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ABSTRACT Some features of hydro- and thermodynamics, as applied to atmospheres
and to stellar structures, are puzzling: 1. The suggestion, first made by Laplace, that our
atmosphere has an adiabatic temperature distribution, is confirmed for the lower layers,
but the reason why it should be so is difficult to understand. 2. The standard treatment
of relativistic thermodynamics does not allow for a systematic treatment of mixtures, such
as the mixture of a perfect gas with radiation. 3. The concept of mass in applications of
general relativity to stellar structures is less than completely satisfactory. 4. Arguments in
which a concept of energy plays a role, in the context of hydro-thermodynamical systems
and gravitation, are not always convincing. It is proposed that a formulation of thermody-
namics as an action principle may be a suitable approach to adopt for a new investigation
of these matters.

In this first article of a series we formulate the thermodynamics of ideal gases in a
constant gravitational field in terms of an action principle. The theory, in its simplest form,
does not differ from standard practice, but it lays the foundations for a more systematic
approach to the various extensions, such as the incorporation of radiation, the considera-
tion of mixtures and the incorporation of General Relativty. An important conclusion is
that a dynamical theory that incorporates the isothermal equilibrium of an ideal gas in a
gravitational field does not seem to exist. The true equilibrium state of an ideal gas may
in fact be adiabatic, in which case the role of solar radiation is merely to compensate for
the loss of energy due to black body radiation into the cosmos. We study the interaction
between an ideal gas and the photon gas, and propose a new approach to this problem. An
experiment that involves a centrifuge and that has wider implications in view of the equiv-
alence principle is proposed, to determine the influence of gravitation on the equilibrium
distribution with a very high degree of precision.

PACS Keywords: Atmosphere, photon gas, action principle.
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I. Introduction
The premise of this paper is a conviction that the internal consistency of any physical

theory is improved, if not assured, by a formulation that is based on an action principle.
The consistency of any set of equations is a delicate matter. One frequently finds oneself in
a position of having to make some modification somewhere, to include an additional effect
or another degree of freedom, and the need to make corresponding adjustments elsewhere
is not always evident. An action principle that treats all dynamical variables on an equal
footing and without constraints has the great advantage of being “off shell”, something
that has been greatly appreciated in the development of supergravity, for example.

Action principles have been used for some problems in hydro-thermodynamics, but
as far as we know the injunction to treat all dynamical variables equally has not been
obeyed. Thus, in hydrodynamics the temperature is related to the other variables by
what amounts to a constraint. The formalism has the aspect of a partial projection of a
complete dynamical theory on the space of solutions. Perhaps this is one of the reasons
why thermodynamics is difficult to understand.

This paper is a study of atmospheres consisting of an ideal gas, characterized by the
ideal gas law and the expression for the internal energy. We ask to what extent the observed
polytropic relations are to be attributed to intrinsic properties of the gas, or to radiation.
To answer the question one needs to know what is the natural configuration of an isolated
atmosphere, one that is not exposed to radiation. Approaching this problem we are guided
by our strong preference for action principles.

The statement that any two thermodynamic systems, each in a state of equilibrium
with a well defined temperature, and in thermal equilibrium with each other, must have the
same temperature, is a central tenet of thermodynamics. A natural extension is that the
temperature, in an extended but closed system in a state of equilibrium, must be uniform,
but there does not seem to be universal agreement on whether this is true in the presence
of gravitational fields. The question comes up in the investigation of terrestrial or stellar
atmospheres, where the gravitational forces create a non-uniform density distribution and
it is crucial to this study.

Hydrodynamics is a theory of continuous distributions of matter, described in the
simplest case by two fields or distributions: a density field and a velocity field, both
defined over IR3 or a portion thereof. The role of temperature is often disguised, taken to
be determined by the density and the pressure. Classical thermodynamics, on the other
hand, is the study of states of equilibrium, with uniform density and temperature, and
relations between such states. In this context, extremum principles play an important
role; see Callen (1960), but the extension of thermodynamics to systems in which the
dynamical variables are fields on IR3 is not immediate and in fact variational principles are
seldom invoked in studies of such systems. Investigations that deal with flow of matter or
with temperatures that vary in time or space are found under the heading of heat transfer,
fluctuations, thermodynamics of irreversible processes and radiation hydrodynamics. See
for example Stanyukovich (1960), Castor (2004), Müller (2007).

In this introductory section we study a simple system from the point of view of hydro-
dynamics, on the basis of a well known action principle. The choice of potential ensures
that the pressure is given by the ideal gas law. We stress the role of mass and offer a brief
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review of the history of the polytropic atmosphere (Section I.7).
In Section II we extend the action principle to include the temperature as an indepen-

dent field variable (Section II.5). The potential is refined to give the correct expression for
the internal energy; the off shell hamiltonian appears to be new. The energy and the pres-
sure of radiation are incorporated in a natural way (Section II.7). In this theory states of
equilibrium (in the presence of a static gravitational field) are polytropic, not isothermal.

When this approach is compared to modern hydro-thermodynamics, restricted to
adiabatic processes, we find that the basic equations are nearly identical. The equation of
continuity and the hydrodynamical equation are the same, as are the two relations that
characterize an ideal gas. The “energy conservation equation” of radiation hydrodynamics
is identified with the local conservation law that corresponds to the conservation of the
hamiltonian, except that the former allows for an extra solution in which the temperature
is constant in time (Section II.6). But the incorporation of additional features is much
more straightforward within the variational formulation.

An action principle can also describe an isothermal atmosphere (we are always in-
cluding a static gravitational field), with a gas that satisfies the ideal gas law, but it has
a very different internal energy (Section I.6). The equilibrium state of any ideal gas with
a finite adiabatic index is essentially polytropic. Since the density is not uniform, neither
is the temperature. This conclusion was accepted after considerable struggle, for it goes
against one of the basic tenets of thermodynamics: Clausius’ statement of the second law
(Section II.8). We try to reconcile the theory with the second law, but the result has not
been satisfactory, so far.

There seems to be a dearth of experimental data to guide us in this situation. We study
an ideal gas in a centrifuge and invoke the equivalence principle to relate this situation to
atmospheres. Experiments are proposed. (Section II.10).

Some further speculations are in the Appendix.

Summary of the main arguments of this paper

We explain how we reached the conclusion that the equilibrium of an ideal gas in the
presence of a gravitational field is polytropic and not isothermal.

The proposed action is a functional of independent fields ρ (density), Φ (velocity
potential)and T (temperature). Interaction with a constant gravitational field is included.
The potential is adjusted so as to give the correct expression for the pressure and the
internal energy of an ideal gas with finite adiabatic index. Variation of ρ gives the standard
hydrodynamical equation (Bernoulli’s equation), with p = RTρ as appropriate for an ideal
gas. Variation of Φ gives the continuity equation. Variation of T yields, in the case that
radiation is not taken into account, the polytropic relation ρ/Tn = constant. The theory
is in complete agreement with the standard treatment(s), except for a detail that we shall
now explain.

Consider
∂h

∂t
+ ~▽ · (h~v + p~v) = 0.

This is the energy conservation equation, third and last equation that makes up the stan-
dard theory, after the equation of continuity and Bernoulli’s equation. On the other hand,
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using only the first two equations, continuity and Bernoulli, we derive the identity

∂h

∂t
+ ~▽ · (h~v + p~v) =

∂h

∂T
Ṫ .

The variational principle demands that (∂h/∂T ) = 0. Therefore, the only difference be-
tween the action principle and standard theory is that the latter allows for a spurious
solution of the form T = constant, governed exclusively by the two first equations. This
circumstance allows standard theory to postulate the existence of an isothermal equilib-
rium satisfying the two first equations, independent of the choice of internal energy. The
action principle does not offer this freedom; isothermal equilibrium is possible, but only
for a “gas” that has internal energy density u = RTρ log ρ and no thermal excitations. It
is significant that no literature seems to exist, that deals with the propagation of a distur-
bance (e.g. sound waves or shock waves) in an isothermal gas in a gravitational field. We
suggest that this gas may belong to science fiction.

To refute this argument one would need to modify or extend the standard theory of
polytropic atmospheres to include a parameter that represents the intensity of radiation
and that would allow the effect of radiation to be reduced to zero, to connect to the
isothermal gas in the limit of no radiation. In the event that our conclusions should be
contradicted by experiment, the need to construct such a theory would become no less
urgent.

Applications to astrophysics.

The simplest form of the action principle studied here is the non relativistic approxi-
mation to a fully relativistic theory that, with the addition of the Einstein-Hilbert action
for the metric, has been applied to the dynamics of certain stars (Fronsdal 2007, 2008).
The results are close to those of the traditional approach except for certain academic fea-
tures that make the present approach more attractive to us, such as the preservation of the
non-relativistic equation of continuity. The present study was undertaken as preparation
for an attempt to take into account the radiation field. In this paper the radiation correc-
tion is introduced into the lagrangian; in a future paper we plan to lift it to a relativistic
version and return to the study of stellar dynamics.

I.1. Hydrodynamics

Basic hydrodynamics deals with a density field ρ and a velocity field ~v over IR3, subject
to two fundamental equations, the equation of continuity,

ρ̇ + div(ρ~v) = 0, ρ̇ :=
∂ρ

∂t
, (1.1)

and the hydrodynamical equation (Bernoulli 1738)

−grad p = ρ
D

Dt
~v := ρ(~̇v + ~v · grad ~v). (1.2)

This involves another field, the scalar field p, interpreted as the local pressure. The theory
is incomplete and requires an additional equation relating p to ρ. It is always assumed
that this relation is local, giving p(x) in terms of the density (and the temperature) at the
same point x, and instantaneous.
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I.2. Laminar flow

Since there is enough to do without taking on difficult problems of turbulence, we shall
assume, here and throughout, that the velocity field can be represented as the gradient of
a scalar field,

~v = −grad Φ. (1.3)

In this case the hydrodynamical condition is reduced to

grad p = ρ grad (Φ̇ − ~v2/2). (1.4)

To complete this system one still needs a relation between the fields p and ρ.
Assume that there is a local functional V [ρ] such that

p = ρV ′ − V, V ′ := dV/dρ. (1.5)

In this case dp = ρ dV ′ and the equation (1.4) becomes, if ρ 6= 0,

grad V ′ = grad (Φ̇ − ~v2/2) (1.6)

or
V ′ = Φ̇ − ~v2/2 + λ, λ constant. (1.7)

The potential V [ρ] is defined by p modulo a linear term, so that the appearance of an
arbitrary constant is natural. It will serve as a Lagrange multiplier.

The introduction of a velocity potential guarantees the existence of a first integral of
the motion, a conserved energy functional that will play an important role in the theory.

It will turn out that V , with the inclusion of a term linear in ρ that remains undeter-
mined at this stage, is the internal energy density.

I.3. Variational formulation

Having restricted our scope, to account for laminar flows only, we have reduced the
fundamental equations of simple hydrodynamics to the following two equations,

∂µJµ = 0, J t := ρ, ~J := ρ~v,

∂V/∂ρ = Φ̇ − ~v2/2 + λ,
(1.8)

together with the defining equations

~v = −grad Φ, p := ρV ′ − V. (1.9)

It is well known that these equations are the Euler-Lagrange equations associated with the
action (Fetter and Walecka 1980)

A[ρ, Φ] =

∫

dtd3x L, L = ρ(Φ̇ − ~v2/2 + λ) − V [ρ]. (1.10)

The value of this last circumstance lies in the fact that the variational principle is a better
starting point for generalizations, including the incorporation of symmetries, of special
relativity, and the inclusion of electromagnetic and gravitational interactions. It also gives
us a valid concept of a total energy functional.
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I.4. On shell relations

The action (1.10) contains only the fields Φ and ρ. The Euler-Lagrange equations
define a complete dynamical framework, but only after specification of the functional V [ρ].
The pressure was defined by Eq.(1.9), p := ρV ′ − V , and one easily verifies that, by virtue
of the equations of motion,

p = L (on shell).

This fact has been noted, and has led to the suggestion that the action principle amount
to minimization of

∫

p with respect to variations of p defined by thermodynamics (Taub
1954), (Bardeen 1970), (Schutz 1970). But more is needed, including an off shell action.We
note that the lagrangian density is not a thermodynamic function, since it depends on the
time derivatives of the variables. After adopting the action (1.10) it remains to relate the
choice of the potential V to the thermodynamical properties of the fluid. We shall find
that the properties that define an ideal gas lead to a unique expression for V .

It is useful to reflct on the meaning of Eq.(1.5) as well. The pressure does not appear
as a variable in the variational principle, it is defined by Eq.(1.2); that is, it is a field
the gradient of which can be interpreted as a force acting on the fluid. Eq.(1.5) can be
interpreted as an equation of state. In a more general situation, in which the potential V
depends on the temperature, we would have

ρ grad
∂V

∂ρ
= grad (ρ

∂V

∂ρ
− V ) + ρ

∂V

∂T
gradT.

The expression (1.5) for the pressure would be valid “on shell” if the action principle
includes variations of the temperature as an independent variable, making ∂V/∂T = 0.

In an equivalent formulation we define a field e = V/ρ, then

ρ2 ∂

∂ρ
e = −

∂e

∂V

∣

∣

T
= p,

∂e

∂T

∣

∣

V
= 0. (1.11)

This identifies the field e as the specific internal energy density. The second equation is
satisfied in the present case because V is independent of T . In the general case it suggests
that the potential is an extremal with respect to variations of the temperature.

I.5. The mass

To speak of a definite, isolated physical system we must fix some attributes, and
among such defining properties we shall include the mass. We insist on this as it shall turn
out to be crucial to the logical coherence of the theory (Fronsdal 2008). The density ρ will
be taken to have the interpretation of mass density, and the total mass is the constant of
the motion

M =

∫

d3x ρ.

Such integrals, with no limits indicated, are over the domain Σ of definition of ρ and is the
total extension of our system in IR3.
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Since the total mass is a constant of the motion it is natural to fix it in advance and
to vary the action subject to the constraint

∫

Σ
d3x ρ(x) = M . The parameter λ takes on

the role of a Lagrange multiplier and the action takes the form

A =

∫

Σ

d3x
(

ρ(Φ̇ − ~v2/2) − V
)

+ λ
(

∫

Σ

d3xρ − M
)

.

The conservation of mass has important implications for boundary conditions.

I.6. Equation of state and equation of change

An ideal gas at equilibrium, with constant temperature, obeys the gas law

p/ρ = RT. (1.12)

Pressure and density are in cgs units and

R = (1/µ) × .8314 × 108 erg/K,

where µ is the atomic weight. The gas law is assumed to hold, locally at each point of the
gas. Effective values of µ are

Atomic hydrogen : µ = 1, Air : µ = 29, Sun : µ = 2.

Equation (1.12) is the only equation that will be referred to as an ‘equation of state’.
Other relations, to be discussed next, are ‘equations of change’, this term taken from
Emden’s “Zustandsänderung”, for their meaning is of an entirely different sort. Most
important is the polytropic relation

p = Aργ′

, A, γ′ constant. (1.13)

This relation defines a polytropic path or polytrope in the p,V diagram (V = 1/ρ). A
polytropic atmosphere is one in which, as one moves through the gas, the variables ρ and p
change so as to remain always on the same polytrope. Eq.(1.13) is a statement about the
system, not about the gas per se. The validity of (1.13) for an actual atmosphere cannot
be inferred from the early laboratory experiments with near-ideal gases.

The index of the polytrope is the positive number n′ defined by

γ′ =: 1 +
1

n′
.

Important special cases are

n′ = 0, γ′ = ∞, ρ = constant,

γ′ = CP /CV , specific entropy = constant,

n′ = ∞, γ′ = 1, T = constant.
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Numbers γ, n are defined by

γ := CP /CV =: 1 +
1

n
.

The number n is the adiabatic index of the gas. According to statistal mechanics 2n
is the number of degrees of freedom of each molecule in the gas. That atmospheres tend
to be polytropic is an empirical fact.

The case that γ′ = γ is of a special significance. A polytrope with γ′ = γ is a path
of constant specific entropy; changes along such polytropes are reversible and adiabatic;
these polytropes and no others are adiabats.

Fix the constants A, γ′ and consider an associated stationary, polytropic atmosphere.
If both (1.12) and (1.13) hold we have

p = const. ργ′

, p = const. T
γ
′

γ′
−1 , T = const. p1−1/γ′

. (1.14)

In any displacement along a polytrope from a point with pressure p and temperature T ,
we shall have dρ/ρ = (1/γ′)dp/p, so that an increase in pressure leads to an increase in
density that is greater for a smaller value of γ′. If a parcel of gas in this atmosphere is
pushed down to a region of higher pressure, by a reversible process, then it will adjust
to the ambient pressure. If γ > γ′, then it will acquire a density that is lower than the
environment; it will then rise back up; this atmosphere is stable. But if γ′ > γ then the
parcel will be denser than the environment and it will sink further; this atmosphere is
unstable to convection. Thus we have:

A stable, polytropic atmosphere must have γ′ < γ, n′ > n.

Most stable is the isothermal atmosphere, γ′ = 1.

In hydrodynamics, the isothermal atmosphere can be given a lagrangian treatment by
taking

V = RTρ log ρ. (1.15)

We suppose that the gas is confined to the section z0 < z < z0 + h of a vertical cylinder
with base area A and expect the density to fall off at higher altitudes. A plausible action
density, for a perfect gas at constant temperature T in a constant gravitational field φ = gz,
g constant, is

L[Φ, ρ] = ρ (Φ̇ − ~v2/2 − gz + λ) −RTρ log ρ. (1.16)

We may consider this an isolated system with fixed mass and fixed extension.
At equilibrium Φ̇ = 0, ~v = 0, ρ̇ = 0 and the equation of motion is V ′ = RT (1+log ρ) =

λ − gz, hence

ρ(x, y, z) = e−1+λ/RTe−gz/RT, M = A
RT

g
e−1+λ/RT(1 − e−gh/RT) e−gz0/RT

8



and after elimination of λ

ρ =
gM

ART

e−g(z−z0)/RT

1 − e−gh/RT
, p =

gM

A

e−g(z−z0)/RT

1 − e−gh/RT
. (1.17)

There is no difficulty in taking the limit h → ∞. The volume becomes infinite but it can
be replaced as a variable by the parameter z0. This atmosphere is stable.

Later, when it becomes clear that the potential V is the internal energy density, we
shall come to suspect that the isothermal atmosphere is not an ideal gas. The isothermal
atmosphere is usually abandoned in favor of the polytropic atmosphere.

A polytropic gas can be described by the lagrangian (1.10), with

V = âργ′

, â, γ′ constant.

Variation with respect to ρ gives

p =
â

n′
ργ′

,
1

n′
= γ′ − 1.

The temperature does not appear explicitly but is taken to be determined by the gas law,
Eq.(1.12). Among the many applications the following are perhaps the most important. In
the case of sound propagation the gas is initially awakened from equilibrial turpor and then
left in an isolated, frenzied state of oscillating density and pressure, with the temperature
keeping pace in obedience to the gas law (Laplace 1825, Pierce 2008). All three of the
relations (1.14) are believed to hold, with γ′ = γ. The oscillations are usually too rapid for
the heat to disseminate and equalize the temperature, so that the neglect of heat transfer
is justified. In applications to atmospheres one often postulates the polytropic equation of
change (1.13) and obtains the temperature from the gas law. Understanding the resultant
temperature gradient in terms of convection, or as the effect of the heating of the air by
solar radiation, or both, is one of the main issues on which we have hoped to gain some
understanding.

At mechanical equilibrium ~v = 0, ρ̇ = 0 and λ − gz = âγρ1/n, hence

ρ = (
λ − gz

âγ
)n.

Since the density must be positive one does not fix the volume but assumes that the
atmosphere ends at the point z1 = λ/g. Then

M = A(
g

âγ
)n

∫ z1

z0

(z1 − z)ndz =
Ah

n + 1
(
gh

âγ
)n.

This fixes h and thus z1 and λ. If the atmosphere is an ideal gas then the temperature
varies with altitude according to

RT = p/ρ =
â

n
ρ1/n = g

z1 − z

n + 1
(1.18)
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Because the lagrangian does not contain T as a dynamical variable it is possible to impose
this condition by hand.

One would not apply this theory down to the absolute zero of temperature, but even
without going to extremes it seems risky to predict the temperature of the atmosphere
without having made any explicit assumptions about the absorption or generation of heat
that is required to sustain it. Yet this has been the basis for the phenomenology of stellar
structure, as well as the earth’s atmosphere, from the beginning (Lane 1870, Ritter 1878).

The success of the polytropic model is notorious, but the theory is incomplete since it
does not account for heat flow, nor convection, both of which are needed to complete the
picture.

For air, with atomic weight 29, R = 2.87 × 106ergs/gK and n = 2.5. At sea level,
g = 980cm/sec2, the density is ρ = 1.2×10−3g/cm3, the pressure p = 1.013×106dyn/cm2.
Thus

p/ρ = .844 × 109cm2/sec2, T = T0 = 294K, z1 = 3.014 × 106cm ≈ 30km.

and the dry lapse rate at low altitudes is −T ′ = 294/z1 = 9.75K/km. The opacity that is
implied by this is mainly due to the presence of CO2 in the atmosphere. Humidity increases
the opacity and decreases the lapse rate by as much as a factor of 2. (A temperature
difference of 70 degrees over 12 000 m was observed on a recent flight over Europe.)

The specific internal energy of this model is np/ρ = nRT , as it should be for an ideal
gas.

I.7. Historical notes on polytropic atmosphere

Observations of reversible transformations of near-ideal gases, carried out during the
19th century, can be summarized in what is sometimes called the laws of Poisson,

ρ ∝ Tn′

, p ∝ Tn′+1, p ∝ ργ′

, γ′ = 1 +
1

n′
constant.

In the original context all the variables are constant and uniform. The exponents as
well as the coefficients of proportionality are the same for all states that are related by
reversible transformations. Statistical mechanics explained this result and confirmed the
experimental value γ′ = γ = CP /CV . As far as can be ascertained, the presence of
terrestrial gravitation and ambient radiation had no effect on these experiments. In a first
extrapolation the same relations were taken to hold locally in dynamic situations, as in
the case of sound propagation. The gas is not in thermal equilibrium and the variation
of the temperature from point to point, and with time, is obtained from the gas law. This
extension of an important thermodynamical relation to the case of a nonuniform system is
taken for granted.

For the atmosphere of the earth it was at first proposed that the temperature would
be uniform. However, the existence of a temperature gradient was soon accepted as an
incontrovertible experimental fact. The first recorded recognition of this, together with
an attempt at explaining the same, may be that of Sidi Carnot, in the paper in which
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he created the science of thermodynamics (Carnot 1824). Carnot quotes Laplace: “N’est-
ce pas au refroidissement de l’air par la dilatation qu’il faut attribuer le froid des régions
superieures de l’atmosphere? Les raisons données jusqu’ici pour expliquer ce froid sont tout
a fait insuffisantes; on dit que l’air des régions elevées, recevant peu de chaleur reflechie par
la terre, et rayonnant lui meme vers les espaces celestes, devait perdre de calorique, et que
c’etait lá la cause de son refroidissement; ... ” This may be the first time that the influence
of radiation is invoked. The temperature gradient is attributed to the greenhouse effect,
and Laplace was an early skeptic, for he continues “...mais cette explication ce trouve
detruite si l’on remarque qu’a égale hauteur le froid regne aussi bien et meme avec plus
d’intensité sur les plaines elevées que sur les sommets des montagnes ou que dans les parties
d’atmosphere éloignees du sol.” It is not clear that the two explanations are at odds with
each other; Laplace apparently postulates that the atmospheres over lands at different
elevations are related by adiabatic transformations, but without explaining why.

By rejecting the role of radiation as the cause of the temperature gradient, Laplace
seems to suggest that the same would be observed in an atmosphere subject to gravitation
but totally isolated from radiation, neither exposed to the radiation coming from the sun
nor radiating outwards. As was strongly emphasized in later phases of this debate, this
would contradict the belief that the thermal equilibrium of any isolated system, gravitation
and other external forces notwithstanding, is characterized by a uniform temperature.

In 1862 W. Thomson, in the paper “On the convective equilibrium of the temperature
in the atmosphere”, defines convective equilibrium with these words “When all parts of
a fluid are freely interchanged and not sensibly influenced by radiation and conduction,
the temperature is said to be in a state of convective equilibrium.” He then goes on to
say that an atmosphere that is in convective equilibrium is a polytrope, and we think that
he means an adiabat, because of the words “freely interchanged”, although the value of
the polytropic index is taken from experiment and not from statistical mechanics. At first
sight the clause “and not sensibly influenced by radiation” would seem to imply that his
remarks would apply to an isolated atmosphere, indicating that a temperature gradient
would persist in the absence of radiation, but this conclusion would be premature, as we
shall see.

In 1870 H.J. Lane made the bold assumption that the laws of Poisson may be satisfied
in the Sun. The terrestrial atmosphere (or part of it) had already been found to be well
represented by the same relations. Referring to Lane’s paper Thomson, now Lord Kelvin,
explains how convective equilibrium comes about (Thomson 1907). He argues that the
atmosphere is not, cannot be, at rest, and this time radiation plays an essential role. The
upper layers loose heat by radiation and the lower temperature leads to an increase in
density. This produces a downward current that mixes with a compensating upward drift
of warmer air. This continuing mixing takes place on a time scale that is too short for
adjacent currents to exchange a significant amount of heat by conduction or radiation,
especially since the variations of temperature are very small. It is evident that Thomson
offers his explanation of the temperature gradient to account for its absence in an isolated
atmosphere, for he says that, “an ideal atmosphere, perfectly isolated from absorption as
well as emission of radiation, will, after enough time has passed, reach a state of uniform
temperature, irrespective of the presence of the gravitational field”. Thomson accepts the
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mechanism of Laplace and Carnot, as it is at work in the real atmosphere, but he goes
further. He believes that the lower temperature aloft is intimately tied to the existence of
radiation, implying that it is driven by net outwards radiation. (The effect of solar radiation
on the terrestrial atmosphere is not explicitly mentioned.) It is difficult to judge whether or
not Thomson is in disagreement with Laplace, but the precision of his statements represents
a marked improvement over his predecessors and his earlier work.

The principal developers of the field, Ritter (1878-1883) and Emden (1907), seem
to accept the idea of convective equilibrium. It may be pointed out, however, that this
mechanism is in no way expressed by the equations that these and other authors use
to predict the behaviour of real atmospheres. The concept of convective equilibrium is
introduced to one purpose only: to avoid contradiction with firmly established belief in the
isothermal equilibrium of isolated systems. It receives no quantitative theoretical treatment.

Nor was it accepted by everybody. A famous incidence involves Loschmidt (1876),
who believed that an isolated atmosphere, at equilibrium in a gravitational field, would
have a temperature gradient. But arguments presented by Maxwell and Boltzmann (1896)
led Loschmidt to withdraw his objections, which is hardly surprising given the authority
of these two. Nevertheless, it may be pointed out that no attempt was made, to our
knowledge, to settle the question experimentally, until recently (Graeff 2008).

An alternative to convective equilibrium was proposed by Schwarzschild (1906) and
critically examined by Emden. To understand how it works we turn to Emden’s book of
1907, beginning on page 320. Here he invokes a concept that is conspicuously absent from
all his calculations on polytropic spheres in the rest of the book: heat flow. He posits
that the atmosphere is not completely transparent, and that heat flow is an inevitable
consequence of the existence of a temperature gradient. The most important observation is
that heat flow is possible in stationary configurations (Ṫ = 0) provided that the temperature
gradient is constant. We take this to be an implicit reference to the heat equation, the first
such reference in the book(!). The heat flux due to conduction and radiation is usually
thought to be expressed as

~F = −C ~▽T, F i = −Cij∂jT,

where the tensor C includes the thermal conductivity as well as the effective coefficient
of heat transfer by radiation. The divergence of the flux is the time rate of change of
the temperature due to conduction and radiation. In a stationary, terrestrial atmosphere,
with no local energy creation, this must vanish. Emden’s atmospheres are polytropes, with
temperature gradients that are constant. It appears that he takes C to be uniform. That
is surprising, and interesting, for it reminds us that the entire edifice implicitly demands
that this condition, of a constant heat flow, must be satisfied.

We note that the direction of flow is from hot to cold, outwards. In applications to
planetary atmospheres, with no local energy generation, this calls for an explanation, since
the ultimate source of energy is above. Here we have to return to the oldest explanation of
the existence of a temperature gradient, dismissed by Laplace (op. cit.): the greenhouse
effect. The atmosphere is highly transparent to the (high frequency) radiation from the
Sun but opaque to the thermal radiation to which it is converted by the ground. The
atmosphere is thus heated from below!
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If the atmosphere is stable in the sense discussed above, when γ′ ≤ CP /CV , then it
is not necessary to assume that any convection takes place. In this case one speaks of
(stable) ‘radiative equilibrium’. Convective equilibrium may step in when the stationary
atmosphere is unstable, but it is no longer used to explain the existence of a temperature
gradient.

A difficulty is present in all accounts of stellar structure up to 1920. The energy ob-
served to be emitted by the Sun, attributed to contraction of the mass and the concomitant
release of internal energy, was far too small to account for the age of the sun as indicated
by the geological record. The situation changed with the discovery of thermonuclear en-
ergy generation. Now there is plenty of energy available. At the same time there arose the
realization that convection sometimes plays a very modest role; the concept of convective
equilibrium was put aside and with it, Kelvin’s explanation of the temperature gradient.
According to Eddington (1926), who is more concerned with stars than with our atmo-
sphere, “convective equilibrium” must be replaced by “radiative equilibrium” in the sense
of Schwarzschild. He does not claim that this new concept accounts for the temperature
gradient as well as Kelvin’s convective equilibrium does, but in fact the local generation of
heat by thermonuclear processes creates an outward flow of heat and explains the existence
of a negative temperature gradient.

It is an indication of the incompleteness of this picture that it contains no parameter
that can be associated with the strength of radiation and, a forteriori, it does not allow
us to investigate the result of turning off the radiation.

II. The first law
II.1. Thermodynamic equilibrium

A state of thermodynamical equilibrium of a system that consists of a very large
number of identical particles is defined by the values of 3 variables, a priori independent,
the density D, the pressure P and the temperature T . These are variables taking real
values; they apply to the system as a whole. In the case of any particular system there is
one relation that holds for all equilibrium states, of the form

T = f(D, P ).

It is written in this form, rather than F (T, D, P ) = 0, because a unique value of T is
needed to define a state of equilibrium between two systems that are in thermal contact
with each other: it is necessary and sufficient that they have the same temperature. This
statement incorporates the zeroth law.

If we divide our system into subsystems then these will be in thermal equilibrium with
each other only if they have the same temperature. This, at least, is inherited wisdom; we
shall honor it as long as possible, without being intimidated by it.

The ideal gas at equilibrium is defined by global variables T, D, P , and two relations.
The principal one is the gas law

P/D = RT, R = .8314 × 108ergs/K,
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where 1/D is the volume of a mole of gas. The other may take the form of an expression
for the internal energy.

II.2. The ideal gas in statistical mechanics

Here again we consider a gas that consists of identical particles (Boltzmann statistics),
each with mass m and subject to no forces. It is assumed that the ith particle has momen-
tum ~pi and kinetic energy ~pi

2/2m. This is an ideal gas, satisfying the relation P/D = RT
at equilibrium. It is assumed that the number N of particles with energy E is given by
the Maxwell distribution

N(E) ∝ e−E/kT , (2.1)

which implies a constant density in configuration space. Now place this gas in a constant
gravitational field, with potential φ(x, y, z) = gz, g constant. Since the potential varies
extremely slowly on the atomic scale it is plausible that, at equilibrium, each horizontal
layer (φ constant) is characterized by a constant value of the temperature, density and
pressure. Since neighbouring layers are in thermal contact with each other the temperature
must (?) be the same throughout,

T (z) = T = constant,

and in the case of an ideal gas,

p(z)/ρ(z) = RT, z ≥ 0. (2.2)

The energy of a particle at level z is ~p 2/2m + mgz and (2.1) now implies the following
distribution in configuration space,

ρ(x, y, z) ∝ e−mgz/kT , (2.3)

in agreement with (1.17). This supports the expression for the potential, Eq.(1.15), which
is strange since that potential is not appropriate for an ideal gas. Both derivations of
the distribution rest on the assumption that the temperature is constant throughout the
system.

About the influence of gravitation on the temperature distribution there has been
some debate, see e.g. Waldram (1985), page 151. It is said that the kinetic energy of each
atom in a monatomic gas is 3kT/2 and that, when the temperature is the same everywhere,
this is paradoxical because it does not take account of the potential energy of the atom
in the gravitational field. The incident involving Loschmidt, Maxwell and Boltzmann has
already been mentioned. See also Feynman (1972). All speculation along these lines falls
short of being compelling.
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II.3. The first law and the internal energy

Can we extend the action principle to the case that the temperature varies with time?
The action must be modified, for the temperature becomes a dynamical field. Is the
temperature one of the variables with respect to which the action must be minimized?
The usual approach is to lay down the additional equation by fiat (Section I.6); is this
completely satisfactory? Would it perhaps be preferable to have it appear as the result of
minimizing the action with respect to variations of the temperature field? We think so.

To prepare for the generalization we shall examine some of the main tenets of thermo-
dynamics in the context of the action principle. Assume for the moment that the system
is one of uniform density and pressure.

Suppose that the system is in thermal and mechanical isolation except for a force
that is applied to the boundary. The system is in an equilibrium state with temperature
T . The applied force is needed to hold the gas within the boundary of the domain Σ,
then decreased by a very small amount leading to a displacement of the boundary and an
increase of the volume by a small amount dV. Assume that this process is reversible. The
work done by the applied force is

dW = −pdV. (2.4)

The first law states that, if the system is in thermal isolation, then this quantity is the
differential of a function U(T,V) that is referred to as the internal energy of the system.

Consider the system that consists of an ideal gas confined to a volume V and expe-
riencing no external forces, not even gravitation. If the gas expands at constant pressure
the work done by the gas is pdV and the ideal gas law Eq.(1.12) tells us that

pdV = RTρdV = RT
M

V
dV. (2.5)

The idea of energy conservation suggests a concept of “internal energy”. It is assumed
that, under certain circumstances, the work done by the gas is at the expence of an internal
energy U so that

pdV + dU = 0,

or
RTMdV/V + dU = 0.

It is an experimental fact (Gay-Lussac 1827, Joule 1850) that the internal energy of an
ideal gas is independent of the volume (see below) and the more precise statement that
the internal energy density u is proportional to RTρ is often included in the definition of
the ideal gas (Finkelstein 1969, page 7). Thus

u = ĉV RTρ, U = ĉV RTM.

Statistical mechanics gives ĉV = n, where n is the adiabatic index and takes the value 3/2
for a monatomic gas. Thus RTMdV/V + dU = RTMdV/V + nRMdT = 0, which implies
that

dT = −
1

n

T

V
dV, T ∝ V−1/n.

The calculation from (2.4) onward was done with the understanding that M = ρV is fixed.
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As we see it, the expression for the internal energy in terms of V and T appears to be
deduced from external considerations. At the deepest level the concept of energy derives
its importance from the fact that it is conserved with the passage of time, by virtue of the
dynamics. The defining equations of hydrodynamics do not admit a first integral, and no
unique concept of energy; this is a difficulty that our limitation to laminar flow, and the
action principle, will allow us to overcome. In modern versions of thermodynamics, and es-
pecially in the thermodynamics of irreversible processes and in radiation thermodynamics,
conservation laws are all important, but they are postulated, one by one, not derived from
basic axioms as is the case in other branches of physics, and they have a purely formal
aspect since they serve only to define various fluxes. See e.g. Stanyukovich (1960), Castor
(2004).

II.4. The first law and the hamiltonian

Having adopted an action principle approach we are bound to associate the internal
energy with the hamiltonian.

The hamiltonian density is determined by the equations of motion only up to the
addition of a constant multiple of the density. When we decide to adopt a particular
expression to be used as internal energy over a range of temperatures, we are introducing
a new assumption. Any expression for the internal energy, together with the implication
that applied forces increase it by an amount determined by the work done, is a statement
about a family of systems, indexed by the temperature. This cannot come out of the gas
law and implies an independent axiom.

If we adopt the simplest expression for the hamiltonian, that of the isothermal atmo-
sphere, with the lagrangian density of Eq.(1.16),

H =

∫

d3x(ρ~v2/2 + V ), V = RTρ log ρ,

interpreting the potential as the ‘internal energy’, then we shall get, in the static case,

pdV + dH(T,V) = 0, p = RTM/V.

with
dH = RM log(M/V)dT −RTMdV/V.

The second term compensates for pdV and so dT = 0, the temperature does not change.
This contradicts experimental results for ideal gases. In fact, the hamiltonian density
h = V = RTρ log ρ is not the correct expression for the internal energy density of an ideal
gas. Or to put it inversely, an isothermal atmosphere cannot be an ideal gas. (We shall
have more to say about this later.) Besides, variation of our present, isothermal lagrangian
with respect to T does not give a reasonable result, the lagrangian needs to be improved.
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II.5. The adiabatic lagrangian

In the absence of gravity the equilibrium configurations all have uniform temperature,
density and pressure. The equilibrium configurations described by the lagrangian are
related by reversible transformations involving no heat transfer, exactly the configurations
examined in the earliest experiments. In the presence of gravity the dynamical variables
are fields. The adiabatic atmosphere in equilibrium is one in which the Poisson relations
for an ideal gas hold locally, but we shall assume only that the expression for the internal
energy density has the same form, namely

u = ĉV RTρ. (2.6)

Two kinds of additions can be made to the lagrangian (1.16) without spoiling the
equations of motion that are essential to hydrodynamics.

Adding a term linear in ρ we consider

L[Φ, ρ, T ] = ρ(Φ̇ − ~v2/2 − φ + λ) −RTρ log ρ + ρµ[T ]. (2.7)

The continuity equation is unchanged, and the hydrodynamical equation remains

ρ
D

Dt
~v = −grad p, p = RTρ,

where p = ρ(∂V/∂ρ) − V is unchanged since the new term in the potential is linear in ρ
and since ∂V/∂T vanishes on shell. (Section I.4.) Variation with respect to T gives

ρµ′[T ] −Rρ log ρ = 0. (2.8)

On shell or, more precisely, by virtue of this equation, the potential reduces to

V [ρ, T ] = RTρ log ρ − ρµ[T ] = ρ
(

Tµ′[T ] − µ[T ]
)

This is the on shell “free”, static hamiltonian density (gravitational potential and kinetic
energy omitted) that we expect to identify with the internal energy density (2.6). This
determines µ[T ] uniquely,

µ[T ] = nRT log T. (2.9)

The on shell hamiltonian density takes the form

h = ρ~v2/2 + ρφ + u, u = nRTρ.

Finally, the equation of motion (2.8), with µ[T ] given in (2.9), reduces to

Rρ(n − log k) = 0, k =
ρ

Tn
. (2.10)

This is just the adiabatic relation ρ/Tn = constant. The equation of motion that is
obtained by variation with respect to ρ is

Φ̇ − ~v2/2 − φ + λ + µ[T ] = RT
(

1 + log k
)

. (2.11)
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Combined with Eq.(10) it reduces, in the static case, to

φ − λ + (1 + n)RT = 0, (2.12)

which has the same form as the equation (1.18) studied in Section I.6, expressing the fact
that the lapse rate is constant.

We have thus found an action principle, with dynamical variables ρ and T , that re-
produces all of the equations that characterize the equilibrium configurations, as well as the
standard, hydrodynamical relations of an ideal gas.

II.6. Thermodynamical relations

We have identified the internal energy with the hamiltonian, in the case of config-
urations with uniform density and temperature. With less justification, we regard the
hamiltonian density as a local internal energy density, and this implies local versions of
thermodynamical relations.

The (total) hamiltonian includes the kinetic term and the gravitational potential,

h = ρ(~v2/2 + φ) + RTρ log k = ρ(~v2/2 + φ) + ρe. (2.13)

The field e thus defined will be identified with the specific, internal energy density, the
energy per unit of mass. From now on the volume is 1/ρ,

V = 1/ρ.

The relation de + pdV = 0 is expected to hold when the volume and the temperature are
varied and the entropy is held fixed, so that

∂e

∂T

∣

∣

V
= 0,

∂e

∂V

∣

∣

T
= −p.

Both equations are verified on shell. The first is the new equation of motion,

∂e

∂T

∣

∣

V
=

∂

∂T

∣

∣

V
RT log k = R

(

log k − n
)

= 0. (2.14)

The other is
∂e

∂V

∣

∣

T
= −ρ2 ∂

∂ρ
RT log k = −RTρ = −p, (2.15)

one of the original equations of motion.
At this stage, when the influence of radiation has not yet been included explicitly,

we can already compare with the more conventional theories. Our approach agrees with
radiation hydrodynamics in so far as the equation of continuity and the hydrodynamical
equation are concerned. Taking those equations for granted, the variational principle
postulates that ∂h/∂T = 0, while radiation hydrodynamics posits the “energy conservation
equation”:

De

Dt
+ p

D(1/ρ)

Dt
= q, (2.16)
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where q is a local density of heat generation. Making use of the other equations (continuity
and Bernoulli) one transforms this to

∂

∂t
h + ~▽ · ~v(h + p) = ρq. (2.17)

The specific energy density e and pressure p are not specified, neither is the heat source q.
The only difference between this approach and the one that we recommend is this.

Instead of Eq.(2.17) we have the variational equation ∂h/∂T = 0. Now

∂h

∂t
=

∂h

∂ρ
ρ̇ +

∂h

∂~v
· ~̇v +

∂h

∂T
Ṫ .

With the equation of continuity and the hydrodynamical equation we reduce this to

∂h

∂t
+ ~▽ · (h~v + p~v) =

∂h

∂T
Ṫ . (2.18)

The variational equation ∂h/∂T = 0 thus implies the energy equation of radiation hydro-
dynamics, in the case that q = 0 and e = nRT log k, p = RTρ. The reverse is also true,
except that the energy conservation equation has an additional solution: Ṫ = 0.

Radiation hydrodynamics aims at a very general situation with the functions e, p and
q being arbitrary. A formulation in terms of a variational principle cannot exist in general,
since the pressure is determined by the hamiltonian; the internal energy and the pressure
are not unrelated functions to be chosen independently. But applied to the ideal gas both
theories are in full agreement. Note that radiation has not yet been taken into account.

II.7. The radiation term

Since the advent of Schwarzschild’s paper (1909) the analysis of the effect of radiation
has not changed significantly. The conclusion, in the simplest approximation, is that the
internal energy is augmented by the Stefan-Boltzmann expression for the energy of black
body radiation. Thus

L[Φ, ρ, T ] = ρ(Φ̇ − ~v2/2 − φ + λ) −RTρ log k +
a

3
T 4. (2.19)

The term ρµ[T ] in Eq.(2.7) has been included in the potential, with k = ρ/Tn. The
constant a = 7.64× 10−15ergs/K4 is the Stefan-Boltzmann constant and the new term is
the pressure of the photon gas, or of black body radiation.

The new expression for the internal energy is

ρe = nRTρ + aT 4,

and the pressure, defined either by the modified hydrodynamical equation or by dU+pdV =
0, is

p = RTρ +
a

3
T 4,
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in agreement with the theory of black body radiation and with the principle that the
pressure in a mixture of gases is additive.

Variation with respect to T now gives

R
(

n − log
ρ

Tn

)

ρ +
4a

3
T 3 = 0, (2.20)

and in the important case when n = 3,

R
(

3 − log
ρ

T 3

) ρ

T 3
+

4a

3
= 0,

which is equivalent to Poisson’s law T 3/ρ = constant. This reflects a strong affinity between
the polytropic ideal gas with n = 3 and radiation, strongly emphasized by Eddington
(1926). The value n = 3 has a cosmological significance as well, it is characteristic of the
changes in ρ, p, T induced by uniform expansion (Ritter , Emden 1907, see Chandrasekhar
1938, page 48). For other values of n, Eq.(2.19) is a mild modification of the polytropic
equation of change in the presence of radiation. The standard approach maintains the
polytropic relation without change in the presence of radiation.

It deserves to be emphasized that our approach does not allow us to determine a rela-
tion between dynamical variables (such as ρ ∝ Tn or even P = RTρ) until the lagrangian
has been completed. The modification of the polytropic relation that results from including
the energy of the radiation field is not a feature of the traditional theory.

We have thus found an action that, varied with respect to ρ, Φ and T reproduces all
of the equations that define the ideal, polytropic gas with polytropic index n = 3, radiation
included, as well as the standard, hydrodynamical relations. For any value of n, it describes
a gas that has its effective polytropic index increased from the ‘natural’ adiabatic value,
approaching the critical value 3 at very high temperatures.

We suggest that using the lagrangian (2.18) is preferable to the usual assumption that
β := pgas/ptot is constant, which is true only when n = 3.

II. 8. A puzzle

Let us return to our analysis of the isolated, ideal gas, before we introduced the radia-
tion term in Section II.7. It was based on only two assumptions, the familiar expression for
the internal energy of an ideal gas, and the ideal gas law. The adiabatic equation of change,
ρ/Tn = constant, was not invoked but derived from those assumptions. In the absence
of gravity the result is uncontroversial. In particular, the equations of motion allow for
stationary states with uniform density and temperature. The effect of gravity was included
by adding the gravitational potential energy to the hamiltonian; which is both standard
practice and inevitable. The result of that modification is that, in the presence of the
gravitational field there are no longer any stationary solutions with uniform temperature.
Instead both density and temperature decrease with elevation. This should be welcome
as being in agreement with what is observed in real atmospheres, where the temperature
gradient seems to be attributed to the presence of heating in the form of radiation.
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The problem is that nothing could justify an application of this theory to phenomena
that are significantly influenced by radiation. Indeed it was expected that the effect of
radiation was to be taken into account by the inclusion of the black body energy in Section
II. 7. Nothing that went into building up the theory suggests that the gas is not in isolation,
and indeed the isolated gas is the system to which we had meant to address ourselves.
But there is a very strong conviction among physicists that, in an isolated system, the
temperature must be uniform, gravitation notwithstanding. We have built a theory that,
surprisingly, seems to apply to the irradiated and gravitating atmosphere, but we have not
solved the more basic problem that we set out to do, to describe an isolated atmosphere
that conforms to established ideas.

We have been led to this paradoxical position by insisting on formulating the theory
in terms of a variational principle. Must we conclude that action principles have no place
in thermodynamics? We think not!

In fact, the most surprising discovery is that standard theory, for example, radiation
hydrodynamics, in the preliminary stage at which radiation has not yet been taken into
account, leads to the same paradoxical conclusion; that is, the familiar expressions for
internal energy, together with the ideal gas law, lead unambiguously to the polytropic
atmosphere.

We have also formulated an action principle for the isothermal atmosphere, in Section
I.3. It predicts the same density distribution as does statistical mechanics, but it requires
that the internal energy be quite different from that of an ideal gas.

Our conclusion can be summarized very simply. We assume that the system is isolated;
this implies that the law

dU + pdV = 0

holds for changes induced by the passage of time - see (2.16). It is found that it also holds
for imaginary changes in which a portion of the gas is compared with a similar portion at
a different elevation. Therefore, the verticle profile of the atmosphere is an adiabat and
the density gradient implies a temperature gradient.

Why is the prediction of a temperature gradient in an isolated atmosphere so shocking?
Imagine a large heat bath located in the region z > 0 in IR3. A vertical tube, filled with
an ideal gas, has its upper end in thermal contact with the bath, otherwise it is isolated.
Assume that, at equilibrium, the lower part of the tube has a temperature that is higher
than that of the bath. Now extract a small amount of heat from the bottom of the tube;
then the restoration of equilibrium demands that heat must flow from the bath to the
warmer, lower part of the tube, in violation of one of the statements of the second law,
namely:

“Heat cannot pass by itself from a colder to a hotter body” (Clausius 1887).

According to a recent experiment, it can! A recent preprint (Graeff 2008) describes an
experiment, carried out over a period of several months, in which a persistent temperature
gradient was observed in a column of carefully isolated water.

Concerning the status of this formulation by Clausius of the second law of thermody-
namics we quote I. Müller:
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“This statement, suggestive though it is, has often been criticised as vague. And
indeed, Clausius himself did not feel entirely satisfied with it. Or else he would not have
tried to make the sentence more rigorous in a page-long comment, which, however, only
succeeds in removing whatever suggestiveness the original statement may have had”. And
Müller continues: ”We need not go deeper into this because, after all, in the end there will
be an unequivocal mathematical statement of the second law”.

We note that Maxwell, in refuting Loschmidt, did not make use of the statement
but argued that the arrangement could be turned into a source of energy, a second class
perpetuum mobile.

II. 9. The heat equation

As a genuine dynamical variable, the temperature must be governed by an equation
for its time derivative, and it must come out of the variational principle. This requires an
other variable.

We consider
L[φ, ρ, T ] = L1 + L2,

L1 = ρ(Φ̇ − ~v2/2 − φ + λ) −RTρ log k +
a

3
T 4,

L2 = σṪ + ~v ·
(

aT ~▽σ + bσ ~▽T
)

+ Cij [ρ, T ] ∂iT∂jσ, (2.21)

where σ is the new variable, canonically conjugate to T . Since the gradient of T is very
nearly constant in the polytropic atmosphere, and the heat flow is parallell to it, a reason-
able choice for the conductivity tensor is

Cij = c δij .

with c constant or proportional to k = ρ/Tn. It is expected that the parameter c is small
and it will be assumed that this term makes a negligible contribution to phenomena with
a short time scale.

Variation of the fields Φ, ρ, σ and T gives the equations:

ρ̇ + ~▽ ·
(

ρ~v − aT ~▽σ − bσ ~▽T
)

= 0, (2.22)

Φ̇ − ~v 2/2 − φ + λ = RT (1 + log k) (2.23)

Ṫ − ~▽ · (c~▽T ) + (b − a)~v · ~▽T − aT ~▽ · ~v = 0, (2.24)

Rρ(log k − n) −
4a

3
T 3 + σ̇ + ~▽ · (c~▽σ) + (b − a)~v · ~▽σ − bσ ~▽ · ~v = 0. (2.25)

Eq.(2.22) shows that the mass current is not precisely ρ~v. The second equation is equivalent
to

ρ
D~v

Dt
+ ρ~▽φ + ρ~▽RT (1 + log k) = 0
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On shell, more precisely by virtue of the equation ∂L/∂T = 0, it can be written as follows,

ρ
D~v

Dt
+ ρ~▽φ = −~▽p, p := RTρ +

a

3
T 4 + L2.

The new term, L2, is inevitable.

The parameters a, b are determined as follows. The contribution of convection to the
time derivative of the temperature fixes b− a = 1. An implication of this is that the value
of the field σ also follows the particles of the gas. The value a = −1/n is needed to agree
with the theory of sound propagation, always assumed to be adiabatic (Laplace 1925).

The part of (2.25) that is linear in σ must be related to the entropy. This new term
is absent in the case of an isolated atmosphere; it is needed if the otherwise isolated gas
is subjected to an influx of heat, as by radiation, or if the so far isolated gas is put into
thermal contact with empty space. An actual earthly atmospheric equilibrium is a state
in which both effects cancel out and the entropy is again zero. The field σ is a stand-in
for the electromagnetic fields of radiation, incoming and outgoing (Appendix).

A solution with uniform temperature would require a carefully fine tuned entropy; it
is not natural.

II. 10. The centrifuge and the atmosphere

Kelvin justified the polytropic model of the atmosphere in terms of radiation and
convection. Eddington discounted the role of convection and relied on a concept of radiative
equilibrium. To find out what happens in the case of complete insulation we study the
analogous situation in a centerfuge.

Consider an ideal gas. By a series of experiments in which gravity does not play a role,
involving reversible changes in temperature and pressure, it is found that, at equilibrium,
the laws p/ρ = RT and ρ ∝ Tn are satisfied, constant n fixed. When supplemented by the
laws of hydrodynamics, they are found to hold, or at least they are strongly believed to hold,
in configurations involving flow, over a limited time span, in the absence of external forces.
We have found that these data lead to the statement that ρ/Tn is constant throughout the
gas. In addition it is said that, at equilibrium, the temperature must be uniform. Keeping
an open mind, let us refer to this last statement as “the axiom”. We are talking about a
fixed quantity of gas contained in a vessel, the walls of which present no friction and pass
no heat.

Let the walls of the vessel be two vertical, concentric cylinders, and construct a sta-
tionary solution of the equations of motion. And why not? We have experimental confir-
mation of the equations of motion, we applied them to the theory of sound with a degree
of confidence that is so high that the prediction of rapid variations in temperature may
never have been subjected to verification (?). In terms of cylindrical coordinates, take
vz = vr = 0, vθ = ω, constant. The continuity equation is satisfied with ρ any function of
r alone. Then neither T nor p is constant, for the hydrodynamical equations demand that

rω2 = cT ′, c = (n + 1)R ≈ 107cm/sec2K (for air).
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At first sight, this seems to violate the axiom, but perhaps not, for this is not a static
configuration. To save the axiom let us suppose that, by conduction, convection or radi-
ation, the temperature will tend towards uniformity. Perhaps after a suitably long time
has passed, T has become constant. Let us remember that no heat or any other influence
is supposed to go by the walls; then surely energy and angular momentum must both
be preserved during the time that the temperature is levelling out. It is reasonable to
assume that the final configuration is (macroscopically) stationary and uniform, since the
existence of fluctuations would imply that the entropy had not reached its maximum. But
a stationary state with non zero density gradient and uniform temperature contradicts
the assumptions that we made about the gas, which makes the existence of such a state
somewhat problematic.

If we also accept the equivalence principle, then from the point of view of a local
observer at rest in the flow there is a centrifugal force field, a density gradient and, by
the laws of Poisson, a temperature gradient. The equivalence principle only applies to
conditions at one point, and one can question whether the gradient of the temperature
or of the density is sufficiently local to be covered by the principle. The entire theory of
relativistic thermodynamics has been founded on the belief that it is (Tolman 1934).

If we do accept the equivalence principle (without necessarily embracing the tenets of
traditional relativistic thermodynamics), then we shall be lead to expect that a vertical
column of an ideal gas, in mechanical equilibrium under the influence of terrestrial gravity,
and perfectly isolated, will have a pressure and temperature gradient exactly of the form
predicted by Homer Lane. This contradicts what we think is the prevailing opinion of
atmospheric scientists, that the temperature gradient owes its existence to the heating
associated with solar radiation.

Further measurements in the atmosphere are unlikely to throw light on this, since
isolation is difficult. Experiments with a centrifuge may be more realistic. The temperature
lapse rate is rω2 × 10−7K/cm. If the acceleration is 1000 g at the outer wall, then the
lapse rate will be .1 K/cm. The temperature difference between the inner and outer walls
will thus be 1 K if the distance is 10cm. In a practical experiment one does not have
the gas flow between concentric, stationary cylinders. Instead a tube filled with the gas
is oriented radially on a turntable. Friction against the walls is thus eliminated and heat
loss is much easier to control. The question of the existence of a temperature gradient is
the most urgent. Once this is resolved one way or another the approach to equiilibrium is
worthy of an investigation.

We have come to doubt that complete equilibrium implies a uniform temperature in
all cases. In fact, Tolman (1934, page 314) shows that, according to General Relativity,
the temperature of an isolated photon gas in a gravitational field is not quite uniform. The
predicted magnitude of this effect is very small, but it shows that there are circumstances
in which statistical mechanics is not the absolute truth.

24



III. Conclusions
III.1. On variational principles

The principal reasons for preferring an action principle formulation of thermodynamics
were stressed in the introduction. Here we add some additional comments.

Variational principles have a very high reputation in most branches of physics; they
even occupy a central position in classical thermodynamics, see for example the authori-
tative treatment by Callen (1960). An action is available for the study of laminar flows in
hydrodynamics, see e.g. Fetter and Walecka (1960), though it does not seem to have been
much used. Without the restriction to laminar flows it remains possible to formulate an
action principle (Taub 1954, Bardeen 1970, Schutz 1970), but the proliferation of velocity
potentials is confusing and no application is known to us. Recently, variational principles
have been invoked in special situations that arise in gravitation.

In this paper we rely on an action principle formulation of the full set of laws that
govern an ideal gas, in the presence of gravity and radiation. To keep it simple we have
restricted our attention to laminar, hydrodynamical flows.

It was shown that there is an action that incorporates all of the essential properties
that characterize an ideal gas, expressed as variational equations. The independent dy-
namical variables are the density, the velocity potential and the temperature. The idea of
varying the action with respect to the temperature is much in the classical tradition. The
hamiltonian gives the correct expression for the internal energy and the pressure.

Into this framework the inclusion of a gravitational field is natural. Inevitably, it
leads to pressure gradients and thus also temperature gradients. If other considerations,
including the heat equation, are put aside, then the theory, as it stands, predicts the
persistence of a temperature gradient in an isolated system at equilibrium. The existence
of a temperature gradient in an isolated thermodynamical system is anathema to tradition,
and further work is required to find the way to avoid it, or to live with it.

The interaction of the ideal gas with electromagnetic fields has been discussed in a
provisional manner in the appendix. The transfer of entropy between the two gases is in
accord with the usual treatment of each system separately.

III.2. Suggestions

(1) Observation of the diurnal and seasonal variations of the equation of state of the
troposphere may lead to a better understanding of the role of radiation in our atmosphere.
The centrifuge may be a more practical source of enlightenment. We understand that
modern centrifuges are capable of producing accelerations of up to 106g. Any positive
result for the temperature gradient in an isolated gas would have important theoretical
implications.

(2) We suggest the use of the lagrangian (2.7), or its relativistic extension, with T
treated as an independent dynamical variable and n′ = n, in astrophysics . Variation with
respect to T yields the adiabatic relations between ρ and T , so long as the pressure of
radiation is negligible, but for higher temperatures, when radiation becomes important,
the effect is to increase the effective value of n′ towards the ultimate limit 3, regardless of
the adiabatic index n of the gas. See in this connection the discussion by Cox and Giuli
(1968), page 271.
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In the case that n = 3 there is Eddington’s treatment of the mixture of an ideal
gas with the photon gas. But most gas spheres have a polytropic index somewhat less
than 3 and in this case the ratio β = pgas/ptot may not be constant throughout the star.
The lagrangian (2.19), with n identified with the adiabatic index of the gas, gives all the
equations that are used to describe atmospheres, so long as radiation is insignificant. With
greater radiative pressure the polytropic index of the atmosphere is affected. It is not quite
constant, but nearly so, and it approaches the upper limit 3 when the radiation pressure
becomes dominant. Eddington’s treatment was indicated because he used Tolman’s ap-
proach to relativistic thermodynamics, where there is room for only one density and only
one pressure. Of course, all kinds of mixtures have been studied, but the equations that
govern them do not supplement Tolman’s gravitational concepts in a satisfactory manner,
in our opinion. Be that as it may, it is patent that the approximation β = constant, in
the works of Eddington and Chandrasekhar, is a device designed to avoid dealing with two
independent gases.

(3) In a subsequent paper we intend to make use of the solid platform that is provided
by the action principle to study the stability of atmospheres. It will be argued that
expressions for the total energy are not enough to determine stability; what is needed is
an expression for the hamiltonian, in terms of the dynamical variables of the theory.

Appendix. Sources and entropy
In Section II.9 we have introduced a new field variable σ in order to include the heat

equation in the system of variational equations. There is a close relation between this
field and entropy. In this appendix we explain what we have in mind for this field. In
the first section we introduce the entropy in the manner of an external source and verify
that it fits into the general scheme of thermodynamics. In the next section we consider an
example, in which the external source is replaced by a dynamical electromagnetic field. The
model presented in Section II.9 should be seen as an “effective” theory, being the simplest
dynamical realization of entropy. It seems that this modelling of entropy is consistent with
the use of entropy in non-equilibrium thermodynamics, but this suggestion has not been
explored till now. The ideas presented here are tentative.

A.1. Generic source

The adiabatic lagrangian describes a single adiabat. To remove this limitation in a
formal way, let us add another term to the lagrangian density,

L = ρ(Φ̇ − ~v 2/2 − gz + λ) −RTρ log
k

k0
+ f [T ] + ρTS, (A.1)

where S is an external source. The factor ρ in the source term is natural and the factor T
is chosen to make S play the role of a local adiabatic parameter. We have introduced the
variable k and the parameter k0 by

ρ = kTn, ρ0 = k0T
n
0 , (k0 → 1);

Then k−1/n is Emden’s “polytropic temperature”. It will be recalled that k0 parameterizes
a family of adiabats; in fact, for an isothermal expansion, the variation of −R log k is
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precisely the change in specific entropy. The introduction of the source S turns −R log k0

into a field with the interpretation of entropy. We no longer need the parameter and so,
following Lane, we shall use units of density such that k0 = 1.

The internal specific entropy is R log(Tn/ρ) and the total specific entropy is

Stot = R log
Tn

ρ
+ S.

With this convention

L = ρ(Φ̇ − ~v2/2 − φ + λ) + ρTStot +
a

3
T 4, (A.1)

where φ is the gravitational potential. Variation with respect to T leads to

ρ
∂

∂T
(TStot) +

4a

3
T 3 = 0. (A.2)

As an equation for Stot it has the general solution

Stot = −
a

3ρ
T 3 −

1

ρT
V [ρ]. (A.3)

Taking this as the definition of the potential (V is the value of ρTStot + a
3
T 4 at the

extremum with respect to variation of T ) we have

L = ρ(Φ̇ − ~v 2/2 − φ + λ) − V [ρ]. (A.4)

The gradient of the equation obtained by variation of ρ is

−ρ
D

Dt
~v − ρ gradφ = grad p, (A.5)

with

p = ρV ′ − V = (1 − ρ
d

dρ
)(ρTStot +

a

3
T 4) = −Tρ2 ∂Stot

∂ρ
+

a

3
T 4. (A.6)

The last equation is justified by the fact that the partial derivative of ρTStot + (a/3)T 4

with repect to T vanishes on shell, Eq.(A.2).
We shall verify some important relations of thermodynamics, and for this we must

take T and ρ to be constant, with M = ρV, and φ = 0. In this case

p = MT
∂Stot

∂V
+

a

3
T 4 = RMT/V +

a

3
T 4 + MT

∂S

∂V
. (A.7)

The hamiltonian density is, in the static case, in the absence of gravity,

h = −ρTStot −
a

3
T 4, implying that U = −MTStot −

a

3
T 4V. (A.8)
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Variation of h with respect to T gives zero on shell, so this is the same as

u = (1 − T∂T )h = ρT 2 ∂Stot

∂T
+ aT 4 = nRρT + aT 4 + ρT 2 ∂S

∂T
.

Thus

U = MT 2 ∂Stot

∂T
+ aT 4V = nRMT + aT 4V + MT

∂S

∂T
. (A.9)

Using (A.7) and (A.8) one verifies that

∂U

∂V
= (T∂T − 1)p, (A.10)

an important consequence of the existence of entropy in general. See Finkelstein (1969)
page 26. Also,

dU = MT
∂Stot

∂T
dT + Td

(

MT
∂Stot

∂T

)

+ 4aT 3VdT + aT 4dV,

pdV = MT
∂Stot

∂V
dV +

a

3
T 4dV,

and the sum is dU + pdV = dQ = T (∂p/∂T ) = 0, the last on shell.
We used the last expressions in (A.7) and (A.9) because they are familiar, but if we

return to (A.8) and the first expression for p in (A.7) we see immediately that dU+pdV = 0.
If instead we consider a change that involves outside forces acting via the source, then

dU +pdV = MTδS, which confirms the interpretation of S as a contribution to the specific
entropy.

A.2. Electromagnetic fields

We write the Maxwell lagrangian as follows,

Lrad =
1

2ǫ
~D2 −

µ

2
~H2 + ~D · (~∂A0 − ~̇A) − ~H · ~∂ ∧ ~A + JA, (A.13)

and add it to the ideal gas lagrangian

Lgas = ρ(Φ̇ − ~v2/2 − φ + λ) −RTρ log k +
a

3
T 4, (A.14)

Since the susceptibility of an ideal gas is small, the dielectric constant may be expressed
by

ǫ = 1 + κ[ρ, T ], or
1

ǫ
= 1 − κ[ρ, T ]. (A.15)

Paramagnetic effects will be ignored at present. An interaction between the two systems
occurs through the dependence of the susceptibility on ρ. The source S has become
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−( ~D2/2ρ)(κ/T ). If this quantity has a constant value then it produces a shift in the value
of the parameter k.

Two interpretations are possible. The electromagnetic field may represent an external
field, produced mainly by the source J , and affecting the gas by way of the coupling implied
by the dependence of the dielectric constant on ρ. Alternatively, the field is produced by
microscopic fluctuations, quantum vacuum fluctuations as well as effects of the intrinsic
dipoles of the molecules of the gas. In this latter case the main effect of radiation is
represented by the radiation term aT 4/3. Our difficulty is that neither interpretation
is complete, and that we do not have a sufficient grasp of the general case when either
interpretation is only half right. The following should therefore be regarded as tentative.

Variation of the total action, with lagrangian Lrad +Lgas, with respect to ~A, ~D, ~H and
T gives

~̇D = ~∂ ∧ ~H, (A.14)

~̇A = ~D/ǫ, (A.15)

µ ~H = −~∂ ∧ ~A, (A.16)

and

R(n − log k)ρ −
~D 2

2

∂κ

∂T
+

4a

3
T 3 = 0. (A.17)

Taking into account the first 3 equations we find for the static hamiltonian

H =

∫

d3x
(

φρ + RρT log k +
~D2

2
+

µ ~H2

2
−

~D2

2

κ

T
−

a

3
T 4

)

.

With the help of (A.17) it becomes

H =

∫

d3x
(

φρ + nRρT +
~D2

2
+

µ ~H2

2
+ aT 4

)

−

∫

d3x T
~D2

2

∂(Tκ)

∂T
. (A.18)

The last term, from the point of view of the thermodynamical interpretation of electro-
statics, is recognized as the entropy (Panofsky and Phillips 1955). On a suitable choice of
the functional κ it merges into the internal energy. For example, if κ = ρT it takes the
form ρTS with S = ~D2.

A.3. Using T as a dynamical variable

Let us examine the total lagrangian,

L = Lrad + Lgas = ρ(Φ̇ − ~v 2/2 − φ + λ) −RTρ log
ρ

T 3

+
~D2

2ǫ
+

µ

2
~H2 + ~D · (~∂A0 − ~̇A) − ~H · ~∂ ∧ ~A + JA +

a

3
T 4. (A.19)
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So long as ǫ, µ and J are independent of ρ, T and ~v, the variational equations of motion
that are obtained by variation of ~v, ρ, ~A, ~H and ~D are all conventional, at least when n = 3
(for all n if radiation is neglegible). It would be possible to be content with that and fix T
by fiat, as is usual; in the case of the ideal gas without radiation the result is the same. But
if ǫ depends on ρ and on T , which is actually the case, then we get into a situation that
provides the strongest justification yet for preferring an action principle formulation with T
as a dynamical variable. The equations of motion include a contribution from the variation
of ǫ with respect to ρ, so that one of the basic hydrodynamical equations is modified. Thus
it is clear that the extension of the theory, to include the effect of radiation, is not just a
matter of including additional equations for the new degrees of freedom. The presence of
the term ~D2/2ǫ[ρ, T ] certainly introduces the density ρ into Maxwell’s equations; that it

introduces ~D into the hydrodynamical equations is clear as well. The over all consistency
of the total system of equations can probably be ensured by heeding Onsager’s principle of
balance, but the action principle makes it automatic.

Variation of the action with respect to T offers additional advantages. The usual
procedure, that amounts to fixing ρ = kTn, k and n constant, gives the same result
when radiation is a relatively unimportant companion to the ideal gas, but in the other
limiting case, when the gas is very dilute and the material gas gas becomes an insignificant
addition to the photon gas, it is no longer tenable. We need an interpolation between
the two extreme cases and this is provided naturally by the postulate that the action is
stationary with respect to variations of the temperature field.

In the absence of the ideal gas we have another interesting system, the pure photon
gas. The analogy between the photon gas and the ideal gas is often stressed; there is an
analogue of the polytropic relation that fixes the temperature in terms of ρ; the pressure
of the photon field is (a/3)T 4. Our lagrangian already contains this pressure; we should
like to discover a closer connection between it and the electromagnetic field. In the limit
when the density of the ideal gas is zero, Eq.(A.17) becomes

−
~D 2

2

∂κ

∂T
+

4a

3
T 3 = 0.

In the absence of the gas it is reasonable to impose Lorentz invariance, so we include
magnetic effects by completing the last to

−
F 2

2

∂κ

∂T
+

4a

3
T 3 = 0.

If we suppose that κ[ρ, T ], in the limit ρ = 0, takes the form αT 2, then

αF 2 =
4a

3
T 2.

The radiation from a gas of Hertzian dipoles can be shown, with the help of the Stefan-
Boltzman law and Wien’s displacement law, to satisfy a relation of precisely this form.
Whether the same relation holds in vacuum is uncertain, but it is suggested by an analysis
of the effective Born-Infeld lagrangian calculated on the basis of the scattering of light by
light (Euler 1936, Karplus and Neuman 1950). See also McKenna and Platzman (1962),
Fronsdal (2007).
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