7 minimizes
possible rms mapping error, we will call this method “op-
timal.” It should be noted, however, that this method is
not necessarily truly optimal once it is used in conjunction
with a specific color constancy algorithm. It is possible
that illuminant estimation may be best performed in
some other space, with the effect that the other transform
gives lower error with the chosen color constancy method.
This is more likely to be the case when the initial sensors
are already sharp, because a smaller portion of the error
is due to the lack of sharpness. Thus with sharp sensors,
using this “optimal” sharpening method can lead to worse
results than not using sharpening at all. This empha-
sizes one of the main points of this paper: Since sharp-
ening is not defined as minimizing the error of any par-
ticular practical computational color constancy method,
existing sharpening methods cannot be assumed to im-
prove color constancy. In this paper we provide some
theoretical analysis and empirical results to help choose
and develop sharpening methods on an algorithm-by-
algorithm basis.

An empirical approach is useful because the interaction
between sharpening and the color constancy algorithms is
complex. One complication is that sharpening can lead
to negative camera responses (in the sharpened space),
which can be a problem for the gamut-mapping®°~'2 color
constancy algorithms. The gamut-mapping algorithms
are otherwise good candidates for sharpening since they
are very effective!?> '# and they rely completely on the di-
agonal model. Not only can negative sensor responses
arise in the input data, but they can also occur in the al-
gorithms’ calibration sets when they are mapped into the
sharpened space. In fact, negative input data can be tol-
erated by the three-dimensional gamut-mapping algo-
rithms, and the problems with negative sensor responses
are confined to some of the calibration sets. In general,
depending on the variation used, negative components in
calibration data can present severe difficulties.

If we are to add sharpening to gamut-mapping algo-
rithms, we must decide what to do with negative compo-
nents. One strategy is to set the negative components to
zero or to a small positive number if zero is also unaccept-
able. Unfortunately, this often leads to poor perfor-
mance, or at least worse performance than without sharp-
ening. Simply discarding input with negative
components can also lead to worse performance because
the additional data may help the nonsharp version. In
both cases the problem is aggravated by the fact that the
more extreme data (data that affects hull boundaries, in-
cluding those of the calibration sets) is the most critical
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for the gamut-mapping algorithms, and thus either
changing or ignoring such data is problematic. We there-
fore take the view that when these algorithms are faced
with invalid data, the best action is to revert to processing
in a nonsharp space.

This leads to the following general strategy. If an al-
gorithm is faced with invalid data due to sharpening,
then sharpening is simply not used. Instead, the stan-
dard result without sharpening is computed. We report
the number of times this occurred for each combination of
algorithm and sharpening method tested. This strategy
exposes the overall benefits (or lack thereof) of sharpen-
ing. For example, an algorithm that gives better results
with sharpening half of the time, but cannot use sharpen-
ing because of negative values the other half of the time,
still is improved overall by sharpening. Our testing
strategy thus measures the effect of sharpening when it
can be applied without modifying the specification of any
algorithm. We note that a few sensor/algorithm/
sharpening combinations are always incompatible. The
resulting performance in these cases is exactly the same
as it would be without sharpening.

Reverting back to nonsharp computation in case of dif-
ficulties is preferred to the approach used in preliminary
work,? where we simply excluded from further consider-
ation all data that gave any algorithm trouble. All algo-
rithms were then tested on the same reduced data set.
This approach is biased because the excluded data are not
random, and its exclusion can favor some color constancy
algorithms.!?

So far we have described performing all color constancy
processing in the sharpened space. A second possibility
is to estimate the RGB of the illuminant in the original
sensor space and then use a sharpening to correct the im-
age on the basis of that estimate. Thus sharpening could
improve the image correction results for algorithms tuned
to estimate the illuminant RGB on the basis of nonsharp
sensor responses. This strategy, which we will refer to as
“sharp correction,” circumvents the negative-component
problem. By definition, it does not affect the illumination
estimation performance but only the mapping perfor-
mance. Thus sharp correction cannot help with the illu-
mination parameter estimation part of color constancy,
which, at least in the case of gamut-mapping color con-
stancy, is an expected benefit of sharpening. Further
analysis of the relationship between sharpening and the
color constancy algorithms tested in this work are pro-
vided in Section 7.

4. NEW APPROACH TO SHARPENING

We now introduce a new method for sharpening that
deals with some of the problems inherent in database
sharpening. We begin by changing the objective function
of the database sharpening minimization problem. In its
original form, this objective function minimizes the diag-
onal mapping error between the responses of a set of re-
flectances under two known illuminants. However, since
in the context of color constancy one of these illuminants
is not known, we instead minimize the average of the
mapping error over a representative set of possible illu-
minants. Next, we include a term that encourages posi-
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tive sensor response values. Finally, we include a term
that encourages the transform to be norm 1. Since the
resulting function is difficult to minimize directly, we look
for suitable local minima by using gradient descent. We
will refer to this method as multiple-illuminant-with-
positivity sharpening (“mip” sharpening).

Computing the objective function requires a database
of reflectance spectra that model the surfaces of the world
and a database of illuminants that is a representative set
of the illuminants in the world. The illuminant set
should be normalized so that their magnitudes are iden-
tical. Then, for a given illuminant ¢, all the responses to
all the reflectances can be computed by using the camera
sensitivity functions. We put the responses into the rows
of a matrix A;. We also form a similar matrix for the ca-
nonical illuminant B. Then, given a transform 7, we
compute the sharpened responses A;7 and B7. We then
compute the best diagonal map, in the least-squares
sense, between these two matrices. This is done by av-
eraging the rows of each matrix, dividing the two aver-
ages elementwise, and using these three ratios as the el-
ements of a diagonal matrix. For each illuminant we
thus obtain a diagonal map, D;. Finally, we can express
the overall mapping error by

E=> |ATDT ! - By, (1)

where || | is the Frobenius matrix norm (the square root
of the sum of the squares of all matrix elements).

To encourage positive sensor responses, we compute a
penalty function from all the current sharpened re-
sponses, A;7. Since some algorithms cannot cope with
zeros, it helps for the responses to be at least a small off-
set larger than zero (we used a value of 0.1 in the experi-
ments). The penalty function is

(x — offset)? if (x < offset) )
flx) = 0 otherwise ’ @
The total penalty, P, is the sum of f(x) over all sensor re-
sponses A;7 over all illuminants, ;. Finally, we add a
term to keep T near norm one. Without such a term, the
positivity term could be reduced by simply scaling 7
downward. For this we use

N = [trace(7'7) — 372 3)
The overall objective function is therefore
E + \pP + \yN, (4)

where \p and \ are weights that control the relative im-
portance of the three parts of the objective function.
Finding a suitable value of \y is straightforward because
we are essentially using it as a convenient way to enforce
a constraint, and thus we can use a very large value. We
note that the magnitude of 7 has no effect on the mapping
error, because both 7 and 7! occur in the expression.
Once Ay is sufficiently large, increasing it further will
have very little additional impact on the resulting 7 On
the other hand, increasing Ap will lead to larger overall
mapping error, and thus we would like to use the smallest
value possible. This is discussed further below.
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Thus given some 7, we can compute the error, and,
given a change in any of the nine components of 7, we can
compute the change in the error and thus the gradient.
We then change 7 in the direction of the gradient. If this
change increases the error, we reduce the amount of
change until the error does decrease. We carry on the
process until 7 does not change more than a small
threshold.

This leaves the determination of the initial 7. Since
gradient descent does not necessarily converge to the glo-
bal minimum, different starting points can give different
results. We tried two different strategies. First, we
tried starting with the sharpening matrix obtained by us-
ing the average illuminant, as described above. Second,
we tried starting with the identity matrix. Both methods
gave good results, but over the three camera sensors used
in preliminary work, the identity matrix starting point
proved to be the best choice, and thus we use it here. The
preference of the identity starting point makes sense in
terms of the results presented below, which indicate that
ignoring positivity can lead to much larger error than
simply missing out on a possible sharpening benefit.
Sharpening by using the average illuminant can lead to
small or negative responses, and moving significantly
away from such a transform by gradient descent will not
always be possible.

Finlayson et al. added positivity to sensor-based sharp-
ening by using two different criteria.'® The first criterion
constrains the coefficients of the sharpening matrix to be
positive. The second criterion, which is weaker and thus
more useful, takes a more direct approach and simply in-
sists that the sensors themselves be positive. The condi-
tions on positivity imposed by Eq. (2) are even weaker in
two ways. First, Eq. (2) only penalizes negative sensor
responses to the set of input spectra; the sensor functions
themselves can have small negative components. Sec-
ond, our penalty function allows for the possibility of an
occasional small negative sensors response. In fact, this
is how we set the weight for the positivity term. We use
a value that yields “positive-enough” responses for the al-
gorithms under consideration. Thus conceptually, the
weight is a function of the algorithms(s) to be improved.
Given our strategy of reverting back to the standard form
of the algorithm if necessary, we can tolerate the occa-
sional negative sensor response. However, since we
wished to use the same sharpening transform for all the
algorithms under consideration, we found it convenient to
choose a value for the weight that yielded very few nega-
tive sensor responses.

Finally, we note that the method developed in this sec-
tion also sidesteps having to deal with the occurrence of
complex elements in the transform matrix. As men-
tioned above, such elements sometimes occur when stan-
dard database sharpening is used.

5. COLOR CONSTANCY METHODS

We will now discuss briefly the color constancy algorithms
that we test here in the context of sensor sharpening.
Further details on these algorithms are available.!®13
The first two algorithms are based on the assumption
that the average RGB of a scene under a given illuminant
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is the same as that of “gray.” The exact definition of “gray’
distinguishes the algorithms. One possibility is simply
true gray, specifically, a 50% uniform reflectance. This
leads to the algorithm labeled GW in the results. A sec-
ond choice is to use the average of the reflectance data-
base. This method has an unfair advantage when tested
on synthetic data generated from the same reflectance da-
tabase. Its results are guaranteed to be excellent if a
large number of surfaces are used. In the case of real im-
ages, however, the actual average surface reflectance is
not known, and thus this method is expected to fare rela-
tively less well.'»17  We denote this algorithm DB-GW
(database-gray world) in the results. The implied diago-
nal map is the ratio of the known RGB of gray under the
canonical illuminant to the RGB of gray under the test il-
luminant, estimated by the average of the scene RGB.

The second algorithm is loosely based on the Retinex
model of human vision.'®2° The result is computed by
using the maximum in each channel as an estimate of the
color of white under the test illuminant. Similar to the
gray-world algorithm, the implied diagonal map is the ra-
tio of the known color of white under the canonical illumi-
nant to the estimate. This algorithm is labeled SCALE-BY-
MAX in the results.

The gamut-mapping approach introduced by Forsyth®
estimates the diagonal map directly from a set of possible
maps. The possible maps can be constrained by consid-
ering the scene RGB (Ref. 5) and insisting on plausible
illuminants.® The two gamut-mapping algorithms de-
scribed below use both sources of constraints.

Given a set of possible diagonal maps, a solution needs
to be chosen from this set. One method for doing so is
maximizing the volume of the convex hull of the mapped
RGBs (Ref. 5) that is used in the algorithm ECRULE-MV. A
second method is to use the average of the possible
maps.'%2 When Finalyson’s illumination constraint is
used, the set of possible maps is nonconvex, and thus in
the algorithm labeled ECRULE-ICA in the results, the aver-
age is estimated numerically.

We do not report any results for the chromaticity ver-
sions of gamut mapping, for three reasons. First, since
these methods do not consider overall illuminant bright-
ness, their results cannot be used in conjunction with the
RGB mapping error. Second, we have found the three-
dimensional methods more effective overall 101271417
Third, we have found that the chromaticity gamut-
mapping methods are by far the most sensitive to nega-
tive sensor responses.

6. ERROR MEASURES

We consider color constancy processing as transforming
an image of a scene taken under an unknown illuminant
to an image of the same scene as if it were taken under a
standard, canonical illuminant.? In the context of image
correction, the canonical illuminant would normally be
one for which the camera was balanced. Achieving this
transformation implicitly characterizes the illuminant.
Many color constancy algorithms first explicitly charac-
terize the illuminant, often by the RGB of pure white, and
then correct the image on that basis. Regardless, it is
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natural to consider the correction error as the measure of
color constancy performance.

In this work we compute the rms RGB difference be-
tween the corrected image and the target image, where
the target is defined as the same scene imaged under the
canonical illuminant. This measure is similar to the one
that sensor sharpening attempts to minimize. There is
one ambiguity worth further discussion. Either we can
measure the transformation error for the specific scene as
described above, or we might consider the transformation
error for the set of known surfaces as reported in prelimi-
nary work.?2 The second error is more precisely what is
minimized when the sharpening transform is computed
but is less indicative of how well images are being cor-
rected and is further removed from our main goal.
Therefore in this work we report the scene-oriented map-
ping error.

To compute this error, we start with a diagonal trans-
formation that takes sharpened responses under the un-
known illuminant to sharpened responses under the ca-
nonical illuminant. If the algorithm is being applied to
sharpened input data, then this transformation is imme-
diately available as output. If sharpening is being used
only to correct the image on the basis of an estimate of the
RGB of the illuminant, then that estimate is transformed
to an estimate of the illuminant in the sharpened space.
The ratio of the RGB of the canonical illuminant in sharp-
ened space to this estimate is then used as the diagonal
transform in sharpened space. Regardless of which ap-
proach is used to find the transform, it is then applied to
the sharpened input data to obtain an estimate of the
scene under the canonical illuminant in the sharpened
space. We then apply the inverse sharpening transform
to this mapped set to obtain the estimate of the responses
under the canonical illuminant without sharpening.
This estimate is compared with the target by using the
rms of the RGB difference between them.

We also report a measure of the error in the estimated
illuminant chromaticity. This estimate is implicit in the
gamut-mapping algorithms and is essentially explicit in
the other algorithms studied here that estimate the RGB
of the illuminant. It is reasonable to consider chromatic-
ity because we are often less interested in the overall
brightness of the illuminant. For example, if we are cor-
recting a properly exposed image taken with incorrect
camera balance, then the brightness of the illuminant is
implicit, and we need only to correct for the illuminant
chromaticity. In fact, a number of algorithms work only
with chromaticity.>?!*2 We do not consider any of these
algorithms here, but a good counterpoint to the rms RGB
mapping error measure is a chromaticity error measure.
The one that we use here is the angle between the illumi-
nant RGB and the estimate thereof, considered as vectors
in RGB space.

7. COLOR CONSTANCY WITH
SHARPENING

Each color constancy algorithm is affected differently by
sharpened data. We consider the gray-world algorithms
first. The illuminant estimate provided by these two al-
gorithms is given by
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1 n
w = (_z ri)diag(wcjgc)’ (5)

n

where the r; are the observed sensor responses, w, is the
RGB of white under the canonical illuminant, g, is the
RGB of gray under the canonical illuminant, ./ is used to
denote elementwise division, and diag() transforms a vec-
tor to a diagonal matrix. When sharpening is used, Eq.
(5) becomes

1 n
w = [(—2 rff) diag[(wm.«gm]]rl. (6)
p

12

As discussed above, we have two different definitions of
gray, giving two different values of g.. In the case of the
Gw algorithm, the reflectance spectrum of gray is as-
sumed to be half that of perfect white. Under this condi-
tion, w, is twice g, and diag(w,./g,) can be replaced by 2.
Similarly, w7 = (2g,)7= 2(g.7), and diag[(w,27)./
(g.7)] can also be replaced by 2. It is then straightfor-
ward to see that Egs. (5) and (6) are the same. Hence we
expect sharpening to have absolutely no effect on the es-
timate of the illuminant when the GW algorithm is used.

It should also be clear that when g, is not a simple sca-
lar times w,, as is the case with DB-GW, that there will be
some effect. Intuitively, the effect should be small, as we
expect g, to be not too far from a scalar times w.. How-
ever, given the nature of the expression, it is possible for
the effect to be large. For example, the illuminant esti-
mate becomes unstable for sharpening transforms 7 that
map a component of g, close to zero.

The effects of sharpening in terms of the mapping error
are more interesting. In the nonsharp case, the gray-
world algorithms estimate the diagonal mapping D,
which maps RGB taken under the unknown illuminant to
the corresponding RGB taken under the canonical illumi-
nant by

D = diag

12

gc./(%é ri”. %)

In the sharp case, the estimate is for the analogous map-
ping, D¥, applied in the sharpened space. D* is com-
puted similarly to D, but with the sharpened quantities
g.7 and r;7 used in place of g, and r;:

D* = diag

1 n
(gm./( > riT”- (8)

n i

Now, if the sharpening transform produces negative com-
ponents, it is entirely possible that the sum in Eq. (8)
might be close to zero. In this case, the error in D¥ can
be become arbitrarily large. Thus even in the case of the
GW algorithm where the illuminant estimate is identical
to that obtained without sharpening, the RGB mapping
error can be much larger than that obtained without
sharpening. This may seem contradictory, but it even
applies when sharpening is used only for correcting the
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image. Consider computing the mapping using the esti-
mate of w obtained in Eq. (5). In the nonsharp case, we
have

D = diag(w,./w) 9)
In the sharp case, we have:
D* = diag[(w,7)./(wT)]. (10)

If the illuminant estimate has components close to zero in
the sharp space, then the error in D*, and therefore the
mapped RGB, will likely be large.

This analysis indicates that this problem should be
much less severe with use of the multiple-illuminant-
with-positivity sharpening method introduced in Section
4 since it is designed to yield at most a few small negative
components. However, since there is no indication that
the result should be better—only less worse—we conclude
that sharpening does not make sense with gray-world al-
gorithms.

The SCALE-BY-MAX algorithm is not likely to have the
same problem with near-zero values since its estimate is
based on the maximum from each channel, which are
likely to be significantly greater than zero for any reason-
able sharpening method. This argument applies with
less force in the case of sharp correction. Here the space
used for the maximum is different from the mapping
space, and the problem illustrated by Eq. (10) still exists.

If we apply the SCALE-BY-MAX algorithm entirely in a
sharpened space, we need to consider whether the
maxima will still provide a reliable estimate of the illumi-
nant. Without sharpening, the maximum of each chan-
nel is justified, since as the number of surfaces in the
scene increases, eventually there will either be a white
one or at least one each with maximal R, G, and B values.
This is not necessarily the case when sharpening is used.
For example, suppose that

0. 1y
1

SN

S = O

1
T=10
0

Further, suppose that the RGB corresponding to white
is (1, 1, 1). Then the RGB corresponding to white in
the sharpened space is (1, 1, 1)* 7= (1,1,2/3). In gen-
eral, the RGB in the sharpened space are given by
[R,G,B — (1/3)R]. It is quite possible that there are
valid sensor responses that are larger in the third coordi-
nate than the one corresponding to white. For example,
for RGB = (1/2,1,1), then the maximum of the third
channel after sharpening could reach 5/6, which is greater
than the value of 2/3 for white.

For the above example to work, the sharpened sensors
must have significant negative responses. Thus sharp-
ening with positivity should largely solve this problem.
Furthermore, there may be some benefit to sharpening
with SCALE-BY-MAX during illumination estimation since it
estimates each channel of the illuminant RGB separately,
and these channels become less correlated with sharpen-
ing. Consider the red channel. If the sensor has broad
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support, then for the response to be close to the maximum
possible under the given illuminant, it needs a broad in-
put spectrum. Thus it needs a correspondingly whiter
surface in the image for the same performance. Since
the existence of a near-white surface does not degrade
performance in the sharp case, the overall effect should be
improved performance in the sharp case, all else being
equal. Since sharpening can also improve results by re-
ducing the mapping error, we investigate these effects by
considering both the full-sharpening results and the
sharp-correction results, using both the mapping-error
measure and illuminant-chromaticity error measure.

With the gamut-mapping methods we estimate the di-
agonal maps first and then, if necessary, use the maps to
compute illuminant estimates. We remind the reader
that the estimation of the maps consists of two parts.
First, we compute the set of possible maps using appli-
cable constraints. Second, we choose a map from this
constraint set. The first part is highly dependent on the
diagonal model, and thus gamut-mapping algorithms are
likely candidates for improvement through sharpening.

It is less clear what the effect of sharpening will be on
the various methods for choosing the solution from the
constraint set. We first consider using the average of the
possible maps to choose the solution. Averaging as used
in ECRULE-ICA was originally proposed to reduce the error
using the RGB mapping measure,'’ and further work
supports the notion that this method is the best choice for
this measure.'>1* Furthermore, we expect that the ar-
guments that justify this choice in the nonsharp case are
not overly eroded in the sharpened case. Specifically,
even if sharpening is used, we still expect that the solu-
tions will be distributed throughout the constraint set
without overly large bias and that the computation of the
corresponding mapping error will not add too much addi-
tional bias.

On the other hand, the maximum volume heuristic
used in ECRULE-MV may be sensitive to problems similar
to those outlined above for the SCALE-BY-MAX method.
This heuristic is not fully understood in the standard
case, and things become even more complex when sharp-
ening is added. Nonetheless, we expect that encouraging
positivity will likely alleviate most problems.

In summary, the effect of sharpening on the various al-
gorithms is hard to predict. This is especially the case
for the gamut-mapping algorithms, which are the con-
junction of two different parts, each of which interacts
with sharpening differently. Thus we believe that the
most effective way to further understand the role of
sharpening is to look at empirical results, which we do
next.

8. EXPERIMENTS WITH SYNTHETIC DATA

We investigated sensor sharpening in the case of a Sony
DXC-930 CCD video camera and a Kodak DCS-460 cam-
era (both calibrated as described by Barnard’), a Kodak
DCS-200 digital camera,* and a Kodak DCS-420 digital
camera.® The sensors for each camera together with the
sharpened versions for two sharpening methods are
shown in Fig. 1. We provide results for each camera in
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turn, first numerically in Tables 1—-4 and then graphically
with respect to the RGB mapping error measure in Fig. 2.

The algorithms were first calibrated on a set of 87 illu-
minants constructed to cover that portion of chromaticity
space [r = RMR + G + B), g = G/R + G + B)
which includes most common illuminants in a roughly
uniform manner. For testing, we used a similar set of il-
luminants, but we reduced the spacing in (r, g) space by a
factor of 2 in order to obtain a larger illuminant set (287
illuminants) that had similar scope in (r, g) space. Addi-
tional description of these illuminant sets is available,12
and the data itself are on line.” For surface reflectances
we used a set of 1995 spectra compiled from several
sources (also available on line”). These surfaces included
the 24 Macbeth ColorChecker® patches, 1269 Munsell
chips, 120 Dupont paint chips,?? 170 natural objects,?? the
350 surfaces in the Krinov data set,?* and 57 additional
surfaces measured by ourselves.

The results are the rms average results for 3000 syn-
thetically generated scenes, each using a randomly se-
lected illuminant and eight randomly chosen surfaces.
For each algorithm we computed the results both with
and without sharpening. There were three sharpening
methods as described above: (i) the optimal database
method, which uses the actual illuminant (not normally
available); (ii) database sharpening using the average
training set of the illuminants; and (iii) multiple illumi-
nant with positivity sharpening. We also used these
sharpening transforms to correct the images on the basis
of an estimate of the illuminant RGB computed by using
the unmodified (nonsharp) input (sharp correction).

For the optimal sharpening we recorded the number of
eigenvectors having imaginary components above a small
threshold, and we averaged their magnitudes for the 3000
generated scenes. Since there are only 287 test illumi-
nants, and the optimal sharpening is only a function of
the illuminant, there are many repeats. Each optimal
sharpening yields 3 eigenvectors of unit length. For the
DXC-930 camera, 1086 eigenvectors had nonnegligible
imaginary components with average magnitude 0.021.
For the DCS-460, there were 1248 with average magni-
tude 0.039; for the DCS-200, there were 1692 with aver-
age magnitude 0.046; and for the DCS-420, there were
1344 with average magnitude 0.028. These relatively
small numbers support the conclusion that imaginary
components do not create a significant problem.

We include the results for several comparison “algo-
rithms.” The first is the minimum-error result obtained
by finding the best linear fit between the RGB of the re-
flectance database under the canonical and the test illu-
minants (BEST-LINEAR). This result is invariant to matrix
multiplication and thus is the same for all sharpening
methods. The second comparison method is the best-
diagonal map computed over the entire dataset (BEST-
DIAGONAL). The third comparison method is the RGB of
white under the test illuminant (ACTUAL). The error with
this method is zero, with use of illuminant-based error
measures, and would also be zero in the case of mapping
error if the diagonal model held perfectly. This compari-
son method provides an additional insight into whether
the diagonal model is much improved, without the com-
plexities introduced by the interactions with the algo-
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Fig. 1. Original camera sensors, sensors corresponding to sharpening based on the average of the database of illuminants, and sensors
corresponding to the multiple illuminant with positivity sharpening method introduced in this paper for (a) the Sony DXC-930, (b) the
Kodak DCS-460, (c) the Kodak DCS-200, and (d) the Kodak DCS-420. Note that for the DXC-930 [(a)], the sensors sharpened with the
multiple-illuminant-with-positivity method are very close to the original ones, and the two sets of sensor curves are blended for much of
the wavelength range. Since these sensors are already “sharp,” this is encouraging. The three Kodak cameras have blue sensors that
have secondary peaks in the red region of the spectrum as well as significant responses in the green region. The red sensors also have
significant response in the green region. Sharpening essentially removes these characteristics and also yields narrower green sensors.
Thus for these three cameras, the term “sharpening” is very appropriate.

rithms. Finally, we provide the result of doing nothing, measure. We do not compute its RGB mapping error be-
in other words taking the input as the output (NOTHING). cause the data sets were generated with use of illumi-
This result is valid only for the illumination-based error nants normalized by magnitude, and so NOTHING gives an
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excellent estimate of illuminant magnitude simply as a
consequence of our testing paradigm. None of the other
algorithms benefit since they all attempt to compute the
illuminant magnitude.

9. RESULTS WITH SYNTHETIC DATA

As expected, the results are quite camera dependent. We
define the degree of sharpness of the camera sensors as
the ratio of the BEST-LINEAR result to the BEST-DIAGONAL
result. By this measure, the Sony DXC-930 camera is
quite sharp (0.70), and the Kodak DCS-460, DCS-200,
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and the DCS-420 are less sharp (0.33, 0.33, and 0.34 re-
spectively). The two comparison algorithms BEST
DIAGONAL and ACTUAL give some idea as to the scope of
improvement that is possible as a result of reducing map-
ping error. Especially in the case of ACTUAL, sharpening
plays no role in the illumination estimation part of color
constancy. With this “algorithm” and the DCS-460 and
DCS-200 sensors, the average-illuminant (“ave”) sharpen-
ing method produced sufficient components close to zero
to destabilize the mapping process and give a large map-
ping error. This is also true to a lesser extent with the
DXC-930 and the DCS-400. Optimal (“opt”) sharpening
has the same problem in the case of the DCS-460 but oth-

Table 1. Sharpening Results for the Sony DXC-930 Video Camera on Synthetic Data“

Count of Times

rms RGB Standard Results
rms RGB Difference rms Angle Replaced Full-Sharp
Difference between Mapped between Result Due to
between Mapped Image and Target Illumination Problems (Usually
Sharpening Image and Target Image (Sharp RGB and Due to Negative
Algorithm Method Image Correction) Estimate Thereof Components)

BEST-LINEAR none 2.93 2.93 * 0
BEST-DIAGONAL none 4.25 4.25 0.29 0
BEST-DIAGONAL ave 9.04 27.66 0.96 0
BEST-DIAGONAL opt 2.98 21.58 0.31 0
BEST-DIAGONAL mip 4.09 4.12 0.32 0
ACTUAL none 4.38 4.38 0.00 0
ACTUAL ave 21.91 21.91 = 0
ACTUAL opt 4.92 4.92 = 0
ACTUAL mip 4.20 4.20 = 0
NOTHING none * * 16.30 0
GW none 136.57 136.57 8.12 0
GW ave 379.95 379.95 = 0
GW opt 1951.78 1951.78 = 0
GW mip 136.70 136.70 = 0
DB-GW none 33.66 33.66 6.54 0
DB-GW ave 203.32 167.33 6.54 0
DB-GW opt 576.75 349.75 11.39 0
DB-GW mip 33.70 33.75 6.53 0
SCALE-BY-MAX none 105.57 105.57 9.43 0
SCALE-BY-MAX ave 105.09 1014.44 9.56 0
SCALE-BY-MAX opt 829.38 393.21 10.56 0
SCALE-BY-MAX mip 103.98 106.12 9.35 0
ECRULE-MV none 50.28 50.28 5.99 0
ECRULE-MV ave 50.74 63.18 6.22 1
ECRULE-MV opt 49.87 261.00 5.98 998
ECRULE-MV mip 49.98 50.59 6.00 0
ECRULE-ICA none 37.15 37.15 7.01

ECRULE-ICA ave 39.01 37.76 6.93 0
ECRULE-ICA opt 36.62 283.50 6.79 997
ECRULE-ICA mip 37.47 37.05 7.10 8

¢ Assuming that the algorithms provide estimates that are normally distributed around the target values, the uncertainty in these numbers is roughly
1%. An asterisk is used for values that are not relevant or appropriate. An equal sign is used for results which must be the same as the nonsharp result.
The results from the optimal database transform (assuming the illuminant is known) are indicated by “opt,” the results from the database transform with
the average illuminant by “ave,” and the results from the multiple-illuminant-with-positivity sharpening method by “mip.” Results from using the two
error measures are provided. In the case of the rms RGB mapping error, we provide results both for using sharpening throughout the processing (full
sharp), and for using sharpening only to correct the image based on an illuminant estimate found in nonsharp space (sharp correction). Sharp correction
has no effect on the estimation of the illumination RGB, and the angular error is exactly the same as for no sharpening and thus is not listed. The sharp-
correction mapping errors are the same as their full-sharp counterparts in the case of AcTuaL and Gw. Here we simply repeat the numbers.
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Table 2. Sharpening Results for the Kodak DCS-460 Digital Camera on Synthetic Data“

Count of Times

rms RGB Standard Results
rms RGB Difference rms Angle Replaced Full-Sharp
Difference between Mapped between Result Due to
between Mapped Image and Target Illumination Problems (Usually
Sharpening Image and Target Image (Sharp RGB and Due to Negative
Algorithm Method Image Correction) Estimate Thereof Components)
BEST-LINEAR none 1.78 1.78 * 0
BEST-DIAGONAL none 5.34 5.34 0.45 0
BEST-DIAGONAL ave 6.56 13.97 0.98 0
BEST-DIAGONAL opt 1.80 3.62 0.08 0
BEST-DIAGONAL mip 2.53 3.09 0.14 0
ACTUAL none 5.51 5.51 0.00 0
ACTUAL ave 58.68 58.68 = 0
ACTUAL opt 1.85 1.85 = 0
ACTUAL mip 2.58 2.58 = 0
NOTHING none * * 6.34 0
GW none 108.77 108.77 2.81 0
GW ave 113.52 113.52 = 0
GW opt 117.96 117.96 = 0
GW mip 108.96 108.96 = 0
DB-GW none 29.78 29.78 2.45 0
DB-GW ave 34.55 82.78 2.33 0
DB-GW opt 35.77 45.42 2.45 0
DB-GW mip 29.68 29.88 2.43 0
SCALE-BY-MAX none 86.06 86.06 3.93 0
SCALE-BY-MAX ave 83.98 744.56 4.79 0
SCALE-BY-MAX opt 4079.01 465.65 11.16 0
SCALE-BY-MAX mip 79.49 103.72 3.45 0
ECRULE-MV none 42.95 42.95 3.41 0
ECRULE-MV ave = 44.02 = 3000 (all)
ECRULE-MV opt 42.19 74.20 2.47 973
ECRULE-MV mip 42.79 43.33 2.38 0
ECRULE-ICA none 49.38 49.38 2.85 0
ECRULE-ICA ave = 49.37 = 3000 (all)
ECRULE-ICA opt 32.91 51.30 2.31 975
ECRULE-ICA mip 33.63 49.40 2.27 12

¢See notes for Table 1.

erwise gives the best mapping results. Multiple-
illuminant-with-positivity (“mip”) sharpening always im-
proved the mapping when used with ACTUAL and BEST-
DIAGONAL.

We now move onto the real color constancy algorithms.
In the case of the already sharp camera, we found that
there was very little to be gained by sharpening. Inter-
estingly, the ave and opt sharpening methods often made
the results substantially worse. In the case of opt sharp-
ening applied to GW, DB-GW, and SCALE-BY-MAX, the results
were extremely poor owing to the inversion of numbers
near zero. By contrast mip sharpening did not substan-
tively increase (or decrease) the error of any of the algo-
rithms.

For the Kodak cameras, the opt sharpening method
was again often unstable with GW, DB-GW, and SCALE-BY-
MAX. Even the generally better-behaved ave sharpening
method often made matters worse; mip sharpening fared

better. Its error was comparable (within 1%) to no sharp-
ening for GW and DB-GW, and it was modestly better than
no sharpening for SCALE-BY-MAX. This supports the no-
tion in Section 7 that sharpening can improve SCALE-BY-
MAX provided that the negative components are not a
problem. Furthermore, since the illumination-
chromaticity error was generally decreased at least as
much (relatively) as the mapping error, our results indi-
cate that sharpening helps SCALE-BY-MAX to estimate illu-
mination parameters. Moving to sharp correction, we
found that the results (only the mapping results are ap-
plicable) are always substantially worse. The negative
impact is consistently greater with ave and opt compared
with mip, but even when positivity was encouraged,
sharp correction gives poor results. This is not surpris-
ing in the light of the discussion in Section 7. When the
correction is done in the same space used for the maxi-
mum, then, provided that positivity is encouraged, the de-
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nominator in Eq. (10) should not be close to zero. On the
other hand, if the correction is done in a space other than
that used for the maximum, then there is no such guar-
antee.

With the ECRULE-ICA algorithm, we found that sharpen-
ing has a large positive effect as gauged by both error
measures in the case of opt and mip, which had compa-
rable results. With the Kodak DCS-460 and DCS-200
cameras, ave sharpening could not be used with this al-
gorithm owing to the problem with negative components,
and thus it gives the same result as without sharpening.
In the case of the Kodak DCS-420 camera, the ave sharp-
ening method was viable, but it gave a poor result. In
summary, for the ECRULE-ICA algorithm, mip sharpening
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offers the same significant benefits as opt sharpening, but
at the same time it is realizable in practice.

The results for the ECRULE-MV algorithm are a little
more complex. The results for mip again parallel those
for opt; however, with this algorithm, sharpening has only
a very small positive effect with the mapping measure but
a very significant positive effect with the illuminant-
based chromaticity measure.

10. EXPERIMENTS WITH IMAGE DATA

Testing the effect of sharpening algorithms on real data is
difficult because ideally one would like to report the RGB

Table 3. Sharpening Results for the Kodak DCS-200 Digital Camera on Synthetic Data“

Count of Times

rms RGB Standard Results
rms RGB Difference rms Angle Replaced Full-Sharp
Difference between Mapped between Result Due to
between Mapped Image and Target Illumination Problems (Usually
Sharpening Image and Target Image (Sharp RGB and Due to Negative

Algorithm Method Image Correction) Estimate Thereof Components)
BEST-LINEAR none 1.61 1.61 * 0
BEST-DIAGONAL none 4.86 4.86 0.41 0
BEST-DIAGONAL ave 7.05 49.68 1.43 0
BEST-DIAGONAL opt 1.65 2.68 0.07 0
BEST-DIAGONAL mip 2.29 2.77 0.14 0
ACTUAL none 5.06 5.06 0.00 0
ACTUAL ave 15.09 15.09 = 0
ACTUAL opt 1.73 1.73 = 0
ACTUAL mip 2.33 2.33 = 0
NOTHING none * * 6.57 0

W none 106.71 106.71 2.70 0

W ave 307.67 307.67 = 0

GW opt 125.27 125.27 = 0

W mip 106.94 106.94 = 0
DB-GW none 29.86 29.86 2.34 0
DB-GW ave 169.96 99.96 2.22 0
DB-GW opt 37.50 125.23 2.39 0
DB-GW mip 29.79 29.98 2.32 0
SCALE-BY-MAX none 83.26 83.26 3.77 0
SCALE-BY-MAX ave 116.24 199.27 4.76 0
SCALE-BY-MAX opt 7766.85 152.31 7.67 0
SCALE-BY-MAX mip 77.84 88.11 3.35 0
ECRULE-MV none 44.90 44.90 3.53 0
ECRULE-MV ave = 45.97 = 3000 (all)
ECRULE-MV opt 42.88 56.73 2.35 799
ECRULE-MV mip 43.50 45.24 2.32 0
ECRULE-ICA none 50.82 50.82 2.86 0
ECRULE-ICA ave = 50.85 = 3000 (all)
ECRULE-ICA opt 31.54 61.36 2.20 801
ECRULE-ICA mip 32.61 50.85 2.23 1

“See notes for Table 1.
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Table 4. Sharpening Results for the Kodak DCS-420 Digital Camera on Synthetic Data“

Count of Times

rms RGB Standard Results
rms RGB Difference rms Angle Replaced Full-Sharp
Difference between Mapped between Result Due to
between Mapped Image and Target INlumination Problems (Usually
Sharpening Image and Target Image (Sharp RGB and Due to Negative
Algorithm Method Image Correction) Estimate Thereof Components)

BEST-LINEAR none 1.99 1.99 * 0
BEST-DIAGONAL none 5.93 5.93 0.43 0
BEST-DIAGONAL ave 6.44 17.82 0.81 0
BEST-DIAGONAL opt 2.03 8.32 0.08 0
BEST-DIAGONAL mip 2.82 3.50 0.16 0
ACTUAL none 6.16 6.16 0.00 0
ACTUAL ave 9.50 9.50 = 0
ACTUAL opt 26.30 26.30 = 0
ACTUAL mip 2.87 2.87 = 0
NOTHING none * * 7.14 0
GW none 111.76 111.76 2.82 0
GW ave 114.95 114.95 = 0
GW opt 129.41 129.41 = 0
GW mip 112.06 112.06 = 0
DB-GW none 31.07 31.07 2.46 0
DB-GW ave 33.94 37.29 2.35 0
DB-GW opt 79.71 63.07 5.09 0
DB-GW mip 30.94 31.17 2.43 0
SCALE-BY-MAX none 88.51 88.51 3.94 0
SCALE-BY-MAX ave 86.30 134.32 4.72 0
SCALE-BY-MAX opt 6663.70 130.11 16.75 0
SCALE-BY-MAX mip 82.29 92.25 3.54 0
ECRULE-MV none 45.61 45.61 3.79 0
ECRULE-MV ave 42.33 46.42 4.07 0
ECRULE-MV opt 44.52 248.62 2.59 850
ECRULE-MV mip 45.09 46.15 2.53 0
ECRULE-ICA none 51.24 51.24 3.06

ECRULE-ICA ave 54.62 51.22 3.88 3
ECRULE-ICA opt 33.18 53.35 2.32 850
ECRULE-ICA mip 34.20 51.23 241 3

¢See notes for Table 1.

mapping error. However, this would require images of
the same scene taken under different illuminants with a
minimal change in the illumination geometry and no
change in the scene geometry. The only easy way to ac-
quire such images is by using filters to change the illumi-
nation, but this conflicts with the goal of testing over the
range of common lighting.'>'* Furthermore, we would
prefer to test the effect of sharpening on a camera with
relatively nonsharp sensors. These two criteria rule out
reliance on the existing image set taken with the Sony
DCX-930.12-14

Thus to test sharpening in practice, we collected a new
color constancy data set using the Kodak DCS-460. The
illuminants and the experimental protocol were similar to
those used previously,”®'?714 except that the three fluo-
rescent lights were excluded, leaving eight lights that
could be changed without affecting the illumination ge-

ometry. These eight illuminants consisted of four incan-
descent lights each with and without a blue filter, chosen
to cover the chromaticity range of daylight. The four
light sources were affixed to a trolley that was rolled back
and forth behind a single aperture. The light passed
through the aperture and then alternately through a fil-
ter or no filter. We took images of 18 scenes for a total of
144 images. The results were computed by using the
same canonical illuminant as in previous work, %1214
namely, the Sylvania 50MR16Q, whose spectrum is simi-
lar to that of a household incandescent light.

The ave and the mip sharpening transforms were the
same as the ones used for the synthetic experiments. In
analogy to the synthetic experiments, the opt sharpening
transform was recomputed for each scene on the basis of
the measured spectrum of the illumination. It is impor-
tant to note that the relationship of the sharpening trans-
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forms to the scene reflectance and test illuminant statis-
tics is different from that in the synthetic experiments.
In the synthetic experiments, the illuminant and reflec-
tance sets used for finding the ave and the mip sharpen-
ing transforms were exactly the same as the ones used for
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generating test scenes. On the other hand, the illumi-
nants used for the image data were the eight described
above, and the statistical occurrence of the scene surfaces
is likely quite different from those in the reflectance da-
tabase. We assume that if we made the conditions of the
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Fig. 2. Rms RGB mapping error between the corrected image and the target image by algorithm-sharpening method combination for (a)
the Sony DXC-930, (b) the Kodak DCS-460, (c) the Kodak DCS-200, and (d) the Kodak DCS-420. Note that the scale would have to be
significantly larger to illustrate fully the extent of all the bars [7X in (a), 14X in (b), 30X in (¢), and 20X in (d)]. These extreme errors
are due to instabilities in the computation that occur with small or negative components. Their exact values depend on the test set.
Therefore the results should be taken in a qualitative sense. RMS corresponds to rms in the text.
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Table 5. Sharpening Results for the Kodak DCS-460 Digital Camera on Image Data for the Incandescent
Iluminant Group®

Count of Times

rms RGB Standard Results
rms RGB Difference rms Angle Replaced Full-Sharp
Difference between Mapped between Result Due to
between Mapped Image and Target Illumination Problems (Usually
Sharpening Image and Target Image (Sharp RGB and Due to Negative
Algorithm Method Image Correction) Estimate Thereof Components)
BEST-LINEAR none 18.8 18.8 * 0
BEST-DIAGONAL none 21.2 21.2 1.75 0
BEST-DIAGONAL ave 20.8 21.8 1.16 0
BEST-DIAGONAL opt 20.8 21.6 1.41 0
BEST-DIAGONAL mip 20.7 21.7 1.32 0
ACTUAL none 25.2 25.2 0.00 0
ACTUAL ave 25.6 25.6 = 0
ACTUAL opt 26.1 26.1 = 0
ACTUAL mip 25.8 25.8 0
NOTHING none 83.7 83.7 7.92 0
GW none 101.8 101.8 5.72 0
GW ave 102.3 102.3 = 0
GW opt 105.2 105.2 = 0
GW mip 102.8 102.8 = 0
DB-GW none 77.8 77.8 5.12 0
DB-GW ave 77.9 77.5 5.16 0
DB-GW opt 78.5 77.8 5.18 0
DB-GW mip 78.0 77.5 5.15 0
SCALE-BY-MAX none 48.1 48.1 2.33 0
SCALE-BY-MAX ave 45.2 123.2 2.35 0
SCALE-BY-MAX opt 44.0 81.7 1.91 0
SCALE-BY-MAX mip 44.6 49.9 2.17 0
ECRULE-MV none 85.3 85.3 5.55 0
ECRULE-MV ave 38.2 85.5 2.45 0
ECRULE-MV opt 38.8 84.8 3.02 0
ECRULE-MV mip 52.8 85.2 3.93 0
ECRULE-ICA none 102.7 102.7 5.69 0
ECRULE-ICA ave 68.7 107.6 2.90 0
ECRULE-ICA opt 68.8 100.5 3.69 0
ECRULE-ICA mip 84.0 102.4 4.14 0

¢ See notes for Table 1.
in the results is roughly 5%.

real image experiment sufficiently similar to those in the
synthetic case (or vice versa), then the results would also
be similar. We chose instead to apply the existing ma-
chinery to the new conditions in order to complement the
synthetic experiments as well as possible.

11. RESULTS WITH IMAGE DATA

We provide numerical results for the image data in Table
5. In general, the results confirm that sharpening can
provide modest benefit to the SCALE-BY-MAX algorithms
and very significant benefit to the gamut-mapping algo-
rithms. Interestingly, the improvement with average-
illuminant sharpening is significantly better than with
multiple-illuminant-with-positivity sharpening in some

The results are the rms of 144 results. Assuming that the variation of the errors for a given algorithm is Gaussian, the error

cases. However, the multiple-illuminant-with-positivity
method does very well in general, significantly improving
computational color constancy performance in every case
where sharpening can help. These two observations ex-
pose the trade-offs of multiple-illuminant-with-positivity
sharpening: Peak possible performance is exchanged for
robust performance under a wider variety of circum-
stances. The results based on the average illuminant il-
lustrate the other side, which is that in specific circum-
stances, another method can do better.

12. CONCLUSIONS

We have investigated applying sensor sharpening to a va-
riety of computational color constancy algorithms. We
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found that doing so with existing methods leads to a num-
ber of problems, and as a result, using these methods is
attractive only in specific circumstances. These difficul-
ties led us to propose a new sharpening method (multiple-
illuminant-with-positivity sharpening) which is less am-
bitious in terms of theoretical gains but addresses the
needs of the color constancy algorithms studied here.
The resulting sharpening transform substantially im-
proves color constancy performance in many cases and
only rarely has a small negative effect. Thus this work
validates the original® intuition that sharper sensors
should help facilitate color constancy.

In more detail, we found that sensor sharpening can be
beneficial, sometimes significantly so, but only for some
combinations of cameras, algorithms, and sharpening
methods. To summarize the main points:

1. Some cameras, such as the Sony DXC-930, have
quite sharp sensors that already accommodate diagonal
color constancy. Getting better results by further sensor
sharpening is difficult at best.

2. For the algorithms studied, if sharpening is used, it
is almost always better to do all the color constancy cal-
culations in the sharpened space. This works much bet-
ter than using sharpening only for mapping results based
on an illuminant estimate found in nonsharp space
(“sharp correction”).

3. The gray-world algorithm cannot be significantly
improved by sharpening. Furthermore, depending on
the variant and error measure, sharpening with gray
world may reduce color constancy performance. Sharp-
ening with gray-world algorithms is not recommended.

4. With initially nonsharp camera sensors and
multiple-illuminant-with-positivity sharpening, a modest
benefit can be expected with the SCALE-BY-MAX algorithm.

5. Significant benefit can be obtained in conjunction
with gamut-mapping algorithms. Since these algorithms
rely on the diagonal model, we expected the most benefit
here, but the large degree of improvement often exceeded
our expectations.

6. Multiple-illuminant-with-positivity sharpening
worked very well in general, but in the experiments with
real images the method based on the average illuminant
performed even better. This suggests that additional
characterization of the relationships between sharpening
transforms and color constancy algorithm performance
should be helpful.

7. Although sharpening was originally introduced
from the perspective of improving image correction, our
results show that with some camera/algorithm/error com-
binations, sharpening can also improve illumination pa-
rameter estimation. Since such estimation is the more
difficult part of color constancy processing, this is a sig-
nificant result. It is supported by two observations.
First, the mapping errors can be reduced substantially
beyond that indicated by the pure diagonal error. Sec-
ond, the illumination-chromaticity estimation error can
be substantially reduced. The separation of color con-
stancy into these two parts is somewhat artificial in the
case of the gamut-mapping algorithms, but it is precisely
the tight integration of these parts that makes sharpen-
ing attractive when gamut mapping is used.
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