
A Performance Evaluation of Hive for Scientific Data

Management

Taoying Liu, Jing Liu, Hong Liu, Wei Li

Institute of Computing Technology, Chinese Academy of Sciences

Beijing, China

{lty, liujing2013, lh, liwei}@ict.ac.cn

Abstract—It is very important to evaluate the MapReduce-

based frameworks for scientific data processing applications.

Scientists need a low-cost, scalable, easy-to-use and fault-

tolerance platform for large volume data processing eagerly. This

paper presents an implementation of a scientific data

management benchmark, SSDB, on Hive, a MapReduce-based

data warehouse. A complete strategy of migrating SSDB to Hive

is described in detail including query HQL implementation, data

partition schema and adjustments of underlying storage facilities.

We have tuned the performance using several system parameters

provided by Hive, Hadoop and HDFS. This paper provides

preliminary results and analysis. Evaluation results indicate that

Hive achieves acceptable performance for some data analysis

tasks even compared with some high efficient distributed parallel

databases, but it needs subtle adjustments of underlying storage
facilities and indexing mechanism.

Keywords—benchmark; scientific data management; Hive;

performance evaluation

I. INTRODUCTION

Distributed data processing frameworks like Hadoop[11]
and its toolsets are widely used in business data processing
field, especially in log analysis, data mining, business
intelligence, and so on. There are less researches of scientific
data processing on such platforms. However scientific data are
expanding with an explosion speed. Scientists are among those
who need a cheap, scalable distributed data processing
platform urgently. Due to the following reasons, scientists
prefer Hadoop-like technologies: (1) ease of use and learning,
(2) function extensible, (3) simple yet feasible scalability
solution, and (4) low costs.

Currently there are some efforts on scientific data
processing on Hadoop platform, such as [26][27][32][33], and
[6]. But there still lacks a benchmark of scientific data
processing on distributed platforms. [1] is a work of
evaluating the performance of astrophysics data queries
implemented in Interactive Data Language [3], on an RDBMS
and Pig, a data query engine based on Hadoop. In this work, 5
queries are extracted from the most often used operations by
astrophysicists. Performance is compared, and it is found that
Pig gets lower performance than database and IDL do on
clusters with 10 or less nodes. Hadoop-like distributed
frameworks are designed for clusters with hundreds or
thousands of nodes, and their performance advantage over
databases will be shown in that situation, and they are not

efficient as databases are on small scale clusters. The work is
done on Pig without any further optimizations. Technologies
like column-store, partitions are adopted in many Hadoop-like
frameworks, and they can bring much performance promotion
for certain applications. What impact will these technologies
bring to scientific data processing is not discussed.

SSDB [14], Standard Science DBMS Benchmark, was
proposed in XLDB 2010 by MIT CSAIL research group.
SSDB is proposed as a performance benchmark of a
distributed scientific database that is the research output from
this group. SSDB is a good typical workload sample of
astronomy, remote sense and medicine image applications. It
is implemented on SciDB [2] and MySQL. We implement this
benchmark on Hadoop-based data warehouse Hive [10], and
use optimization like partition and RCFile [8]. It shows that
after optimization the performance of SSDB on Hive is
acceptable.

Our contributions in this paper are three-fold. First, to be
best of our knowledge, we are the first to comprehensively
present how the SSDB can be implemented using the standard
Hadoop and Hive software stack. Second, our detailed
performance evaluation, with a complete coverage of various
parameters tuning, reveals both the advantages and
disadvantages of the Hadoop ecosystem when executing
different SSDB workloads. Third, our evaluation results
clearly point out the further research and development
directions to improve the Hadoop/Hive system for scientific
data management.

This paper is organized as follows. Background of
standard Science DBMS Benchmark including the data model
and queries and Hive are introduced in Section II. In section
III, we illustrate in detail the implementation of SSDB on Hive,
some modifications of the queries are made for the resilience
to Hive. Experiment data and analysis are shown in Section IV.
We run SSDB both on Hive and SciDB, performance is
compared, and we also analysis the tuning parameters in Hive.
Related work are listed and discussed in Section V, and finally
we conclude in Section VI.

II. STANDARD SCIENCE DBMS BENCHMARK

A. SSDB Overview

SSDB [14] is a science data oriented benchmark proposed
by MIT CIASIL Lab. The benchmark is composed of two

2013 IEEE International Conference on Big Data

39978-1-4799-1293-3/13/$31.00 ©2013 IEEE

parts: data and queries. Data of SSDB are abstracted from
astronomy, remote sensing, medicine image processing. Those
data are all location-based in a 2-dimensional space.

Data of SSDB simulate astronomy data of sky survey.
Astronomical telescopes of a sky survey plan take pictures of
their observation range, then slowly turn a very small angel,
and continue taking pictures of the new observation area.
Every picture is a rectangle image in the sky and each point of
this image is transformed into a record with 11 physical
attributes stored in 4-byte integers. The size of an image
depends on the diameter of the telescope. There are 4 major
scale configurations of SSDB dataset, see Table I. Each
dataset is composed of sky images taken from telescopes. For
example, for small scale, the image size is 3750*3750, and
there are 160 images in this dataset. Actually, this is a 3-
dimension array. Coordinates X, Y are the locations of a point
in the observation area, and Z means the absolute position of
the observation area. If you want to get the absolute position
of a point, you should first look up a table to get the absolute
position of the start point of this area, and then add X, Y. In
fact, Z cannot cover the whole sky. It is picked randomly from
the sky, with 80% from dense areas and 20% from sparse sky.

TABLE I. SSDB DATA SCALES

Very_

small
Small Normal Large

Image width 1600 3750 7500 15000

of images 40 160 400 1000

Total Size 4.5GB 99GB 0.99TB 9.9TB

Not all original raw data need to be processed after forth,
SSDB first do the ‘cook’ process, and this process is called
‘findstars’. Original data are scanned, if the value of one point
is greater than the threshold, then the neighbors of this point
are checked iteratively, points that have greater values than the
threshold are included into this continued observation. The
cook process removes most parts of the dark sky, and leaves
data useful for future research. The second step of ‘cook’
performs a simple cluster algorithm. On the basis of the data
of the first step, stars that are located within a short distance
are grouped together into one polygon. This process is called
‘groupstars’. The resulted areas from ‘groupstars’ could
correspond to stars, boundaries of vegetation regions (satellite
imagery), temperature regions (oceanography), or medical
anomalies (medical imaging).

B. SSDB Queries

There are 9 queries in SSDB:

Q1: Scan all the original data and compute the average
value of one attribute.

Q2: Recook one image of the raw data using a different
threshold.

Q3: Alleviate noise and collapse the original array for a
10:3 proportion.

Q4: Compute the average value of observation attributes of
all the stars that fall into a specified rectangle.

Q5: Get all records of observations whose polygons fall
into a specified rectangle.

Q6: In the specified slab, find all the small rectangle tiles
containing more observations than a threshold.

Q7: For all the observation groups, find those whose
centers fall in the specified area at any time.

Q8: Find those observation groups whose trajectories
intersect the specified area, and output raw data of those
observation groups for small tiles. Trajectory is defined as the
sequence of centers of the observations in a group.

Q9: Define trajectory as the sequence of the boundary of
the observation group. Find those observation groups whose
trajectories intersect the specified area, and output raw data of
those observation groups for small tiles

These 9 queries can be divided into 3 categories. First
category is the scan-type query, Q1, Q2, and Q3. They work
on the whole original raw data. All data need to be scanned.
But the queries are simple. The second type of queries, Q4, Q5,
Q6 and Q7, query on the output of cooking process in order to
find observation objects that intersect with a certain area of the
sky. These queries scan only part of the cooked data. The third
category includes Q8 and Q9, they are very complex queries.
They first find object ids from the cooking results, and then
get records detail corresponding to object ids from the original
data. The input of Q8 and Q9 covers not only the cooked data
but also the original raw data.

III. SSDB IMPLEMENTATION ON HIVE

SSDB is a built-in benchmark of SciDB. There are also
SSDB for MySQL version, which can be downloaded from
XLDB website [15]. This version is totally different from
SciDB version. Data are distributed evenly among cluster
nodes and are loaded as local tables into a MySQL instance on
each node. Programs written in C++ are used for global
control and data processing.

SSDB has not been ported to MapReduce platforms before.
We choose Hive as the migration target because that Hive is a
widely used MapReduce-based data warehouse, and it
supports SQL-like query language and we can add user
defined function into Hive. In this section, we will describe
how SSDB data is loaded and stored in Hive, and how queries
are programmed.

A. Hive Background

Hive [5][10] is an open-source Hadoop-based data
warehouse framework. With series of tools that Hive provides,
structured data files can be mapped to database tables. Hive
also defines a SQL-like language called Hive Query Language,
which is compatible to SQL. HQL statements can be
translated into MapReduce tasks to run on multiple nodes.

Data in Hive can be stored in three formats, text, sequence
binary and RCFile[8]. Text is the default data store format of
Hive. It is often used in log processing and data loading. The
drawback of text format is that the costs for parsing are much

40

higher than using the binary format and data should be parsed
repeatedly for each time of query execution.

Sequence file is a binary format provided by Hadoop and
also supported in Hive. Sequence file uses standard writable
interface to implement serialization and deserialization. Data
are stored as <key, value> pairs in sequence file.

RCFile, Record Columnar File, is designed for storing
relational tables on clusters using the MapReduce framework.
It divides table data first horizontally and then vertically.
Table records are divided into row groups. Each row group
block contains the sync marker, metadata header and the table

data. Values of one column are stored continuously, and then
the next column in this row group. Thus RCFile is able to read
only necessary columns and skip those columns that are not
needed in queries.

Hive does not support indexing. Data are stored in fixed
chunks in HDFS. However Hive uses partition mechanism to
narrow down query range, which can be seen as a very simple
alternative to indexing. With this mechanism, data can be
divided into partitions using a hashing based method. If the
partition identification is specified in the where clause, only
that partition of the data are scanned.

TABLE II. IMPLEMENTATION OF SSDB QUERIES IN HIVE AND SCIDB

Q# SciDB Array Query Language Hive Query Language

Q1 avg(subarray(normal,0,0,0,19,7499,7499),a) select avg(a) from normalrc where z<=19 and y<=7499 and x<=7499;

Q2 findstars(subarray(normal,0,0,0,0, 7499,7499),a,900) MapReduce program

Q3 thin(window(

subarray(normal_reparted,0,0,0,19, 7499,7499),

0,1,0,4,0,4,avg(a)),0,1,2,3,2,3)

select * from(

select cast(x/4 as int) as sj, cast(y/4 as int) as si, cast(avg(a) as int) from normal

where z<=19 group by cast(x/4 as int), cast(y/4 as int))normal2

where (si-2)%3=0 and (sj-2)%3=0;

Q4 for (i=0..19)

avg(filter(subarray(normal_obs_`printf $i`, 491000, 493000,

501000, 503000, center is not null),sumPixel)

select avg(sumpixel) from normal_obs_sumrc

where j>=493000 and j<=503000 and i>=491000 and i<=501000 and center='true';

Q5 for (i=0..19)

filter(subarray(normal_obs_`printf $i`, 491000, 493000,

501000, 503000, polygon is not null)

select * from normal_obs_sumrc

where j>=493000 and j<=503000 and i>=491000 and i<=501000 and center='true';

Q6 for (i=0..19)

filter(window(filter(subarray(normal_obs_`printf $i`, 491000,

493000, 501000, 5030000, center is not null),

0,12,0,12,count(center)),center_count>$count)

select x1,y1,cs from(

select cast(j/12 as int) as x1,cast(i/12 as int)as y1, count(*) as cs from

normal_obs_sumrc

where j>=493000 and j<=503000 and i>=491000 and i<=501000 group by

cast(j/12 as int),cast(i/12 as int))heihei

where heihei.cs>1;

Q7 filter(aggregate(normal_groups,avg(x),avg(y),group), x_avg >

496000 and y_avg > 497000 and x_avg < 500000 and

y_avg<510000

select * from normal_obs_sumrc

where j>=493000 and j<=503000 and i>=491000 and i<=501000

and polygon is not null

Q8 aggregate(cross_join(small_groups, filter(sum (project (apply

(cross (subarray (Points, 0,3), join (subarray (small_groups,

null, null, null,18) as Pi, subarray (small_groups,

null,1,null,null) as Pj)), crosses,

 iif (((((Pi.y <= Points.y) and (Pj.y > Points.y)) OR ((Pi.y >

Points.y) and (Pj.y <= Points.y))) and (Points.x < Pi.x +

((Points.y - Pi.y) / (Pj.y - Pi.y)) * (Pj.x - Pi.x)) and (Pi.x is not

null and Pi.y is not null and Pj.x is not null and Pj.y is not

null)), 1, 0)), crosses), crosses,Pj.group), crosses_sum > 0)),

avg(small_groups.x),avg(small_groups.y),small_groups.group)

"

select /*+ mapjoin(q81)*/ cast(i/100 as int),cast(j/100 as int)

from normal_obsrc join (

select oid from normal_groupsrc

where pinp(cast(x as int), cast(y as int),497000,498000,499000,500000)=1)q81

on (normal_obsrc.oid=q81.oid) group by cast(i/100 as int),cast(j/100 as int);

 select /*+ mapjoin(q8_1)*/ cast(normalrc1.y1*1000+normalrc1.x1 as

int),normalrc1.x,normalrc1.y,normalrc1.a,normalrc1.b,normalrc1.c,normalrc1.d,no

rmalrc1.e,normalrc1.f,normalrc1.g,normalrc1.h,normalrc1.i,normalrc1.j,normalrc1

.k from normalrc1 join q8_1 on (normalrc1.x1=q8_1.x and normalrc1.y1=q8_1.y);

Q9 aggregate(filter(filter(cross(

subarray(small_obs_0, 491000, 493000, 501000, 5030000) as

A, small_groups),A.polygon is not null),

A.oid=small_groups.oid),avg(small_groups.x),avg(small_grou

ps.y),small_groups.group)

select oid, cast((avg(ax)-496211)/100 as int), cast((avg(ay)-497861)/100 as int)

from (select normal_groupsrc.x as ax, normal_groupsrc.y as ay,

normal_groupsrc.oid from normal_groupsrc join

 (select normal_obs1rc.oid as oid from normal_obs1rc

where j>=498000 and j<=500000 and i>=497000 and i<=499000 and polygon is

not null)C

on(C.oid=normal_groupsrc.oid))haha group by oid;

 create table if not exists normalq9result like normalrc;

 insert overwrite table q9result

 select /*+ mapjoin(q9_1)*/ cast(normalrc1.y1*1000+normalrc1.x1 as

int),normalrc1.x,normalrc1.y,normalrc1.a,normalrc1.b,normalrc1.c,normalrc1.d,no

rmalrc1.e,normalrc1.f,normalrc1.g,normalrc1.h,normalrc1.i,normalrc1.j,normalrc1

.k from normalrc1 join q9_1 on (normalrc1.x1=q9_1.x_avg and normalrc1.

y1=q9_1.y_avg);

41

B. SSDB Queries in HQL

HQL is quite similar to the standard SQL, but HQL in
Hive only has preliminary functions compared with MySQL.
SSDB MySQL version [15] uses spatial query and indexing
function in MySQL. Queries of Q4-Q9 all use this advanced
feature. All the queries use C++ codes in distributing data and
paralleling process. Although SQL and HQL are very similar,
neither SQL statements nor C++ codes can be directly
migrated from MySQL version to implement SSDB queries in
Hive. In order to provide complete functionality of SSDB, we
implement 9 queries in HQL from scratch. Queries for normal
scale test in HQL and AQL are listed in TABLE II except Q8
and Q9, because the AQL scripts for normal dataset are too
long to fit in the table space, we list HQL statement for small
scale. SciDB AQL statements are listed here to help
understanding and validating the queries.

Q2 is implemented as a MapReduce program and inserted
into Hive as a user defined function.

Except for window and thin operators, HQL statements of
Q1-Q7 are easy to understand. Because Hive provides
distributed framework and parallel processing capability, there
is no need to write any C++ codes or Java codes.

We find that some operators in AQL have no
correspondence to any HQL operators, such as window,
subarray, project, and thin. Window [16] operator in AQL is a
fairly common operation in scientific data processing, it
computes aggregates over moving window. Thin [16] operator
is to select data from an array at fixed intervals along each
dimension. Hive does not support multi-dimensional window
operator. In Q3, the average value of property ‘a’ should be
calculated on a running 5*5*2 3D window. Window operation
needs to locate the neighbors of a record along all dimensions,
and store these records in memory for aggregation. Because
there is no indexing in Hive, it is very resource-consuming to
locate neighborhoods of a point in 3D space. So we simplify
query Q3 to calculate on a running 2D window with window
size of 5*5. The aggregation inside a window is implemented
by HQL operator ‘group by’, elements in this window are
grouped together and calculated.

C. Data Partitions in Hive

There are two categories of data in SSDB. One is the
original raw data. This data is the mapping of the sky, each
record is corresponding to a point in the sky with 14 non-null
properties. This category of data is uniform. The data are
composed of serial pictures taken by the telescope. Each
picture is an image of square shape, and many of such squares
scatter over the sky. The coordinates inside the square image
are local coordinates. Each square has its starting point; the
coordinates of this point are stored in a standalone table. The
absolute coordinates of points inside an image can be
calculated by adding the starting point coordinates to the local
coordinates. Many query statements are related with the local
and absolute coordinates.

Although there is no array support in Hive, Hive has
simple indexing mechanism partition to speed up locating
array elements. It is natural to store an image in one partition

indicated by its image number. We divide the original raw
data into several partitions, and the sizes of each partition are
totally equal. In the 9 queries, there are Q1 and Q3 in which Z
coordinates are specified. For normal scale, Q1 checks the
images with image numbers less than 20, which are only
20/400 of the total raw data. With this solution, we can greatly
reduce the amount of the input data of Q1.

For data cooked and filtered, many of the records of dark
areas are removed. Validated observations are unevenly
distributed across the sky. In normal scale of SSDB, the size
of the result of cook process ‘findstars’ is about 409GB. We
have two methods to divide the data into partitions. First
method is to put data into zones according to their different
image numbers. But in fact, queries on the observations data
are all related with the world-coordinate instead of local
coordinate with area identifications. In fact, some queries scan
data across area boundaries. Q4, Q5, Q6, Q7 use absolute
coordinates. So, it will not bring any benefit to narrow the
queried range using this partition solution. We adopt the
second method. We convert the coordinates of the after-
cooked data into absolute coordinates, and divide the data
according to their absolute coordinates. The data are gridded
into tiles or sliced into stripes, as shown in Fig. 1. There is no
essential distinction between the two methods, but they will
affect the data distribution in partitions. Some partitions may
have much more data than others, and some may have much
less data than others. It is the inherent characteristics of the
application data who determines the data skew incurred. More
details of partitions will be given in section IV.

Fig. 1. Two Partition Schemas for Cooked Data.

IV. EXPERIMENT RESULTS AND PERFORMANCE FACTORS

In this section, we will report the results of SSDB running
on Hive and SciDB, and analyze some tuning factors of Hive
which could affect the performance.

A. Experimental Setup

We run the benchmark on a gigabit ethernet Linux cluster
of 5 nodes. Each node has dual 6-core 2.0GHz Intel Xeon E5-
2620 CPUs with the hyperthreading option enabled, and 3
3TB SATA HDDs and 32GB RAM. The version of SciDB we
use is 13.2, and the Hive version is 0.9.0, Hadoop is 0.20.0.

B. System Performance

The experiment results are listed in TABLE III. We test
the performance of “Load”, “Cook” and 9 queries for both
small and normal datasets. Each dataset is distributed among 5
nodes. Every query was run 10 times, and system cache was
cleared each time before testing. The numbers in Table III are
average values of one running. This is different from [14], in
which the execution time is the sum of 15 times of running.

42

TABLE III. SSDB EXCECUTION TIME ON HIVE AND SCIDB (SECOND)

 Dataset Load Cook Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

SciDB
small 1031 44 2 4 72 4 2 13 0 5 4

normal 10394 1014 10 14 533 5 11 387 0 19 17

Hive
small 1048 130 65 58 71 29 34 37 22 1039 869

normal 12104 13936 236 168 250 51 35 40 21 13061 3802

We get the following observations:

1) For data loading: Data loading refers to the operation

loading original raw data into the testing systems. Both

systems load distributed data from several nodes in parallel.

The bottleneck of reading data is the hard disk bandwidth;

SciDB and Hive get approximately the same performance in

this operation.

2) For query Q1: This is a simple query that aggregates

one property of all records of the array, but with great

performance difference on the two systems. Hive does not

support array, it needs to scan all the data to get only one

element of an array. While the basic data model of SciDB is

array, it can quickly locate any array element according to its

coordinates.

3) For complicated array operation Q3: There is not

much difference on Hive and SciDB.

4) For Q7, the query with little data input and output:

The size of the input file is less than 100MB, in this situation

Hive is much slower than SciDB.

5) For Q4, Q5 and Q6: In the original SSDB released with

SciDB, there are 20 queries accessing the same array in

parallel. We change the concurrent queries into sequential

ones because SciDB does not respond when processing

concurrent user requirements in parallel in our test. This

greatly reduces the performance gap between Hive and SciDB,

compared with the astonishing gap between SciDB and

MySQL reported in [14].

6) For Q8 and Q9: These two queries first do some data

analysis based on the already cooked data and then fetch from

raw data records, they deal with large volumes of data both

input and output. In original SSDB, the output of Q8 and Q9

are not written back to the hard disk. But usually the output of

Q8 and Q9 are quite large, we suppose scientists will like to

save them for later research. So we add save statement into Q8

and Q9, this also greatly reduces the performance gap between

Hive and SciDB. But there is another reason for the slowness.

Q8 and Q9 need to read all fields of records and RCFile is not

efficient when all fields of records are needed in a query. This

is because when reading all columns, it needs to locate all row

groups inside an HDFS block. The start of each row group

must be found by scanning.

C. Performance Factors

Parallel Processing Slot Number

The nodes of our testing platform all have dual 6-core
processors with the hyperthreading option enabled. There are
24 cores that can be used. But as for different workload, it is

not always beneficial to get more processors. SSDB is a
workload with heavy IO consumption, especially for Q1, Q2
(for all images) and Q3.

We test normal scale of Q1 on SciDB and Hive with
different slot size. Q1 is a simple workload which just scans
several images and computes the average value of one
attribute. We start 4, 8, 16 and 24 instances of SciDB working
daemon on each node, and find that Q1 gets best performance
when there are 4 instances on one node. It is the hard disk
bandwidth which limits the CPU processing speed. We also
test Q1 with different mapper slot sizes on Hive, and get the
same result, see Fig 2. So we could set the same size of
parallel processing unit in these two systems. That is also a
relatively fair configuration for our tests.

Fig. 2. Execution time of Q1 with different slot numbers

HDFS Block Size

The number of mappers is usually defined by the number
of HDFS block size. In most situations, one mapper processes
one block. So, multiple processors or nodes could be used
simultaneously to process large volumes of data.

Data of SSDB could be stored using three file storage
format, text, sequence, and RCFile. As shown in [13],
different storage format greatly influence the application
performance, usually binary format may get the best. In our
experiments, we have tested queries under these three file
formats, RCFile gets better performance than text and
sequence file does for queries from Q1 to Q6, but gets worse
for Q7, Q8 and Q9. RCFile is suitable for queries that only
fetch few columns of the table. As Q8 and Q9 select all
attributes of records that meet the conditions, RCFile cannot
show benefit for this situation. But for the consistency of the
configuration for our tests, we only show RCFile performance
of all queries here.

We use RCFile as our data storage format. For queries Q1,
only attributes ‘X’, ‘Y’, ‘Z’ and ‘a’ are extracted from all 13
attributes. Suppose we use the default HDFS block size 64MB,

200

300

400

500

600

4 8 16 24
Slot Number

A
ve
ra
ge
 T
im
e(
s)

Average time

43

the data that need to be read are only 14MB, that is to say, one
mapper loads only 14MB for its processing. So for small scale
(120GB) query Q1, there should be 1920 mappers. If we set
HDFS block size to 256MB, only 480 mappers need to be
started. Obviously, the latter configuration greatly decreases
the task scheduling costs and the management costs. In the
actual testing, 256MB block can achieve much better
performance than the default 64MB.

Partitions and Data Skew

As discussed in section III, original raw data are naturally
divided into partitions according to their image numbers.
Partitions are all of the same size. This greatly improves the
performance of queries like Q1 and Q3.

Cooked data can be partitioned using grid or slice method.
We grid the cooked data of the small scale into square tiles
with 1000*1000 size. There are totally 167 tiles containing
observation records. Because the stars in the sky are not
uniformly distributed, so every tile contains different numbers
of stars. From our statistics, using 1000*1000 tiles make the
data heavily fragmented. About 65% tiles have sizes below
32MB, see in Fig 3.

We have also tried tiles with size 10000*10000. This made
partitions evenly distributed, but in our experiment we find
that this configuration reads much more data from disk than
the 1000*1000 configuration does. Big partitions limit the
parallel degree, fewer mapper program are used for data
processing. Many CPU cores are not involved; this results in a
worse performance.

Fig. 3. Tile Sizes Distribution in Small Scale

Under SSDB normal scale, although 1000*1000
configuration can incur less data read from hard disks, it will
produce too many more files in HDFS and will incur much
more extra maintaining overhead, so we divide each image
into several stripes along one coordinate. For a 7500*7500
image, there are 8 stripes in it, and every stripe has a size of
7500*1000. This method totally produces 3200 partitions.

Row Group Size

RCFile first divide the table horizontally into row groups.
The parameter of row group is a block containing table rows,
and inside these rows, data are stored in columnar style. Row
group size can be configured according to different
applications features. When row group becomes larger, whole
storage space is decreased for smaller meta data space, and the
same is the cost of data compression, but needs a larger

consumption of RAM. While row group size becomes smaller,
total storage space consumption is decreased, the time of data
compression and decompression increases quickly, incurring
extra CPU costs. At the same time, the time of data read from
disk is increasing too, because RCFile blocks are small,
whenever a row group is read, next row group meta data
should be located and parsed. We should get balance of the
query performance and the storage space, and find a fitful row
group size.

In [9], the impacts of different row group size to query
performance are investigated. For word grep application, row
group size is configured as 1MB, 4MB and 16MB and the
execution time and data read from hard disks are measured.
Under the workload, the best execution time is achieved when
row group is set to 16MB. This value is different from 4MB
that is the RCFile designers’ suggestion[8]. The designers get
this value from the testing of RCFile under the Facebook
workload. So the best row group size is relevant to the
application logic.

We test the execution time and data volume read from
disks of Q1, see TABLE IV. The data read from disks are
measured using Linux system command iostat. As our
expectation, the smaller row group size, the longer of
execution time and larger data volume read from disks. When
the row group size is set to 64MB, we get the best
performance and the least data volume read from hard disks.

TABLE IV. EXECUTION TIME AND DATA READ FROM DISK OF Q1 FOR

VARIED ROW GROUP SIZE

Row Group

(MB) 1 2 4 8 16 32 64 128 256

Time

(sec) 105 82 71 67 74 68 63 66 79

Data Read

(GB)
13.4 11.2 9.8 9.1 9.0 8.6 8.4 8.5 8.9

V. RELATED WORK

Since MapReduce[12] has been introduced for massive
data processing, many data management systems based on it
come into birth. Hadoop[11] is one of the most popular open
source distributed data processing systems. Upon Hadoop,
there exist many data processing platforms, some of them
provide query language, such as Pig Latin [17], Hive. Pig and
Hive are both data warehouses based on Hadoop, both of them
provide high level query language compliant with SQL
standard, which translates user queries into mapreduce tasks
running on underlying Hadoop and HDFS. DryadLINQ[19] is
a parallel work from MicroSoft, it can also translate LINQ or
C# into distributed Dryad tasks. Some argue that MapReduce
framework is neither designed for scientific applications, nor
for scientific data manipulation [18]. Due to its lack of support
for complex embedded data type and index, many operations
of array are very difficult to complete incurring great much
extra IO overhead. In this paper, we aim to evaluate to what
extent the state-of-the-art MapReduce-based data processing
systems can support scientific data management applications.

As for scientific data processing benchmark, there is little
published work in this field. [1] is the most relevant work with

44

ours. The authors collect real scientific data from astrophysics
and extract 5 queries that are most often used. The goal of this
is also to evaluate whether it is suitable for executing scientific
data queries on MapReduce-based frameworks. Queries are
implemented and executed on Pig [17] and a DBMS and IDL.
It shows that in the small scale clusters DBMS significantly
outperforms Pig, but not always in the same speedup. [6] is the
first work on comparing the performance between
MapReduce-based data processing platform and RDBMS. The
data used in this benchmark are synthesized plain text and
HTML documents. Benchmark operations are ‘grep’ task and
complex data analysis tasks like selection, aggregation, join
and user defined aggregation. Loading data and analytical
tasks are executed on Hadoop, a column-store DBMS Vertica
and another commercial DBMS. Testing platforms have 25-
node, 50-node and 100-node configurations. Actually on all
platforms Vertica has the best score, next is the commercial
DBMS, and then Hadoop. But for grep task, the larger the
scale, the less the performance difference. For analytical tasks,
even on the 100-node cluster, Hadoop does not show
competent performance. [4] compares the performance of
astronomy application cross match on Hive and purely hand-
written MapReduce program.

From the early days of the generation of cloud
technologies, scientists began to evaluate the feasibility of
migrating existed scientific applications into the cloud
ecologies [30][31]. [28] compared the costs of storing parts of
LSST [29] experiments datasets in Amazon S3 and in grids.
They conclude that cloud is a competent alternative for
hosting scientific datasets.

Some scientists already have done much work on
customizing and optimizing these tools towards the special
requirements from scientific data processing. [7] designed a
storage format for scientific array operations.
[20][21][22][23][24][25] all work on the spatial indexing
support for Hadoop and Hadoop-based data processing
systems. Hadoop-GIS [25] is a high performance spatial data
query engine supporting large volumes of spatial data built on
Hadoop and Hive. Hadoop-GIS supports global partition
indexing and customizing local indexing on demand. These
features may accelerate some location related operations in
SSDB, e.g., Q4-Q9. Twister[33] is also an improved Hadoop-
based platform supporting iterative scientific computing job.
These works are all based on Hadoop. SciDB[2] is a new
distributed parallel database. It is a shared-nothing architecture
much like MapReduce framework. Data are stored distributed
on the local space of every SciDB instances. These instances
could be configured on each node of the cluster, or could be
dispatched on each core of one server. SciDB is designed for
scientific array data usage models. It supports multiple
dimensional arrays, and provides many specific array
operators. In our test, it shows good performance score for a 5-
node cluster.

VI. CONCLUSIONS

SSDB is a standard science DBMS benchmark. It is first
implemented on a distributed science database SciDB and on
MySQL. We port this benchmark to the mapreduce-based data
warehouse Hive and test small and normal scale of SSDB on

SciDB and Hive. This paper is a preliminary work, we will do
further analysis and tests with new optimization techniques
like Hadoop-GIS. Currently we find that Hive/Hadoop could
achieve acceptable performance for some data analysis tasks
with subtle system parameters tuning. There is great potential
for further improvement with good support of scientific data
management. First, a specific array-oriented storage format
helps a lot. Such storage format should provide quick array
elements locating and fetching, boundary checking, and
support flexible partition mechanism to deal with data
distribution and data skew. Second, some special scientific
data array functions could be added into Hive as user defined
functions, such as window, thin, subarray, etc. These user
defined operators could take full advantage of the underlying
storage for scientific data. Third, indexing is needed especially
for sparse array and spatial space data. And last, for some
complex data queries, there are many intermediate data that
are written into hard disk, incurring redundant IO overheads.
This could be simplified and customized for scientific data
management.

ACKNOWLEDGMENT

This work is supported in part by the Hi-Tech Research
and Development (863) Program of China (Grant No.
2013AA01A212, 2013AA01A209), the National Basic
Research (973) Program of China (Grant No.2011CB302502,
2011CB302803), and the major national science and
technology special projects (Grant No. 2010ZX03004-003-03).
We like to thank Dr. Rubao Lee and Dr. Yin Huai, for their
insightful suggestions. We would also thank Dixin Tang,
Liechun Zhou and Shufang Wang, they did valuable work to
support this research.

REFERENCES

[1] Loebman, S.; Nunley, D.; Yong-Chul Kwon; Howe, B.; Balazinska, M.;
Gardner, J.P., "Analyzing massive astrophysical datasets: Can

Pig/Hadoop or a relational DBMS help?," IEEE International
Conference on CLUSTER, vol., no., pp.1,10, Aug. 31 -Sept. 4 2009

[2] Paul G. Brown, Overview of sciDB: large scale array storage, processing

and analysis, Proceedings of the 2010 international conference on
Management of data, June 06-10, 2010, Indianapolis, Indiana, USA

[3] “IDL – Data Visualization Solutions,” http://www.ittvis.com/

ProductServices/IDL.aspx

[4] Cuncang Mi; Qian Chen; Taoying Liu "An Efficient Cross-Match
Implementation Based on Directed Join Algorithm in

MapReduce", Utility and Cloud Computing (UCC), 2011 Fourth IEEE
International Conference on, On page(s): 41 – 48

[5] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S.
Anthony, H. Liu, and R. Murthy, "Hive-a petabyte scale data warehouse

using hadoop," in ICDE, 2010, pp. 996-1005.

[6] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,
and M. Stonebraker, "A comparison of approaches to large-scale data

analysis," in SIGMOD Conference, 2009, pp. 165-178.

[7] Joe B. Buck, Noah Watkins, Jeff LeFevre, Kleoni Ioannidou, Carlos
Maltzahn, Neoklis Polyzotis, and Scott Brandt. 2011. SciHadoop: array-

based query processing in Hadoop. In Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and

Analysis (SC '11). ACM, New York, NY, USA

45

http://dl.acm.org/citation.cfm?id=1807271&CFID=228867893&CFTOKEN=50655797
http://dl.acm.org/citation.cfm?id=1807271&CFID=228867893&CFTOKEN=50655797
http://dl.acm.org/citation.cfm?id=1807271&CFID=228867893&CFTOKEN=50655797

[8] Yongqiang He, Rubao Lee, Yin Huai, Zheng Shao;,Jain, N., Xiaodong

Zhang, Zhiwei Xu, "RCFile: A fast and space-efficient data placement
structure in MapReduce-based warehouse systems," Data Engineering

(ICDE), 2011 IEEE 27th International Conference on , vol., no.,
pp.1199,1208, 11-16 April 2011

[9] Avrilia Floratou, Jignesh M. Patel, Eugene J. Shekita, and Sandeep Tata.
2011. Column-oriented storage techniques for MapReduce. Proc. VLDB

Endow. 4, 7 (April 2011), 419-429.

[10] Hive. http://hive.apache.org/.

[11] Hadoop. http://hadoop.apache.org/.

[12] Jeffrey Dean, Sanjay Ghemawat, MapReduce: simplified data
processing on large clusters, Communications of the ACM, v.51 n.1,

January 2008

[13] Dawei Jiang, Beng Chin Ooi, Lei Shi, and Sai Wu. 2010. The
performance of MapReduce: an in-depth study. Proc. VLDB Endow. 3,

1-2 (September 2010), 472-483.

[14] Philippe Cudre-Mauroux, Hideaki Kimura, Kian-Tat Lim, Jennie Rogers,
Samuel Madden, Michael Stonebraker, Stanley B. Zdonik, Paul G.

Brown. SS-DB: A Standard Science DBMS Benchmark. XLDB 2010,
Stanford University, CA, Oct. 6-7, 2010

[15] "Standard Science Database Benchmark," http://www.xldb.org/science-
benchmark/

[16] “SSDB User’s Guide”, http://www.scidb.org/forum/download/

file.php?id=56

[17] C. Olston, B. Reed, U. Srivastaba, R. Kumar, and A. Tomkins, "Pig latin:
a not-so-foreignlanguage for data processing," in Proc. Of the SIGMOD

Conf., 2008, pp. 1099-1110.

[18] M. Stonebraker, J. Becla, D. DeWitt, K.-T. Lim, D. Maier, O.
Ratzesberger, and S. Zdonik, "Requirements for science data bases and

SciDB, " in Fourth CIDR Conf. Perspectives, 2009.

[19] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Úlfar Erlingsson,
Pradeep Kumar Gunda, and Jon Currey. 2008. DryadLINQ: a system for

general-purpose distributed data-parallel computing using a high-level
language. In Proceedings of the 8th USENIX conference on Operating

systems design and implementation (OSDI'08). USENIX Association,
Berkeley, CA, USA, 1-14.

[20] Zhang, Shubin, Jizhong Han, Zhiyong Liu, Kai Wang, and Zhiyong Xu.

"Sjmr: Parallelizing spatial join with mapreduce on clusters." In Cluster
Computing and Workshops, 2009. CLUSTER'09. IEEE International

Conference on, pp. 1-8. IEEE, 2009.

[21] Zhang, Shubin, Jizhong Han, Zhiyong Liu, Kai Wang, and Shengzhong

Feng. "Spatial queries evaluation with mapreduce." In Grid and
Cooperative Computing, 2009. GCC'09. Eighth International

Conference on, pp. 287-292. IEEE, 2009.

[22] Cary, Ariel, Zhengguo Sun, Vagelis Hristidis, and Naphtali Rishe.

"Experiences on processing spatial data with mapreduce." In Scientific
and Statistical Database Management, pp. 302-319. Springer Berlin

Heidelberg, 2009.

[23] Ablimit Aji, Fusheng Wang, Hoang Vo, Rubao Lee, Qiaoling Liu,

Xiaodong Zhang, Joel Saltz: Hadoop-GIS: A Spatial Data Warehousing
System Over MapReduce. Accepted. The 39th International Conference

on Very Large Databases (VLDB'2013), Trento, Italy, August 26-30,
2013.

[24] Aji, Ablimit, and Fusheng Wang. "High performance spatial query

processing for large scale scientific data." In Proceedings of the on
SIGMOD/PODS 2012 PhD Symposium, pp. 9-14. ACM, 2012.

[25] “Hadoop-GIS”. http://confluence.cci.emory.edu:8090/display/

HadoopGIS/Home

[26] Wiley, Keith, Andrew Connolly, Simon Krughoff, Jeff Gardner,
Magdalena Balazinska, Bill Howe, Y. Kwon, and Yingyi Bu.

"Astronomical image processing with hadoop." Astronomical Data
Analysis Software and Systems(2010).

[27] Wiley, Keith, Andrew Connolly, Jeff Gardner, S. Krughoff, Magdalena

Balazinska, Bill Howe, Y. Kwon, and Yingyi Bu. "Astronomy in the
cloud: using mapreduce for image co-addition." Astronomy 123, no. 901

(2011): 366-380.

[28] Palankar, Mayur R., Adriana Iamnitchi, Matei Ripeanu, and Simson
Garfinkel. "Amazon S3 for science grids: a viable solution?."

In Proceedings of the 2008 international workshop on Data-aware
distributed computing, pp. 55-64. ACM, 2008.

[29] “Large Synoptic Survey Telescope,” http://www.lsst.org/.

[30] Foster, Ian, Yong Zhao, Ioan Raicu, and Shiyong Lu. "Cloud computing
and grid computing 360-degree compared." In Grid Computing

Environments Workshop, 2008. GCE'08, pp. 1-10. Ieee, 2008.

[31] Deelman, Ewa, Gurmeet Singh, Miron Livny, Bruce Berriman, and John
Good. "The cost of doing science on the cloud: the montage example."

In Proceedings of the 2008 ACM/IEEE conference on Supercomputing,
p. 50.

[32] Qiu, Xiaohong, Jaliya Ekanayake, Scott Beason, Thilina Gunarathne,

Geoffrey Fox, Roger Barga, and Dennis Gannon. "Cloud technologies
for bioinformatics applications." In Proceedings of the 2nd Workshop on

Many-Task Computing on Grids and Supercomputers, p. 6. ACM, 2009.

[33] Ekanayake, Jaliya, Hui Li, Bingjing Zhang, Thilina Gunarathne, Seung-
Hee Bae, Judy Qiu, and Geoffrey Fox. "Twister: a runtime for iterative

mapreduce." InProceedings of the 19th ACM International Symposium
on High Performance Distributed Computing, pp. 810-818. ACM, 2010.

46

http://hive.apache.org/
http://dl.acm.org/citation.cfm?id=1327492&CFID=228867893&CFTOKEN=50655797
http://dl.acm.org/citation.cfm?id=1327492&CFID=228867893&CFTOKEN=50655797
http://dl.acm.org/citation.cfm?id=1327492&CFID=228867893&CFTOKEN=50655797
http://www.xldb.org/science-benchmark/
http://www.xldb.org/science-benchmark/
http://www.lsst.org/

