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Abstract—It is very important to evaluate the MapReduce-

based frameworks for scientific data processing applications.  

Scientists need a low-cost, scalable, easy-to-use and fault-

tolerance platform for large volume data processing eagerly. This 

paper presents an implementation of a scientific data 

management benchmark, SSDB, on Hive, a MapReduce-based 

data warehouse. A complete strategy of migrating SSDB to Hive 

is described in detail including query HQL implementation, data 

partition schema and adjustments of underlying storage facilities. 

We have tuned the performance using several system parameters 

provided by Hive, Hadoop and HDFS. This paper provides 

preliminary results and analysis. Evaluation results indicate that 

Hive achieves acceptable performance for some data analysis 

tasks even compared with some high efficient distributed parallel 

databases, but it needs subtle adjustments of underlying storage 
facilities and indexing mechanism.   

Keywords—benchmark; scientific data management; Hive; 

performance evaluation 

I.  INTRODUCTION 

Distributed data processing frameworks like Hadoop[11] 
and its toolsets are widely used in business data processing 
field, especially in log analysis, data mining, business 
intelligence, and so on. There are less researches of scientific 
data processing on such platforms. However scientific data are 
expanding with an explosion speed. Scientists are among those 
who need a cheap, scalable distributed data processing 
platform urgently. Due to the following reasons, scientists 
prefer Hadoop-like technologies: (1) ease of use and learning, 
(2) function extensible, (3) simple yet feasible scalability 
solution, and (4) low costs.  

Currently there are some efforts on scientific data 
processing on Hadoop platform, such as [26][27][32][33], and 
[6]. But there still lacks a benchmark of scientific data 
processing on distributed platforms. [1] is a work of 
evaluating the performance of astrophysics data queries 
implemented in Interactive Data Language [3], on an RDBMS 
and Pig, a data query engine based on Hadoop. In this work, 5 
queries are extracted from the most often used operations by 
astrophysicists. Performance is compared, and it is found that 
Pig gets lower performance than database and IDL do on 
clusters with 10 or less nodes. Hadoop-like distributed 
frameworks are designed for clusters with hundreds or 
thousands of nodes, and their performance advantage over 
databases will be shown in that situation, and they are not 

efficient as databases are on small scale clusters. The work is 
done on Pig without any further optimizations. Technologies 
like column-store, partitions are adopted in many Hadoop-like 
frameworks, and they can bring much performance promotion 
for certain applications. What impact will these technologies 
bring to scientific data processing is not discussed. 

SSDB [14], Standard Science DBMS Benchmark, was 
proposed in XLDB 2010 by MIT CSAIL research group. 
SSDB is proposed as a performance benchmark of a 
distributed scientific database that is the research output from 
this group. SSDB is a good typical workload sample of 
astronomy, remote sense and medicine image applications. It 
is implemented on SciDB [2] and MySQL. We implement this 
benchmark on Hadoop-based data warehouse Hive [10], and 
use optimization like partition and RCFile [8]. It shows that 
after optimization the performance of SSDB on Hive is 
acceptable.    

Our contributions in this paper are three-fold. First, to be 
best of our knowledge, we are the first to comprehensively 
present how the SSDB can be implemented using the standard 
Hadoop and Hive software stack. Second, our detailed 
performance evaluation, with a complete coverage of various 
parameters tuning, reveals both the advantages and 
disadvantages of the Hadoop ecosystem when executing 
different SSDB workloads. Third, our evaluation results 
clearly point out the further research and development 
directions to improve the Hadoop/Hive system for scientific 
data management. 

This paper is organized as follows. Background of 
standard Science DBMS Benchmark including the data model 
and queries and Hive are introduced in Section II. In section 
III, we illustrate in detail the implementation of SSDB on Hive, 
some modifications of the queries are made for the resilience 
to Hive. Experiment data and analysis are shown in Section IV. 
We run SSDB both on Hive and SciDB, performance is 
compared, and we also analysis the tuning parameters in Hive. 
Related work are listed and discussed in Section V, and finally 
we conclude in Section VI. 

II. STANDARD SCIENCE DBMS BENCHMARK 

A. SSDB Overview 

SSDB [14] is a science data oriented benchmark proposed 
by MIT CIASIL Lab. The benchmark is composed of two 
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parts: data and queries. Data of SSDB are abstracted from 
astronomy, remote sensing, medicine image processing. Those 
data are all location-based in a 2-dimensional space.  

Data of SSDB simulate astronomy data of sky survey. 
Astronomical telescopes of a sky survey plan take pictures of 
their observation range, then slowly turn a very small angel, 
and continue taking pictures of the new observation area. 
Every picture is a rectangle image in the sky and each point of 
this image is transformed into a record with 11 physical 
attributes stored in 4-byte integers. The size of an image 
depends on the diameter of the telescope. There are 4 major 
scale configurations of SSDB dataset, see Table I. Each 
dataset is composed of sky images taken from telescopes. For 
example, for small scale, the image size is 3750*3750, and 
there are 160 images in this dataset. Actually, this is a 3-
dimension array. Coordinates X, Y are the locations of a point 
in the observation area, and Z means the absolute position of 
the observation area. If you want to get the absolute position 
of a point, you should first look up a table to get the absolute 
position of the start point of this area, and then add X, Y. In 
fact, Z cannot cover the whole sky. It is picked randomly from 
the sky, with 80% from dense areas and 20% from sparse sky. 

TABLE I.   SSDB DATA SCALES 

 
Very_ 

small 
Small Normal Large 

Image width 1600 3750 7500 15000 

# of images 40 160 400 1000 

Total Size 4.5GB 99GB 0.99TB  9.9TB 

 

Not all original raw data need to be processed after forth, 
SSDB first do the ‘cook’ process, and this process is called 
‘findstars’. Original data are scanned, if the value of one point 
is greater than the threshold, then the neighbors of this point 
are checked iteratively, points that have greater values than the 
threshold are included into this continued observation. The 
cook process removes most parts of the dark sky, and leaves 
data useful for future research. The second step of ‘cook’ 
performs a simple cluster algorithm. On the basis of the data 
of the first step, stars that are located within a short distance 
are grouped together into one polygon. This process is called 
‘groupstars’. The resulted areas from ‘groupstars’ could 
correspond to stars, boundaries of vegetation regions (satellite 
imagery), temperature regions (oceanography), or medical 
anomalies (medical imaging). 

B. SSDB Queries 

There are 9 queries in SSDB: 

Q1: Scan all the original data and compute the average 
value of one attribute. 

Q2: Recook one image of the raw data using a different 
threshold. 

Q3: Alleviate noise and collapse the original array for a 
10:3 proportion. 

Q4: Compute the average value of observation attributes of 
all the stars that fall into a specified rectangle. 

Q5: Get all records of observations whose polygons fall 
into a specified rectangle. 

Q6: In the specified slab, find all the small rectangle tiles 
containing more observations than a threshold. 

Q7: For all the observation groups, find those whose 
centers fall in the specified area at any time. 

Q8: Find those observation groups whose trajectories 
intersect the specified area, and output raw data of those 
observation groups for small tiles. Trajectory is defined as the 
sequence of centers of the observations in a group. 

Q9: Define trajectory as the sequence of the boundary of 
the observation group. Find those observation groups whose 
trajectories intersect the specified area, and output raw data of 
those observation groups for small tiles 

These 9 queries can be divided into 3 categories. First 
category is the scan-type query, Q1, Q2, and Q3. They work 
on the whole original raw data. All data need to be scanned. 
But the queries are simple. The second type of queries, Q4, Q5, 
Q6 and Q7, query on the output of cooking process in order to 
find observation objects that intersect with a certain area of the 
sky. These queries scan only part of the cooked data. The third 
category includes Q8 and Q9, they are very complex queries. 
They first find object ids from the cooking results, and then 
get records detail corresponding to object ids from the original 
data. The input of Q8 and Q9 covers not only the cooked data 
but also the original raw data. 

III. SSDB IMPLEMENTATION ON HIVE  

SSDB is a built-in benchmark of SciDB. There are also 
SSDB for MySQL version, which can be downloaded from 
XLDB website [15]. This version is totally different from 
SciDB version. Data are distributed evenly among cluster 
nodes and are loaded as local tables into a MySQL instance on 
each node. Programs written in C++ are used for global 
control and data processing.  

SSDB has not been ported to MapReduce platforms before. 
We choose Hive as the migration target because that Hive is a 
widely used MapReduce-based data warehouse, and it 
supports SQL-like query language and we can add user 
defined function into Hive. In this section, we will describe 
how SSDB data is loaded and stored in Hive, and how queries 
are programmed. 

A. Hive Background 

Hive [5][10] is an open-source Hadoop-based data 
warehouse framework. With series of tools that Hive provides, 
structured data files can be mapped to database tables. Hive 
also defines a SQL-like language called Hive Query Language, 
which is compatible to SQL. HQL statements can be 
translated into MapReduce tasks to run on multiple nodes. 

Data in Hive can be stored in three formats, text, sequence 
binary and RCFile[8]. Text is the default data store format of 
Hive. It is often used in log processing and data loading. The 
drawback of text format is that the costs for parsing are much 
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higher than using the binary format and data should be parsed 
repeatedly for each time of query execution.  

Sequence file is a binary format provided by Hadoop and 
also supported in Hive. Sequence file uses standard writable 
interface to implement serialization and deserialization. Data 
are stored as <key, value> pairs in sequence file.  

RCFile, Record Columnar File, is designed for storing 
relational tables on clusters using the MapReduce framework. 
It divides table data first horizontally and then vertically. 
Table records are divided into row groups. Each row group 
block contains the sync marker, metadata header and the table 

data. Values of one column are stored continuously, and then 
the next column in this row group. Thus RCFile is able to read 
only necessary columns and skip those columns that are not 
needed in queries.  

Hive does not support indexing. Data are stored in fixed 
chunks in HDFS. However Hive uses partition mechanism to 
narrow down query range, which can be seen as a very simple 
alternative to indexing. With this mechanism, data can be 
divided into partitions using a hashing based method. If the 
partition identification is specified in the where clause, only 
that partition of the data are scanned. 

 

TABLE II.  IMPLEMENTATION OF SSDB QUERIES IN HIVE AND SCIDB 

Q# SciDB Array Query Language Hive Query Language 

Q1 avg(subarray(normal,0,0,0,19,7499,7499),a) select avg(a) from normalrc where z<=19 and y<=7499 and x<=7499; 

Q2 findstars(subarray(normal,0,0,0,0, 7499,7499),a,900) MapReduce program 

Q3 thin(window( 

subarray(normal_reparted,0,0,0,19, 7499,7499), 

0,1,0,4,0,4,avg(a)),0,1,2,3,2,3) 

select * from( 

select cast(x/4 as int) as sj, cast(y/4 as int) as si, cast(avg(a) as int)  from normal  

where z<=19 group by cast(x/4 as int), cast(y/4 as int))normal2   

where (si-2)%3=0 and  (sj-2)%3=0; 

Q4 for (i=0..19) 

avg(filter(subarray(normal_obs_`printf $i`, 491000, 493000, 

501000, 503000, center is not null),sumPixel) 

select avg(sumpixel) from normal_obs_sumrc  

where j>=493000 and j<=503000 and i>=491000 and i<=501000 and center='true'; 

Q5 for (i=0..19) 

filter(subarray(normal_obs_`printf $i`, 491000, 493000, 

501000, 503000, polygon is not null)  

select * from normal_obs_sumrc  

where j>=493000 and j<=503000 and i>=491000 and i<=501000 and center='true'; 

Q6 for (i=0..19) 

filter(window(filter(subarray(normal_obs_`printf $i`, 491000, 

493000, 501000, 5030000, center is not null), 

0,12,0,12,count(center)),center_count>$count) 

select x1,y1,cs from( 

select cast(j/12 as int) as x1,cast(i/12 as int)as y1, count(*) as cs from 

normal_obs_sumrc  

where j>=493000 and j<=503000 and i>=491000 and i<=501000 group by 

cast(j/12 as int),cast(i/12 as int))heihei  

where heihei.cs>1; 

Q7 filter(aggregate(normal_groups,avg(x),avg(y),group), x_avg > 

496000 and y_avg > 497000 and x_avg < 500000 and 

y_avg<510000 

select * from normal_obs_sumrc  

where j>=493000 and j<=503000 and i>=491000 and i<=501000  

and polygon is not null 

Q8 aggregate(cross_join(small_groups, filter(sum (project (apply 

(cross (subarray ( Points, 0,3 ), join (subarray (small_groups, 

null, null, null,18) as Pi, subarray (small_groups, 

null,1,null,null) as Pj)), crosses, 

     iif (((((Pi.y <= Points.y) and (Pj.y > Points.y)) OR ((Pi.y > 

Points.y) and (Pj.y <= Points.y))) and (Points.x < Pi.x + 

((Points.y - Pi.y) / (Pj.y - Pi.y)) * (Pj.x - Pi.x)) and (Pi.x is not 

null and Pi.y is not null and Pj.x is not null and Pj.y is not 

null)), 1, 0 )), crosses), crosses,Pj.group), crosses_sum > 0)), 

avg(small_groups.x),avg(small_groups.y),small_groups.group)

" 

select /*+ mapjoin(q81)*/ cast(i/100 as int),cast(j/100 as int)  

from normal_obsrc join ( 

select oid from normal_groupsrc  

where pinp(cast(x as int), cast(y as int),497000,498000,499000,500000)=1)q81  

on (normal_obsrc.oid=q81.oid) group by cast(i/100 as int),cast(j/100 as int); 

  

 select /*+ mapjoin(q8_1)*/ cast(normalrc1.y1*1000+normalrc1.x1 as 

int),normalrc1.x,normalrc1.y,normalrc1.a,normalrc1.b,normalrc1.c,normalrc1.d,no

rmalrc1.e,normalrc1.f,normalrc1.g,normalrc1.h,normalrc1.i,normalrc1.j,normalrc1

.k from normalrc1 join q8_1 on (normalrc1.x1=q8_1.x and normalrc1.y1=q8_1.y); 

Q9 aggregate(filter(filter(cross( 

subarray(small_obs_0, 491000, 493000, 501000, 5030000) as 

A, small_groups),A.polygon is not null), 

A.oid=small_groups.oid),avg(small_groups.x),avg(small_grou

ps.y),small_groups.group) 

select oid, cast((avg(ax)-496211)/100 as int), cast((avg(ay)-497861)/100 as int) 

from (select normal_groupsrc.x as ax, normal_groupsrc.y as ay, 

normal_groupsrc.oid from normal_groupsrc join 

  (select normal_obs1rc.oid as oid from normal_obs1rc  

where j>=498000 and j<=500000 and i>=497000 and i<=499000   and polygon is 

not null)C  

on(C.oid=normal_groupsrc.oid))haha group by oid; 

 

 create table if not exists normalq9result like normalrc; 

  insert overwrite table q9result 

  select /*+ mapjoin(q9_1)*/ cast(normalrc1.y1*1000+normalrc1.x1 as 

int),normalrc1.x,normalrc1.y,normalrc1.a,normalrc1.b,normalrc1.c,normalrc1.d,no

rmalrc1.e,normalrc1.f,normalrc1.g,normalrc1.h,normalrc1.i,normalrc1.j,normalrc1

.k from normalrc1 join q9_1 on (normalrc1.x1=q9_1.x_avg and normalrc1.    

y1=q9_1.y_avg); 
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B. SSDB Queries in HQL 

HQL is quite similar to the standard SQL, but HQL in 
Hive only has preliminary functions compared with MySQL. 
SSDB MySQL version [15] uses spatial query and indexing 
function in MySQL. Queries of Q4-Q9 all use this advanced 
feature. All the queries use C++ codes in distributing data and 
paralleling process. Although SQL and HQL are very similar, 
neither SQL statements nor C++ codes can be directly 
migrated from MySQL version to implement SSDB queries in 
Hive. In order to provide complete functionality of SSDB, we 
implement 9 queries in HQL from scratch. Queries for normal 
scale test in HQL and AQL are listed in TABLE II except Q8 
and Q9, because the AQL scripts for normal dataset are too 
long to fit in the table space, we list HQL statement for small 
scale. SciDB AQL statements are listed here to help 
understanding and validating the queries. 

Q2 is implemented as a MapReduce program and inserted 
into Hive as a user defined function.  

Except for window and thin operators, HQL statements of 
Q1-Q7 are easy to understand. Because Hive provides 
distributed framework and parallel processing capability, there 
is no need to write any C++ codes or Java codes. 

We find that some operators in AQL have no 
correspondence to any HQL operators, such as window, 
subarray, project, and thin. Window [16] operator in AQL is a 
fairly common operation in scientific data processing, it 
computes aggregates over moving window. Thin [16] operator 
is to select data from an array at fixed intervals along each 
dimension. Hive does not support multi-dimensional window 
operator. In Q3, the average value of property ‘a’ should be 
calculated on a running 5*5*2 3D window. Window operation 
needs to locate the neighbors of a record along all dimensions, 
and store these records in memory for aggregation. Because 
there is no indexing in Hive, it is very resource-consuming to 
locate neighborhoods of a point in 3D space. So we simplify 
query Q3 to calculate on a running 2D window with window 
size of 5*5. The aggregation inside a window is implemented 
by HQL operator ‘group by’, elements in this window are 
grouped together and calculated.  

C. Data Partitions in Hive 

There are two categories of data in SSDB. One is the 
original raw data. This data is the mapping of the sky, each 
record is corresponding to a point in the sky with 14 non-null 
properties. This category of data is uniform. The data are 
composed of serial pictures taken by the telescope. Each 
picture is an image of square shape, and many of such squares 
scatter over the sky. The coordinates inside the square image 
are local coordinates. Each square has its starting point; the 
coordinates of this point are stored in a standalone table. The 
absolute coordinates of points inside an image can be 
calculated by adding the starting point coordinates to the local 
coordinates. Many query statements are related with the local 
and absolute coordinates.  

Although there is no array support in Hive, Hive has 
simple indexing mechanism partition to speed up locating 
array elements. It is natural to store an image in one partition 

indicated by its image number. We divide the original raw 
data into several partitions, and the sizes of each partition are 
totally equal. In the 9 queries, there are Q1 and Q3 in which Z 
coordinates are specified. For normal scale, Q1 checks the 
images with image numbers less than 20, which are only 
20/400 of the total raw data. With this solution, we can greatly 
reduce the amount of the input data of Q1. 

For data cooked and filtered, many of the records of dark 
areas are removed. Validated observations are unevenly 
distributed across the sky. In normal scale of SSDB, the size 
of the result of cook process ‘findstars’ is about 409GB. We 
have two methods to divide the data into partitions. First 
method is to put data into zones according to their different 
image numbers. But in fact, queries on the observations data 
are all related with the world-coordinate instead of local 
coordinate with area identifications. In fact, some queries scan 
data across area boundaries. Q4, Q5, Q6, Q7 use absolute 
coordinates. So, it will not bring any benefit to narrow the 
queried range using this partition solution. We adopt the 
second method. We convert the coordinates of the after-
cooked data into absolute coordinates, and divide the data 
according to their absolute coordinates. The data are gridded 
into tiles or sliced into stripes, as shown in Fig. 1. There is no 
essential distinction between the two methods, but they will 
affect the data distribution in partitions. Some partitions may 
have much more data than others, and some may have much 
less data than others. It is the inherent characteristics of the 
application data who determines the data skew incurred. More 
details of partitions will be given in section IV. 

 

Fig. 1. Two Partition Schemas for Cooked Data.  

IV. EXPERIMENT RESULTS AND PERFORMANCE FACTORS 

In this section, we will report the results of SSDB running 
on Hive and SciDB, and analyze some tuning factors of Hive 
which could affect the performance. 

A. Experimental Setup 

We run the benchmark on a gigabit ethernet Linux cluster 
of 5 nodes. Each node has dual 6-core 2.0GHz Intel Xeon E5-
2620 CPUs with the hyperthreading option enabled, and 3 
3TB SATA HDDs and 32GB RAM. The version of SciDB we 
use is 13.2, and the Hive version is 0.9.0, Hadoop is 0.20.0.  

B. System Performance 

The experiment results are listed in TABLE III. We test 
the performance of “Load”, “Cook” and 9 queries for both 
small and normal datasets. Each dataset is distributed among 5 
nodes. Every query was run 10 times, and system cache was 
cleared each time before testing. The numbers in Table III are 
average values of one running. This is different from [14], in 
which the execution time is the sum of 15 times of running. 
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TABLE III.  SSDB EXCECUTION TIME ON HIVE AND SCIDB (SECOND)  

 Dataset Load Cook Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 

SciDB 
small 1031 44 2 4 72 4 2 13 0 5 4 

normal 10394 1014 10 14 533 5 11 387 0 19 17 

Hive 
small 1048 130 65 58 71 29 34 37 22 1039 869 

normal 12104 13936 236 168 250 51 35 40 21 13061 3802 

 

We get the following observations: 

1) For data loading: Data loading refers to the operation 

loading original raw data into the testing systems. Both 

systems load distributed data from several nodes in parallel. 

The bottleneck of reading data is the hard disk bandwidth; 

SciDB and Hive get approximately the same performance in 

this operation. 

2) For query Q1:  This is a simple query that aggregates 

one property of all records of the array, but with great 

performance difference on the two systems. Hive does not 

support array, it needs to scan all the data to get only one 

element of an array. While the basic data model of SciDB is 

array, it can quickly locate any array element according to its 

coordinates. 

3) For complicated array operation Q3: There is not 

much difference on Hive and SciDB. 

4) For Q7, the query with little data input and output:  

The size of the input file is less than 100MB, in this situation 

Hive is much slower than SciDB. 

5) For Q4, Q5 and Q6: In the original SSDB released with 

SciDB, there are 20 queries accessing the same array in 

parallel. We change the concurrent queries into sequential 

ones because SciDB does not respond when processing 

concurrent user requirements in parallel in our test. This 

greatly reduces the performance gap between Hive and SciDB, 

compared with the astonishing gap between SciDB and 

MySQL reported in [14]. 

6) For Q8 and Q9:  These two queries first do some data 

analysis based on the already cooked data and then fetch from 

raw data records, they deal with large volumes of data both 

input and output. In original SSDB, the output of Q8 and Q9 

are not written back to the hard disk. But usually the output of 

Q8 and Q9 are quite large, we suppose scientists will like to 

save them for later research. So we add save statement into Q8 

and Q9, this also greatly reduces the performance gap between 

Hive and SciDB. But there is another reason for the slowness. 

Q8 and Q9 need to read all fields of records and RCFile is not 

efficient when all fields of records are needed in a query. This 

is because when reading all columns, it needs to locate all row 

groups inside an HDFS block. The start of each row group 

must be found by scanning. 

C. Performance Factors 

Parallel Processing Slot Number 

The nodes of our testing platform all have dual 6-core 
processors with the hyperthreading option enabled. There are 
24 cores that can be used. But as for different workload, it is 

not always beneficial to get more processors. SSDB is a 
workload with heavy IO consumption, especially for Q1, Q2 
(for all images) and Q3.  

We test normal scale of Q1 on SciDB and Hive with 
different slot size. Q1 is a simple workload which just scans 
several images and computes the average value of one 
attribute. We start 4, 8, 16 and 24 instances of SciDB working 
daemon on each node, and find that Q1 gets best performance 
when there are 4 instances on one node. It is the hard disk 
bandwidth which limits the CPU processing speed. We also 
test Q1 with different mapper slot sizes on Hive, and get the 
same result, see Fig 2. So we could set the same size of 
parallel processing unit in these two systems. That is also a 
relatively fair configuration for our tests. 

 

Fig. 2. Execution time of Q1 with different slot numbers 

HDFS Block Size 

The number of mappers is usually defined by the number 
of HDFS block size. In most situations, one mapper processes 
one block. So, multiple processors or nodes could be used 
simultaneously to process large volumes of data.  

Data of SSDB could be stored using three file storage 
format, text, sequence, and RCFile. As shown in [13], 
different storage format greatly influence the application 
performance, usually binary format may get the best. In our 
experiments, we have tested queries under these three file 
formats, RCFile gets better performance than text and 
sequence file does for queries from Q1 to Q6, but gets worse 
for Q7, Q8 and Q9. RCFile is suitable for queries that only 
fetch few columns of the table. As Q8 and Q9 select all 
attributes of records that meet the conditions, RCFile cannot 
show benefit for this situation. But for the consistency of the 
configuration for our tests, we only show RCFile performance 
of all queries here. 

We use RCFile as our data storage format. For queries Q1, 
only attributes ‘X’, ‘Y’, ‘Z’ and ‘a’ are extracted from all 13 
attributes. Suppose we use the default HDFS block size 64MB, 
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the data that need to be read are only 14MB, that is to say, one 
mapper loads only 14MB for its processing. So for small scale  
(120GB) query Q1, there should be 1920 mappers. If we set 
HDFS block size to 256MB, only 480 mappers need to be 
started. Obviously, the latter configuration greatly decreases 
the task scheduling costs and the management costs. In the 
actual testing, 256MB block can achieve much better 
performance than the default 64MB. 

Partitions and Data Skew 

As discussed in section III, original raw data are naturally 
divided into partitions according to their image numbers. 
Partitions are all of the same size. This greatly improves the 
performance of queries like Q1 and Q3. 

Cooked data can be partitioned using grid or slice method. 
We grid the cooked data of the small scale into square tiles 
with 1000*1000 size. There are totally 167 tiles containing 
observation records. Because the stars in the sky are not 
uniformly distributed, so every tile contains different numbers 
of stars. From our statistics, using 1000*1000 tiles make the 
data heavily fragmented. About 65% tiles have sizes below 
32MB, see in Fig 3.  

We have also tried tiles with size 10000*10000. This made 
partitions evenly distributed, but in our experiment we find 
that this configuration reads much more data from disk than 
the 1000*1000 configuration does. Big partitions limit the 
parallel degree, fewer mapper program are used for data 
processing. Many CPU cores are not involved; this results in a 
worse performance.  

 

Fig. 3. Tile Sizes Distribution in Small Scale 

Under SSDB normal scale, although 1000*1000 
configuration can incur less data read from hard disks, it will 
produce too many more files in HDFS and will incur much 
more extra maintaining overhead, so we divide each image 
into several stripes along one coordinate. For a 7500*7500 
image, there are 8 stripes in it, and every stripe has a size of 
7500*1000. This method totally produces 3200 partitions. 

Row Group Size 

RCFile first divide the table horizontally into row groups. 
The parameter of row group is a block containing table rows, 
and inside these rows, data are stored in columnar style. Row 
group size can be configured according to different 
applications features. When row group becomes larger, whole 
storage space is decreased for smaller meta data space, and the 
same is the cost of data compression, but needs a larger 

consumption of RAM. While row group size becomes smaller, 
total storage space consumption is decreased, the time of data 
compression and decompression increases quickly, incurring 
extra CPU costs. At the same time, the time of data read from 
disk is increasing too, because RCFile blocks are small, 
whenever a row group is read, next row group meta data 
should be located and parsed. We should get balance of the 
query performance and the storage space, and find a fitful row 
group size. 

In [9], the impacts of different row group size to query 
performance are investigated. For word grep application, row 
group size is configured as 1MB, 4MB and 16MB and the 
execution time and data read from hard disks are measured. 
Under the workload, the best execution time is achieved when 
row group is set to 16MB. This value is different from 4MB 
that is the RCFile designers’ suggestion[8]. The designers get 
this value from the testing of RCFile under the Facebook 
workload. So the best row group size is relevant to the 
application logic.  

We test the execution time and data volume read from 
disks of Q1, see TABLE IV. The data read from disks are 
measured using Linux system command iostat. As our 
expectation, the smaller row group size, the longer of 
execution time and larger data volume read from disks. When 
the row group size is set to 64MB, we get the best 
performance and the least data volume read from hard disks. 

TABLE IV.  EXECUTION TIME AND DATA READ FROM DISK OF Q1 FOR 

VARIED ROW GROUP SIZE 

Row Group 

(MB) 1 2 4 8 16 32 64 128 256 

Time 

(sec) 105 82 71 67 74 68 63 66 79 

Data Read 

(GB) 
13.4 11.2 9.8 9.1 9.0 8.6 8.4 8.5 8.9 

 

V. RELATED WORK 

Since MapReduce[12] has been introduced for massive 
data processing, many data management systems based on it 
come into birth. Hadoop[11] is one of the most popular open 
source distributed data processing systems. Upon Hadoop, 
there exist many data processing platforms, some of them 
provide query language, such as Pig Latin [17], Hive. Pig and 
Hive are both data warehouses based on Hadoop, both of them 
provide high level query language compliant with SQL 
standard, which translates user queries into mapreduce tasks 
running on underlying Hadoop and HDFS. DryadLINQ[19]  is 
a parallel work from MicroSoft, it can also translate LINQ or 
C# into distributed Dryad tasks. Some argue that MapReduce 
framework is neither designed for scientific applications, nor 
for scientific data manipulation [18]. Due to its lack of support 
for complex embedded data type and index, many operations 
of array are very difficult to complete incurring great much 
extra IO overhead. In this paper, we aim to evaluate to what 
extent the state-of-the-art MapReduce-based data processing 
systems can support scientific data management applications. 

As for scientific data processing benchmark, there is little 
published work in this field. [1] is the most relevant work with 
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ours. The authors collect real scientific data from astrophysics 
and extract 5 queries that are most often used. The goal of this 
is also to evaluate whether it is suitable for executing scientific 
data queries on MapReduce-based frameworks. Queries are 
implemented and executed on Pig [17] and a DBMS and IDL. 
It shows that in the small scale clusters DBMS significantly 
outperforms Pig, but not always in the same speedup. [6] is the 
first work on comparing the performance between 
MapReduce-based data processing platform and RDBMS. The 
data used in this benchmark are synthesized plain text and 
HTML documents. Benchmark operations are ‘grep’ task and 
complex data analysis tasks like selection, aggregation, join 
and user defined aggregation. Loading data and analytical 
tasks are executed on Hadoop, a column-store DBMS Vertica 
and another commercial DBMS. Testing platforms have 25-
node, 50-node and 100-node configurations. Actually on all 
platforms Vertica has the best score, next is the commercial 
DBMS, and then Hadoop. But for grep task, the larger the 
scale, the less the performance difference. For analytical tasks, 
even on the 100-node cluster, Hadoop does not show 
competent performance. [4] compares the performance of 
astronomy application cross match on Hive and purely hand-
written MapReduce program. 

From the early days of the generation of cloud 
technologies, scientists began to evaluate the feasibility of 
migrating existed scientific applications into the cloud 
ecologies [30][31]. [28] compared the costs of storing parts of 
LSST [29] experiments datasets in Amazon S3 and in grids. 
They conclude that cloud is a competent alternative for 
hosting scientific datasets.  

Some scientists already have done much work on 
customizing and optimizing these tools towards the special 
requirements from scientific data processing. [7] designed a 
storage format for scientific array operations. 
[20][21][22][23][24][25] all work on the spatial indexing 
support for Hadoop and Hadoop-based data processing 
systems. Hadoop-GIS [25] is a high performance spatial data 
query engine supporting large volumes of spatial data built on 
Hadoop and Hive. Hadoop-GIS supports global partition 
indexing and customizing local indexing on demand. These 
features may accelerate some location related operations in 
SSDB, e.g., Q4-Q9. Twister[33] is also an improved Hadoop-
based platform supporting iterative scientific computing job. 
These works are all based on Hadoop. SciDB[2] is a new 
distributed parallel database. It is a shared-nothing architecture 
much like MapReduce framework. Data are stored distributed 
on the local space of every SciDB instances. These instances 
could be configured on each node of the cluster, or could be 
dispatched on each core of one server. SciDB is designed for 
scientific array data usage models. It supports multiple 
dimensional arrays, and provides many specific array 
operators. In our test, it shows good performance score for a 5-
node cluster. 

VI. CONCLUSIONS 

SSDB is a standard science DBMS benchmark. It is first 
implemented on a distributed science database SciDB and on 
MySQL. We port this benchmark to the mapreduce-based data 
warehouse Hive and test small and normal scale of SSDB on 

SciDB and Hive. This paper is a preliminary work, we will do 
further analysis and tests with new optimization techniques 
like Hadoop-GIS. Currently we find that Hive/Hadoop could 
achieve acceptable performance for some data analysis tasks 
with subtle system parameters tuning. There is great potential 
for further improvement with good support of scientific data 
management. First, a specific array-oriented storage format 
helps a lot. Such storage format should provide quick array 
elements locating and fetching, boundary checking, and 
support flexible partition mechanism to deal with data 
distribution and data skew. Second, some special scientific 
data array functions could be added into Hive as user defined 
functions, such as window, thin, subarray, etc. These user 
defined operators could take full advantage of the underlying 
storage for scientific data. Third, indexing is needed especially 
for sparse array and spatial space data. And last, for some 
complex data queries, there are many intermediate data that 
are written into hard disk, incurring redundant IO overheads. 
This could be simplified and customized for scientific data 
management. 
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