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2Schepens Eye Research Institute, Department of Ophthalmology,
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We here study the predictability of eye movements when viewing high-resolution
natural videos. We use three recently published gaze data sets that contain a wide
range of footage, from scenes of almost still-life character to professionally made,
fast-paced advertisements and movie trailers. Intersubject gaze variability differs
significantly between data sets, with variability being lowest for the professional
movies. We then evaluate three state-of-the-art saliency models on these data sets.
A model that is based on the invariants of the structure tensor and that combines
very generic, sparse video representations with machine learning techniques
outperforms the two reference models; performance is further improved for two
data sets when the model is extended to a perceptually inspired colour space.
Finally, a combined analysis of gaze variability and predictability shows that eye
movements on the professionally made movies are the most coherent (due to
implicit gaze-guidance strategies of the movie directors), yet the least predictable
(presumably due to the frequent cuts). Our results highlight the need for
standardized benchmarks to comparatively evaluate eye movement prediction
algorithms.
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Humans constantly move their eyes to sample the visual input with the high-

resolution centre of the retina, and where they look is tightly linked to the

aspects of a scene they are consciously processing. Despite the obvious

importance of oculomotor guidance strategies, we still do not have a full

understanding of how we select upcoming saccade targets from the rich
visual input in everyday vision. For very simple stimuli, such as coloured

letter arrays often used in visual search experiments, the input may

adequately be described in terms of simple visual features such as colour

or corners versus junctions, and a singleton in one feature dimension may

immediately ‘‘pop out’’ and capture attention and gaze (Wolfe, 1998).

Following this observation, a vast body of research has modelled saccade

target selection in more complex visual scenes based on low-level ‘‘saliency’’

(Bruce & Tsotsos, 2009; Gao & Vasconcelos, 2009; Itti & Baldi, 2006; Itti,
Koch, & Niebur, 1998; Judd, Ehinger, Durand, & Torralba, 2009; Kienzle,

Franz, Schölkopf, & Wichmann, 2009; Le Meur, Le Callet, Barba, &

Thoreau, 2006; Tatler, Baddeley, & Vincent, 2006; Zhang, Tong, Marks,

Shan, & Cottrell, 2008). Typically, a number of easily computable visual

features such as luminance, contrast, or orientation are extracted for every

location, and those locations that differ in one or more of these features from

their neighbourhood are assigned higher saliency values. Then, saccade

targets can be picked from the resulting saliency map, e.g., by an iterative
winner-takes-all operation with subsequent inhibition of previously fixated

locations.

These models are appealing for at least two reasons. First, it has been

shown repeatedly that image regions with higher saliency are also more likely

to be fixated (Parkhurst & Niebur, 2003; Reinagel & Zador, 1999); in other

words, eye movement behaviour can be predicted (to some extent) based on

computationally tractable low-level image features. This is particularly true

for free viewing experiments, i.e., in the absence of high-level tasks
(Einhäuser, Rutishauser, & Koch, 2008). It is important to note, however,

that even the best models under the best of circumstances are far from

perfect predictors, and the interobserver agreement as a likely upper ceiling

for prediction performance is also significantly lower than 100% (Peters,

Iyer, Itti, & Koch, 2005).

The second reason for the appeal of saliency models is their conceptual

proximity to the biology of the primate visual system, where dedicated

circuits in the early stages encode low-level features such as oriented edges,
corners, motion, or colour (Wandell, 1995).

The majority of research on saliency has used static images as stimuli.

While static real-world scenes are undoubtedly a much more realistic and

relevant input to the visual system than traditional, impoverished psycho-

physical stimuli, they still crucially lack dynamic information. Whenever

something or someone moved in the bushes, our ancestors probably were
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well advised to quickly determine the source of this motion, whereas static

image regions could be examined at leisure. Indeed, eye movements when

viewing static images become more idiosyncratic than on dynamic content

after only a few seconds of viewing time (Dorr, Martinetz, Gegenfurtner, &

Barth, 2010).
Therefore, the number of studies that model eye movement behaviour

using dynamic natural scenes has been growing recently, comprising

bioinspired, information-theoretic, machine-learning, and signal processing

based approaches (Guo & Zhang, 2010; Itti, 2005; Kienzle, Schölkopf,

Wichmann, & Franz, 2007; Mahadevan & Vasconcelos, 2010; Le Meur et al.,

2006; Mital, Smith, Hill, & Henderson, 2011; Tatler, Baddeley, & Gilchrist,

2005; Vig, Dorr, & Barth, 2009; Zhang, Tong, & Cottrell, 2009). Unfortu-

nately, the problem of what constitutes ‘‘naturalness’’ of a scene is only
exacerbated in the dynamic case relative to static images. The space of

possible image sequences is even larger due to the combinatorial explosion

of adding another dimension. Furthermore, where databases of hundreds of

calibrated images exist that can be displayed in quick succession, movies are

typically longer and harder to come by, so fewer can be presented in one

experimental session. Several studies have used professionally produced

stimuli such as Hollywood movies or TV shows, but these are often carefully

arranged in order to direct attention to specific objects of interest, and
contain cuts that do not typically occur under normal viewing conditions.

The choice of the optimal stimulus set notwithstanding, the concept of

saliency has been also challenged fundamentally; for a recent review, see

Tatler, Hayhoe, Land, and Ballard (2011). Even though prediction perfor-

mance is significantly above chance in virtually all studies, current low-level

models seem to hit a ceiling at an ROC score of around 0.7, so that a large

part of eye movement selection remains unexplained; when high-level task

demands or socially meaningful stimuli such as faces are introduced,
prediction performance gets even worse (Einhäuser, Rutishauser, & Koch,

2008; Einhäuser, Spain, & Perona, 2008). Because blank surfaces contain no

information at all, but reacting to sudden looming onsets might be crucial

for survival, it is intuitively plausible that image features can guide attention.

However, it simply may be that under many conditions, saliency is not causal

for eye movements, but merely correlated with the presence of semantically

meaningful objects. Without low-level properties such as edges or a texture

gradient, objects cannot be distinguished from their surround, but the
magnitude of these properties*once above a certain threshold*may be less

crucial.

More recent, complex saliency models may also suffer from too many free

parameters that were introduced in the attempt to cover all possible factors

or low-level image features that might potentially influence saccade target

selection. On the other end of the complexity spectrum, Vig et al. (2009;
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Vig, Dorr, Martinetz, & Barth, in press) used the geometric invariants of the

structure tensor to predict eye movements, and outperformed state-of-the-

art saliency models. The invariants simply encode the amount of local

change in a signal and thus yield very generic video representations. Based

on these representations, prediction performance was improved upon even
further by employing machine learning algorithms.

Recent results by Vig, Dorr, Martinetz, and Barth (2011) also indicate

that the contribution of saliency to fixation selection is not entirely

straightforward even in naturalistic videos. These authors cross-correlated

in time analytical dynamic saliency maps with ‘‘empirical’’ saliency maps

that were based on observed eye movements. For less natural footage, such

as video games or professionally cut material, the peak of the correlation

function occurred at a shift of about 133 ms between a dynamic event and a
gaze response, similar to classical laboratory experiments where observers

can react to unpredictable events (such as the sudden appearance of a

saccade target marker) only with a latency of 150�250 ms. In more natural,

uncut outdoor scenes, however, the peak of the correlation function occurred

at around 0 ms, which implies that observers have an internal model of

natural environments that allows them to predict where informative image

regions will be after the next saccade, and that truly unpredictable events are

rare in the real world. Predictive gaze behaviour becomes even more
prominently visible when subjects truly interact with an environment, e.g.,

in everyday tasks such as tea- or sandwich making, or sports (Land &

Hayhoe, 2001; Land & McLeod, 2000; Land, Mennie, & Rusted, 1999).

Eye movement behaviour is further affected by oculomotor constraints

and peripheral resolution limits. Horizontal saccades are more frequent than

vertical ones, which in turn are more frequent than oblique saccades,

independent of the visual input, and the amplitude distribution is heavily

skewed towards medium-sized saccades (Tatler & Vincent, 2009; see also
Foulsham and Kingstone, forthcoming).

Even if the contribution of saliency to saccade target selection is mainly of

a correlative rather than causal nature, saliency models can still be of

practical value. For example, more than a million images and three million

video frames are uploaded every minute to two particular web sites alone,

and to evaluate them all with human observers is impossible. Knowledge of

where observers will look, however, can be beneficial for, e.g., video

compression (Itti, 2004; Li, Qin, & Itti, 2011; Nyström & Holmqvist,
2010), or determining what message will ultimately be conveyed by visual

material.

In this paper, we shall investigate three important aspects of modelling eye

movements in dynamic natural scenes. First, we will look at several recently

made available data sets of eye movements that were recorded while subjects

watched high-resolution videos, and we will compare the interobserver
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agreement of gaze patterns in each of these data sets. Because of the vast

dimensionality of the space of natural movies, even large video collections

cannot be representative, and consequently we find large differences between

the data sets. These differences indicate that a fair comparison of eye

movement prediction methods requires standardized benchmark protocols,

similar to the ones used in the machine learning and computer vision

communities (e.g., Everingham, van Gool, Williams, Winn, & Zisserman,

2010; Laptev, Marszalek, Schmid, & Rozenfeld, 2008).

As a first step towards such a goal, we evaluate three classes of state-

of-the-art saliency models on all data sets. The range of eye movement

predictability for individual movies spans cases where performance is

essentially random to almost perfect performance. We find that even though

prediction performance generally is highly correlated for the different

models, some models still consistently outperform others.
Finally, we investigate the relationship of eye movements variability and

predictability. Interobserver agreement of eye movement patterns has been

studied for different stimulus types (Dorr et al., 2010; Mital et al., 2011;

Peters et al., 2005), and some types such as engaging Hollywood movie

trailers evoke particularly high agreement (i.e., low variability). This could be

due to two different effects: Strong low-level saliency, such as rapid motion

or a very shallow depth of field, may attract attention; alternatively, gaze

coherence may be induced by the semantic meaning of a scene. In the former,

but not in the latter case, we would expect a positive correlation of eye

movement coherence and feature-based prediction performance.

METHODS

Eye movement data sets

We analysed three recent, publicly available data sets of high-resolution

video material with accompanying eye movement recordings. Our own data

set (Dorr et al., 2010) comprises 18 videos of about 20 s duration each at

HDTV resolution (1280�720 pixels, 29.97 frames per second). Clips were

taken in outdoor settings around Lübeck with a camera that was fixed in all

but two recordings (where the camera followed animals). Fifty-four

observers watched these clips while their eye movements were tracked with

an EyeLink II system running at 250 Hz.

The VAGBA database (Li et al., 2011) contains data from 14 observers

watching 50 stimuli, in- and outdoor scenes captured with a static camera, of

10 s duration each while their gaze was recorded at 240 Hz with an iScan

eyetracker. For our analysis, we downsampled videos from their original

1920�1080 pixels resolution (30 fps) to 1280�720 pixels.

EYE MOVEMENT PREDICTION AND VARIABILITY 5
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Video stimuli in the DIEM database (Mital et al., 2011) have different

resolution and aspect ratio, but a fair comparison between stimuli requires a

common coordinate system. Therefore, only videos that differed no more

than 5% in either dimension from a resolution of 1280 pixels horizontally

and 720 pixels vertically were used in our analysis and centred in a
1280�720 frame; border pixels were taken from the nearest stimulus pixel

to avoid hard image transients. From this set of 47 movies, two were excluded

from the analysis because they had less than 40 eye movement recordings

(mean 69.6, s�48.5 recordings); for the variability analysis, a constant

number of training recordings was required. Two further movies were

discarded because their video content was contained in the database twice

(with and without soundtrack). At 30 frames per second, videos had an

average duration of 102.6 s (s�39.6 s). In the original recordings, eye
movements were monitored at 1000 Hz with an EyeLink 1000 tracker, but

the publicly available data was reduced to one sample per video frame (i.e., at

30 Hz). Contrary to the other two data sets, DIEM contains professionally

cut material such as movie trailers, documentary footage, TV shows, etc.

Gaze analysis

Saccadic landing points were used to analyse those image features that
triggered an eye movement. The use of saccadic landing points rather than

raw gaze samples potentially ignores the effect of different fixation durations

(e.g., see Nuthmann & Henderson, forthcoming), but is computationally

more tractable. The DIEM and VAGBA data sets already contain informa-

tion on detected saccades. For the GazeCom data set, saccades were

extracted using a dual-threshold velocity-based algorithm (Dorr et al.,

2010) where raw gaze velocity had to exceed a fairly high threshold (150

deg/s) first for noise robustness, and on- and offsets were then detected using
a lower threshold (19 deg/s). Because the different temporal resolution of the

three data sets could influence the analysis of gaze variability, raw data were

lowpass-filtered and downsampled to one sample per video frame in

VAGBA and GazeCom to match the resolution of DIEM.

Eye movement prediction

For the prediction of eye movements, we used three different saliency
models. The source code for the Itti (Itti & Baldi, 2006; Itti et al., 1998) and

the SUNDAy (Zhang et al., 2009) saliency models is publicly available (at

http://ilab.usc.edu/toolkit and http://mplab.ucsd.edu/�nick/NMPT, respec-

tively) and we will only briefly describe their function here. Default

parameters were used for these models. Our own model, which is based on

the geometrical invariants of the structure tensor, has previously been

6 DORR, VIG, BARTH

D
ow

nl
oa

de
d 

by
 [

Z
en

tr
al

e 
H

oc
hs

ch
ul

bi
bl

io
th

ek
],

 [
E

rh
ar

dt
 B

ar
th

] 
at

 0
3:

38
 1

0 
A

pr
il 

20
12

 

http://ilab.usc.edu/toolkit
http://mplab.ucsd.edu/&sim;nick/NMPT
http://mplab.ucsd.edu/&sim;nick/NMPT
http://mplab.ucsd.edu/&sim;nick/NMPT


described for greyscale videos in (Vig et al., 2009, in press); we here use it to

operate in two different colour spaces.

Itti Maxnorm model

Itti’s Maxnorm model is an implementation of the classical saliency map of

Koch and Ullman (Koch & Ullman, 1985). In its first, preattentive phase,

various low-level features, such as intensity, orientation, colour, flicker, and

motion, are extracted in parallel on multiple scales. Then, from the

combination of centre-surround feature maps (so-called conspicuity maps),

a master saliency map is generated, on which biological mechanisms, such as
winner-takes-all competition and inhibition of return, bias the selection of

the next location to be fixated. Different fusing schemes of the individual

feature-specific saliency maps have been proposed. Here we use the

Maxnorm normalization scheme, in which the fusion of conspicuity maps

is based on normalized summation.

SUNDAy model

In SUNDAy, saliency is computed as the self-information of low-level visual

features. In the context of eye movement prediction, self-information

quantifies the intuitive assumption that novel items draw human gaze. In

the formulation of (Zhang et al., 2009), self-information and the probability

of the presence of a visual feature are inversely proportional, i.e., rarer
features are more informative. As opposed to existing approaches, feature

statistics are here learned from a large collection of natural videos, and are

not based on movies in the three data sets analysed here.

Geometric invariants of the structure tensor

Greyscale videos are signals that can change in any of their three dimensions.

Due to the spatiotemporal correlations in natural scenes, however, natural

videos often locally change little or at all: Neighbouring pixels (in space and

time) typically have the same or similar intensity. The intrinsic dimensionality

of an image region (Zetzsche & Barth, 1990) formalizes and quantifies this

observation and describes the number of degrees of freedom that are used

locally (Figure 1). It can be shown that image regions with an intrinsic

dimension (inD) of less than two, such as uniform regions and straight edges,
are redundant (Barth, Caelli, & Zetzsche, 1993; Mota & Barth, 2000), and

that regions with higher iD are not only more informative, but also less

frequent. As a consequence, encoding only image regions of higher iD is an

example of efficient sparse codes, which might be a generic mechanism in

neural systems (Barth, Dorr, Vig, Pomarjanschi, & Mota, 2010; Field, 1987;

Olshausen & Field, 1996).
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The intrinsic dimensionality of an image region can be computed by

several methods, and we will here describe the approach based on the

structure tensor, which is a common tool in computer vision (Jähne, 1999).
For every pixel, the partial spatiotemporal derivatives are taken (typically,

after an appropriate low-pass filter operation to increase noise robustness; in

this paper, we used a five-tap binomial filter), and the products of all possible

pairs of the derivatives fx, fy, ft are computed. Because natural videos contain

not only greyscale information, but q colour channels, this first requires the

definition of a suitable scalar product for vectorial pixels, and we here use

~y �~z ¼
Xq

k¼1

akykzk

for vectors

~y ¼ yq; :::; yq

� �
; ~z ¼ zq; :::; zq

� �

Figure 1. Example of geometrical invariants, which denote the locally used number of degrees n of

freedom of a signal, i.e., the intrinsic dimensionality inD. See main text for an in-depth description.

Contrast inverted and enhanced for better legibility, with same parameters for b�d. (a) Stillshot from

original movie. (b) Invariant H, which represents regions with iD]1. Regions with iD � 0, i.e.,

uniform regions, are suppressed. (c) Invariant S (iD]2) that encodes static corners. Note the reduced

response to straight edges. (d) Invariant K (i3D) that encodes spatiotemporal corners, i.e., regions

where the signal changes in all three dimensions. To view this figure in colour, please see the online

issue of the Journal.
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The ak are weights that can be used to adjust the relative importance of

individual colour channels. We here perform the saliency computations in

two different colour spaces that both have one luminance channel and two

channels of colour opponency information. The first, straightforward choice

is the canonical colour space for video files, Y?CbCr; the second, Lab, is
optimized towards the human visual system and is perceptually uniform

(Poynton, 2003). In both colour spaces, the two colour opponency channels

have much smaller dynamic range than the luminance channel, and larger ak

for these channels can compensate for this difference; we here used the

inverse of the channel’s mean energy.

Finally, the products of derivatives are smoothed with a spatiotemporal

low-pass filter v, here chosen to be five-tap spatiotemporal binomials, and

we arrive at the structure tensor J:

J ¼ x x; y; tð Þ �
jj~fxjj

2 ~fx �~fy
~fx �~ft

~fx �~fy jj~fyjj
2 ~fy �~ft

~fx �~ft
~fy �~ft jj~ftjj

2

0
B@

1
CA

The intrinsic dimensionality can now be computed based on the

eigenvalues li of J, or, alternatively, on its minors. Those pixels where the

geometric invariants H, S, or K are nonzero denote regions of at least iD one,
two, or three, respectively:

H ¼ k1 þ k2 þ k3 iD � 1ð Þ
S ¼ k1k2 þ k1k3 þ k2k3 iD � 2ð Þ

K ¼ k1k2k3 iD ¼ 3ð Þ

Put in less mathematical and more intuitive terms, uniform regions that

do not change in any direction are intrinsically zero-dimensional (i0D, no
response in H, S, or K); at a static edge, the signal changes only in one

direction orthogonal to the edge and is thus i1D (response in H), and static

corners are i2D (response in H and S). Temporally transient corners change

in all possible directions and are i3D (response in H, S, and K). It should be

noted, however, that these correspondences are not necessarily perfect in

complex natural scenes because of geometric distortions, camera noise, and

small camera motions (Figure 1).

The bandwidth of the derivatives constrains feature extraction to a
narrowband spatiotemporal scale, but natural scenes are characterized by a

very wide distribution of spatiotemporal frequencies. We therefore computed

the invariants H, S, and K on each level of a spatiotemporal Gaussian

pyramid that was created by iteratively low-pass filtering and downsampling

the input video. For the DIEM and the GazeCom data sets, we created a

pyramid with five spatial and five temporal scales; for the shorter movie clips
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in the VAGBA data set, the temporal border effects would have rendered

most of the data unusable, so that we computed a five-by-three pyramid only.

Even the invariants computed on only a single scale can be used as the

equivalent of a saliency map. However, better performance can be achieved

by learning the structural differences of fixated and nonfixated image
patches using machine learning techniques. In principle, one could directly

feed the pixels of image patches (or movie subvolumes) into an automatic

classifier, where patches that were fixated by human observers are assigned a

positive class label, and randomly selected, nonfixated patches are assigned a

negative label. In practice, however, the curse of dimensionality renders this

approach impossible, because the required number of dimensions grows with

the number of pixels. We therefore pooled the feature energy es,t on each

spatiotemporal scale s,t in a spatial 2.4�2.4 degree (for GazeCom and
VAGBA) or 1.2�1.2 degree (for DIEM) neighbourhood around fixation;

these optimal window sizes relate to the dominant scale and the amount of

clutter in each data set and were thus inferred separately by cross-validation:

es;t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

WsHs

XWs=2

i¼	Ws=2

XHs=2

i¼	Hs=2
I2

s;t xs 	 i; ys 	 jð Þ
s

with Ws, Hs the window size in pixels at spatial scale s, t the temporal

scale, and I the feature map (i.e., one of the geometrical invariants H, S,

or K).

Furthermore, randomly selecting negative examples overestimates pre-

dictability because of the centre bias of both the photographer and the
subjects. We shuffled scanpaths from other movies to generate negative

examples, thereby maintaining a constant spatiotemporal distribution of

fixations in the two classes.

Finally, the set of feature energies on all spatiotemporal scales at video

location pi together with a class label li

e0;0; e0;1:::; eS	1;T	1; li

� 

was fed into a standard classification algorithm. We used a soft-margin

Support Vector Machine (Chang & Lin, 2001) that fits the optimally

separating hyperplane through the training data in a feature space whose
dimensionality was reduced to the number of spatiotemporal scales by the

energy pooling. Optimal parameters were found by cross-validation on a

training set (two thirds of the data for the larger sets VAGBA and DIEM; all

movies but one for GazeCom); prediction performance is reported as the

area under the curve (AUC) for the receiver-operating characteristic for the

remaining, test data that was previously unseen by the classifier. This
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procedure was repeated until each movie had been part of the test set once

and thus received a prediction score.

Variability analysis

Unless observers look at the same set of locations in exactly the same order,

it is difficult to assess the (dis-)similarity of two scanpaths. Depending on the

task at hand and the visual stimulus, the minimum spatiotemporal distance

or change in order of fixations that gives rise to a meaningful difference may

not be the same. We here use the Normalized Scanpath Saliency (Peters

et al., 2005) extended to the dynamic domain (Dorr et al., 2010), which is
based on a superposition of spatiotemporal Gaussians at each gaze sample

(note that for this analysis, raw gaze samples instead of saccades are used).

For each movie, N observers i�1,...,N were chosen randomly as a

training set, and a spatiotemporal Gaussian (sx,sy�64 pixels, st�33 ms)

centred around each of their gaze samples ~xj
i j ¼ 1; :::;Mið Þ was placed in a

fixation map F:

F ~xð Þ ¼
XN

i¼1

XMi

j¼1

G
j
i ~xð Þ

with

G
j
i ~xð Þ ¼ e

~x	~xj

ið Þ2

2 r2
xþr2

yþr2
tð Þ

F was subsequently normalized to zero mean and unit standard deviation

to obtain an NSS map N, and the NSS score was computed as the mean of

the NSS map values at the gaze samples of a test observer k,

NSS ¼ 1

Mk

XMk

j¼1

N ~xj
k

� 

This was repeated for 500 randomly drawn realizations of subjects into

training and test sets.

RESULTS

Prediction performance for the different saliency models on all data sets is
listed in Table 1, where subscripts Y and L denote the colour spaces Y?CbCr

and Lab, respectively. Several patterns clearly emerge. First, the predictor

based on the geometric invariant K performs best on all three data sets; a

paired Wilcoxon’s test over individual movies shows the difference to be

statistically significant at p B.01 for all intermodel comparisons except for S

(both SY and SL) and SUNDAy, which are not significantly different.

EYE MOVEMENT PREDICTION AND VARIABILITY 11
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Second, the choice of colour space has a significant impact on predictability.

Even though Y?CbCr and Lab are conceptually similar, the perceptually

uniform Lab space improves results for GazeCom and VAGBA, but

decreases predictive power for DIEM. This effect is in line with the overall

pattern that performance differs significantly for the three data sets. On the

professionally made footage of the DIEM data set, predictability based on

low-level features is worst. Better prediction is achieved for the GazeCom

and VAGBA data sets, where movies were recorded with a static camera in

essentially random in- and outdoor scenes.

In Figure 2, we plot prediction performance for all movies from the three

data sets combined for selected pairs of saliency models. We do not show all

possible pairs of models because the invariants H, S, and K form sub- and

superset relationships, respectively. For example, SY responds to intrinsically

at least two-dimensional features and therefore is a superset of KY, which

responds to i3D features; as a consequence, their correlation is almost perfect

(correlation coefficient .923).

Despite different absolute performance for the whole data set, perfor-

mance on the individual movies is correlated also across different classes of

saliency models. The Itti model is modestly correlated with, e.g., SUNDAy

and K (correlation coefficient .491 and .513, respectively), but SUNDAy and

K are highly correlated with a coefficient of .901.

Empirical cumulative distribution functions of the Normalized Scanpath

Saliency in the three data sets are shown in Figure 3. Intersubject gaze

variability is highest, i.e., NSS is lowest, in the GazeCom data set that

contains both some relatively inanimate as well as very cluttered scenes, e.g.,

a boat in the distance or a busy roundabout seen from a church tower.

Videos in the VAGBA set were also recorded with a static camera in

everyday situations, but occasionally show people interacting with, i.e.,

TABLE 1
ROC scores for the different saliency models on the three eye movement data sets

Model GazeCom data set VAGBA data set DIEM data set

HY 0.661 0.719 0.630

HL 0.673 0.733 0.623

SY 0.670 0.730 0.640

SL 0.675 0.735 0.639

KY 0.687 0.778 0.653

KL 0.689 0.781 0.646

Itti 0.623 0.704 0.628

SUNDAy 0.640 0.746 0.645

The predictor based on the geometric invariant K, regardless of colour space, consistently

outperforms the other predictors; performance is poorest for the DIEM data set.
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posing in front of, the camera, which leads to a very high gaze coherence. On

average, the highest gaze coherence can be found in the DIEM data set with

its professionally made advertisements and Hollywood-style material. All

pairwise comparisons with a Kolmogorov-Smirnov test show statistically

significant differences at p B.001.

Finally, Figure 4 shows a scatterplot of gaze predictability for individual

movies, based on KY, against gaze coherence. The solid lines depict separate

linear fits for the three data sets. For the two non-professional data sets

(GazeCom and VAGBA, black and red symbols), gaze coherence is

positively correlated with predictability, i.e., less variable eye movements

are easier to predict based on low-level image features alone. Removal of

those six movies from the VAGBA data set that show faces directly turned

towards and interacting with the camera, and which have the highest NSS

Figure 2. Prediction performance of the three saliency models on individual movies is highly

correlated. Dashed line indicates equal performance, solid line shows best linear fit of the data. (a)

Invariant K vs. invariant H. (b) Itti model vs. invariant K. (c) SUNDAy model vs. invariant K. (d)

SUNDAy model vs. Itti model.
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scores, leads to a remarkable result (dashed line in Figure 4). The slopes of

the fits for the two nonprofessional data sets are now almost identical
(0.00176 GazeCom, 0.00179, VAGBA without outliers; p B.08 and p B.02,

respectively). For DIEM, however, eye movements on movies with greater

gaze coherence are less predictable; the negative slope is not statistically

significant, though.

DISCUSSION

In this paper, we have investigated some aspects of eye movement

predictability and variability on natural video data sets. We analysed three

data sets of high-resolution videos that recently were made publicly available

and we found large differences in eye movement behaviour between data sets.

Figure 3. Intersubject gaze variability differs significantly in the three data sets under study

(Kolmogorov-Smirnov test, all pairwise comparisons p B .001). Variability is lowest (NSS coherence

is highest) for the DIEM data set of professionally directed and cut material such as TV shows, movie

trailers, and documentaries. The VAGBA and GazeCom data sets were recorded by quasirandomly

placing a camera on a tripod in public places such as at crossroads, in parks, etc., and gaze variability

is higher. In some VAGBA movies, however, recorded persons interact with the camera/the viewer. To

view this figure in colour, please see the online issue of the Journal.
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This finding replicates previous research that professionally edited material

elicits different gaze patterns than more naturalistic stimuli without cuts or

deliberate gaze-guidance techniques, such as placing single objects of interest

free of distractors at shallow depth of field (Dorr et al., 2010; Mital et al.,

2011; Vig et al., 2011).

We then evaluated the predictability of eye movements, using several

state-of-the-art models of saliency and two different colour spaces. Doing so

on several data sets is especially useful because this approach tests how well a

model generalizes to arbitrary input data; repeatedly running and fine-

tuning a model on one particular data set might lead to overfitting. Indeed,

we found that a conceptually very simple model based on the invariant K of

the structure tensor consistently outperformed the more complex Itti and

SUNDAy models. Even the invariant H, which very generically describes the

Figure 4. Correlation of eye movement coherence and predictability. In the two naturalistic data sets

GazeCom (black crosses) and VAGBA (red triangles), prediction performance is better for movies

where eye movements are more similar between observers. Out of VAGBA’s 50 movies, six show people

directly posing for and interacting with the camera; when these movies, which also have the highest

coherence scores, are removed from the analysis, the fits for GazeCom and VAGBA become almost

parallel (dashed line). Blue plusses show data for DIEM with professional material; the negative slope

is not statistically significant. To view this figure in colour, please see the online issue of the Journal.
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amount of signal change in any dimension, performs better than the Itti

saliency model and comparably to the SUNDAy model. However, the

absolute differences between models are relatively small, and their perfor-

mance is highly correlated, i.e., videos that can be predicted well with one

saliency model will also be predicted reasonably well with another model. Of
particular interest is the almost perfect correlation between SUNDAy and K

(correlation coefficient .901). This indicates that SUNDAy uses good

features to predict eye movements already, but K in combination with

machine learning achieves superior performance by optimizing parameters

such as thresholds to the particular data set. Overall, these results question

the assumption that more complex models of low-level saliency can close the

gap between the current and perfect prediction performance.

The causal link between image saliency and eye movements that has been
put forward previously has recently also come under more fundamental

criticism (Tatler et al., 2011). For many practical purposes, however, the

distinction between low-level features and high-level, semantic factors might

be a moot point. For example, the remarkable ability of human observers to

very rapidly and preconsciously saccade towards static images of animals

(Drewes, Trommershäuser, & Gegenfurtner, 2011; Kirchner & Thorpe, 2005)

indicates that reliable relationships between low-level features and ecologi-

cally relevant objects exist. Even more so, under natural, i.e., dynamic
conditions, motion is tightly linked to semantically meaningful objects

precisely because the ability to move makes predator or prey relevant.

Conversely, the absence of low-level features under natural conditions

typically also implies the absence of coherent objects. We would therefore

hypothesize that the low-level features at a given time determine a set of

potential saccade targets from which the actual saccade target is selected

based on the history of previous saccades and on simple mechanisms such as

inhibition of return and with a task-specific bias (for a population averaging
account of saccade selection in visual search, also see Zelinsky, forthcoming).

In a further analysis, we studied the relationship between predictability

and variability of eye movements. Previous work by Mital et al. (2011)

showed that gaze samples in often-fixated regions (dense gaze clusters) were

better predictable. Here, we computed the correlation of predictability and

gaze coherence not at the level of individual gaze samples, but for entire

video clips. For the two more natural data sets, GazeCom and VAGBA, we

also found a positive correlation; in other words, image regions that draw
many fixations are more distinct from nonfixated control regions in their

low-level features than image regions that are fixated less often. This result

would imply that eye movements are at least partially determined by low-

level saliency. Remarkably, the slope of a linear fit of predictability versus

gaze coherence was almost identical for GazeCom and VAGBA after those

movies were removed from VAGBA that are ‘‘staged’’. These movies show
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faces directly interacting with the camera, and these very strong high-level

cues override any bottom-up saliency (Einhäuser, Spain, & Perona, 2008).
However, contrary to the finding of Mital et al. (2011) at the level of

individual gaze samples, we found no positive correlation of predictability

and coherence for the DIEM data set at the movie level; we also found no

such correlation for a global comparison of all data sets. Surprisingly, the

professionally made movies are the least predictable, but also the most

coherent. We believe this reduced variability is due to the explicit and

implicit gaze-guidance strategies of the movie directors (Dorr et al., 2010;

Hasson et al., 2008; Mital et al., 2011). At the same time, this type of movie

cannot be predicted well. One possible explanation for this result might be

the frequent occurrence of scene cuts. Cuts induce spatiotemporal transients

in the saliency map; because they are often ignored by the subjects (Smith &

Henderson, 2008), they increase the number of image regions falsely

identified as salient. Moreover, we have shown previously that professional

videos do not exhibit the near zero average time lag between salient events

and eye movements (Vig et al., 2011) and it may well be that the predictions

that we make are based on the wrong time lag more often than in other

movies.

Overall we have given a comprehensive overview of the state of the art in

analysing eye movements made on natural videos and have provided novel

results on the generalization performance of saliency models and the impact

of different colour representations. Further, we have systematically analysed

the predictability and variability of eye movements relative to different

saliency measures and have found significant correlations both between eye

movements and saliency and between the predictability and the variability of

eye movements. Despite the emergence of some global patterns, the various

differences we found for different data sets and subtle parameter choices

indicate that the large field of research on saliency models should agree on

well-defined benchmark data sets that have become standard in the machine

learning and computer vision communities. However, the ultimate and

objective approach to quantify our understanding of eye movements and

saliency will be to evaluate the models in terms of how well one can

deliberately change eye movement patterns through low-level feature

modifications (Barth, Dorr, Böhme, Gegenfurtner, & Martinetz, 2006).
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