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Abstract

Various powerful people detection methods exist. Sur-
prisingly, most approaches rely on static image features
only despite the obvious potential of motion information for
people detection. This paper systematically evaluates dif-
ferent features and classifiers in a sliding-window frame-
work. First, our experiments indicate that incorporating
motion information improves detection performance signif-
icantly. Second, the combination of multiple and comple-
mentary feature types can also help improve performance.
And third, the choice of the classifier-feature combination
and several implementation details are crucial to reach best
performance. In contrast to many recent papers experi-
mental results are reported for four different datasets rather
than using a single one. Three of them are taken from the lit-
erature allowing for direct comparison. The fourth dataset
is newly recorded using an onboard camera driving through
urban environment. Consequently this dataset is more re-
alistic and more challenging than any currently available
dataset.

1. Introduction
Detecting pedestrians using an onboard camera is a

challenging problem but an important component e.g. for
robotics and automotive safety applications. While psy-
chologists and neuroscientists argue that motion is an im-
portant cue for human perception [17] only few computer
vision object detectors (e.g. [30, 6]) exploit this fact. In-
terestingly, [30] showed improved detection performance
but for static cameras only. It is unclear how to transfer
their results to onboard sequences. In contrast, [6] proposed
motion features that are – at least in principle – applica-
ble to onboard sequences. While [6] showed improved per-
formance using the FPPW evaluation criterion (False Posi-
tives per Window) they were unable to outperform their own
static HOG feature [5] in a complete detector setting [4].

The second avenue we follow in this paper is to incor-
porate multiple and complementary features for detection.

Figure 1: Detections obtained with our detector in an urban environment

While [29] convincingly showed that multiple features im-
prove performance for image classification, for detection
only few approaches exploit this fact [34, 16, 32].

The third avenue of this paper is related to the classifier
choice. Popular classifiers are SVMs [26, 5, 13, 20, 19]
or boosting [31, 7, 33, 23]. However, the large intra-class
variability of pedestrians seems to require a more careful
design of the classifier framework. Several authors have
argued that e.g. viewpoint variation requires a different
classifier design. Wu&Nevatia [33] remedy this issue by
learning a tree structured classifier, Lin&Davis [19] use a
handcrafted hierarchy, while Seemann et al. [25] propose
multi-articulation learning. Gavrila [15] proposes a tree-
structured Bayesian approach that builds on offline clus-
tering of pedestrian shapes. What is common to these ap-
proaches is that they treat the problem of data partitioning
and classifier learning separately. In this paper however we
address this problem in a more principled way by using the
MPLBoost classifier [2] that simultaneously learns the data
partitions and a strong classifier for each partition.

The main focus of this work is to advance the state-of-
the-art in pedestrian detection for realistic and challenging
onboard datasets. For this we experimentally evaluate com-
binations of features and classifiers and address the problem
of learning a multi-viewpoint pedestrian detector.

Our contribution is threefold. Firstly, we show that mo-

1



tion cues provide a valuable feature, also for detection from
a moving platform. Secondly, we show that MPLBoost
and histogram intersection kernel SVMs can successfully
learn a multi-viewpoint pedestrian detector and often out-
perform linear SVMs. Thirdly, a new realistic and pub-
licly available onboard dataset (TUD-Brussels) containing
multi-viewpoint data is introduced. It is accompanied by
one of the first training datasets (TUD-MotionPairs) con-
taining image pairs which allow to extract and train from
motion features. These two datasets will enable compari-
son of different approaches based on motion. Besides these
contributions we discuss several important algorithmic de-
tails that prove important and that are often neglected and
overlooked.

The paper is structured as follows. Sec. 2 reviews re-
lated work. Sec. 3 introduces features and classifiers and
Sec. 4 discusses several important technical details. Sec. 5
introduces datasets while Sec. 6 discusses the experimental
results and Sec. 7 concludes.

2. Related Work
Within the last years a number of systems and detec-

tors have been presented to tackle the problem of detecting
pedestrians from a moving platform such as a driving car
or a robot. This reflects the growing interest in applications
such as automotive safety and robotics scenarios.

Early work in pedestrian detection started with Papa-
georgiou&Poggio [22] who employ Haar features in com-
bination with a polynomial SVM in order to detect pedes-
trians. Sashua et al. [26] use parts and employ histograms
of gradients as features. Similarly, Dalal&Triggs [5] train
SVMs on histograms of oriented gradients features (HOG)
and achieve good performance. An extension by Felzen-
szwalb et al. [13] adds a flexible part model where the po-
sition of the parts is considered as latent variable for the
SVM learning algorithm. Similarly, Dollár et al. [7] present
an approach that automatically learns flexible parts from
training data and uses a boosting framework with wavelet
features. Also Tuzel et al. [28] employ LogitBoost on Rie-
mannian manifolds to classify windows based on covari-
ance features. Sabzmeydani&Mori [23] learn low level fea-
tures on gradient responses and use AdaBoost to combine
them. Maji et al. [20] approximate the evaluation of his-
togram intersection kernels and use a kernel SVM in con-
junction with a hierarchy of gradient histograms as features.
Tran&Forsyth [27] learn a model of human body configu-
rations and use local histograms of gradients and local PCA
of gradients as features. In [33] Wu&Nevatia propose a sys-
tem to automatically construct tree hierarchies for the prob-
lem of multi-view pedestrian detection. They use a boosting
framework in combination with edgelet features.

Most detectors in this domain as well as ours employ
the sliding-window scheme, but notable exceptions ex-

ist [21, 24, 1]. These methods are based on keypoint de-
tectors and a probabilistic voting scheme to accumulate ev-
idence. Andriluka et al. [1] additionally model the human
walking cycle and infer a consistent movement within the
temporal neighborhood.

With the availability of acceptably performing detectors
some approaches use them as component in systems and
add further reasoning such as tracking and 3D scene ge-
ometry in order to improve the initial detections. While
Ess et al. [11] extract the ground plane from a depth
map and fuse it with detections in a graphical model,
Ess et al. [12] add further 3D scene information by integra-
tion with Structure-from-Motion. Gavrilla&Munder [16]
propose a pipeline of Chamfer matching and several image
based verification steps for a stereo camera setup. While
they optimize overall system performance we focus on the
detector part and improve it by the combination of multiple
features.

Even though the combination of multiple features should
allow for increased detection performance only few ap-
proaches leverage from the complementarity of different
object representations. Wu&Nevatia [34] automatically
learn the efficiency-discriminance tradeoff in a boosting
cascade for HOG, edgelet and covariance features but with
a focus on runtime. In particular human motion information
can be a rich source as shown by Viola et al. [30]. Their mo-
tion features proved to be the most discriminative features.
However, their work is restricted to a static camera setting,
while we would like to detect people from a moving plat-
form. Dalal et al. [6] enrich their static feature descriptor [5]
with internal motion histograms to improve detection. Their
database consists of movies and is not publicly available.
Movies contain rather little ego-motion, in particular little
translation along the optical axis of the camera. Thus, it is
unclear whether their results also apply to sequences taken
from a car e.g. traveling at the typical inner-city speed of 50
km/h (30 mph). Moreover, their detectors’ performance is
only shown to improve in terms of FPPW but not in a full
image detector setting [4]. We will show that the choice of
the non-maximum suppression strategy is crucial to obtain
best performance. A further difference to their approach is
the choice of optical flow; while they use an unregularized
flow method, we found globally regularized flows [35] to
work better. Additionally, we show that the combination
with additional features (such as Haar wavelets [22]) can
allow for further improvements. Enzweiler et al. [10] use
motion information in a ROI generation step for an onboard
system, while we investigate the use of motion features for
the detector.

Several authors have evaluated features and their com-
binations with different classifiers. However, all of them
are limited to static images only and do not include motion
based features. For people detection Wojek&Schiele [32]
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(a) Performance for different flow
algorithms – using the regularized flow
algorithm by Zach et al. [35] works best
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Figure 2: Impact of flow algorithm and detection window size

evaluated different static image features in combination
with AdaBoost and SVMs as classifiers. Dollár et al. [8]
report results for various recent approaches on a new chal-
lenging onboard dataset with improved evaluation metrics.
Enzweiler&Gavrila [9] evaluate different detectors in com-
bination with an onboard system with focus on performance
and runtime.

3. Features and Classifiers

In the following subsections we will discuss the features
(Sec. 3.1) and classifiers (Sec. 3.2) which we deploy in a
sliding window framework.

3.1. Features

A wide range of features has been proposed for pedes-
trian detection. Here, we focus on three successful fea-
tures containing complementary information (see [32] for
a wider range of features). While HOG features encode
high frequency gradient information, Haar wavelets encode
lower frequency changes in the color channels. Oriented
Histograms of Flow features exploit optical flow and thus a
complementary cue.

HOG Histograms of oriented gradients have originally
been proposed by Dalal&Triggs [5]. The bounding box is
divided into 8 × 8 pixel cells containing histograms of ori-
ented gradients. 2 × 2 cells constitute a block which is the
neighborhood to perform normalization. For people detec-
tion L2-norm with an additional hysteresis performs best.

Haar Haar wavelets have been introduced by Papageor-
giou&Poggio [22] for people detection. Those provide an
overcomplete representation using features at the scale of
32 and 16 pixels. Similarly to HOG blocks, wavelets over-
lap by 75%. As proposed we use the absolute responses of
horizontal, vertical and diagonal wavelet types.

Oriented Histograms of Flow The motion feature we
use throughout this paper is the Internal Motion His-
togram wavelet difference (IMHwd) descriptor described
by Dalal et al. in [4, 6]. The descriptor combines 9 bins
per histogram on 8×8 pixel cells, with interpolation only

for histogram bins. It is computed by applying wavelet-
like operators on a 3×3 cell grid, letting pixel-wise dif-
ferences of flow vectors vote into histogram bins. We use
IMHwd due to its consistently better performance in pre-
vious experiments compared to other proposed descriptors.
The flow field is computed using the TV-L1 algorithm by
Zach et al. [35], which provides regularization while allow-
ing for discontinuities in the flow field. Contrary to [4], we
compute the optical flow for the training samples on full
images instead of crops, which is particularly important for
the regularized TV-L1 flow. We also conducted experiments
with the unregularized flow algorithm described in [4], but
it resulted in a slight loss of performance compared to the
algorithm by Zach et al. [35] (cf. Fig. 2(a)). For further dis-
cussion see Sec. 6.

Feature combination In the experiments reported be-
low we analyze various combinations of the above features.
To combine features we L2-normalize each cue-component
and concatenate all subvectors.

3.2. Classifiers

The second major component for sliding window based
detection systems is the employed classifier. Most popular
choices are linear SVMs and AdaBoost. As discussed be-
fore these are not perfectly suited because of the high intra-
class variability of humans e.g. caused by multiple view-
points and appearance differences. In this paper we there-
fore explore the applicability of MPLBoost that learns data
clusters and strong classifiers for these clusters simultane-
ously.

SVM Linear SVMs learn the hyperplane that opti-
mally separates pedestrians from background in a high-
dimensional feature space. Extensions to kernel SVMs are
possible, allowing to transfer the data to a higher and poten-
tially infinity dimensional representation as for RBF ker-
nels. For detection however, kernel SVMs are rarely used
due to higher computational load. One remarkable excep-
tion is Maji et al. [20] who approximate the histogram inter-
section kernel for faster execution. Their proposed approx-
imation is used in our experiments as well.

AdaBoost Contrary to SVMs, boosting algorithms [14]
optimize the classification error on the training samples it-
eratively. Each round a weak classifier is chosen in order
to optimally reduce the training error. The weighted sum
of all weak classifiers forms the final strong classifier. A
typical choice for weak learners, which are required to do
better than chance, are decision tree stumps operating on a
single dimension of the feature vector. In this work, we use
AdaBoost as formulated by Viola and Jones [31].

MPLBoost MPLBoost [2] (or MCBoost [18]) is a recently
proposed extension to AdaBoost. While AdaBoost fails to
learn a classifier where positive samples appear in multi-



ple clusters arranged in a XOR-like layout, MPLBoost suc-
cessfully manages this learning problem. This is achieved
by simultaneously learning K strong classifiers, while the
response to an input pattern is given as the maximum re-
sponse of all K strong classifiers. Thus, a window is classi-
fied as positive if a single strong classifier yields a positive
score and negative only if all strong classifiers consider the
window as negative. Also the runtime is only linear in the
number of weak classifiers. During the learning phase po-
sitive samples which are misclassified by all strong classi-
fiers obtain a high weight, while positive samples which are
classified correctly by a single strong classifier are assigned
a low weight. This enables the learning algorithm to focus
on a subpart of misclassified data (up to the current round)
with a single strong classifier. Other strong classifiers are
not affected and therefore do not loose their discriminative
power on their specific clusters learned.

4. Learning and Testing
While features and classifiers are the key components

of the detectors several issues need to be taken care of for
both learning and testing. Those details are often crucial
to obtain best performance, even though they are seldom
discussed in literature. The following sections give some
detailed insights on our learning (Sec. 4.1) and testing pro-
cedure (Sec. 4.2).

4.1. Improved Learning Procedure

Our classifiers are trained in a two-step bootstrapping
process. In order to improve the statistics of hard exam-
ples for the domain where pedestrians actually appear, the
negative test set also contains frames from an onboard cam-
era recorded in an urban area. Those are scanned for hard
examples, but detections that are close to a pedestrian in
x-y-scale-space are considered true positive. The minimal
distance is chosen such that detections on body parts are
allowed as hard examples.

Figure 3: False positive detections with
high scores before the bootstrapping
stage. Detections close to pedestrians
are true positives and not shown here.

Often these types of
false positives are not
well represented in other
detectors’ training data.
Fig. 3 shows highest scor-
ing false positive detec-
tions in the bootstrapping
phase after removing the
full detections, showing
that body parts are indeed
hard examples for the ini-
tial detector.

Additionally, we found that merging the false positive
detections on the negative images by mean shift is beneficial
in several ways. First, the variability of false positive detec-
tions for the second round of training can be increased and

the space of negative samples is covered well, while keep-
ing the memory requirements reasonable. Second, false po-
sitive regions with a larger number of false detections are
not overcounted since they will only be contained once in
the training set and thus have the same weight as regions
on which the detectors only fires a few times. This is con-
sistent with the fact that for real-world systems the optimal
image-based performance is sought and all false detections
should be treated equally.

4.2. Testing

As it is desirable for real-world applications to detect
pedestrians as soon as possible we are aiming to detect
pedestrians as small as possible. Empirically we found
that given appropriate image quality upscaling the input
image allows for a better performance gain with respect
to small detections than shrinking the detection window
(cf. Fig. 2(b)). Therefore, we upscale the input image by a
factor of two which allows to detect pedestrians as small as
48 pixels with a 64× 128 pixel detection window (the win-
dow contains context in addition to the pedestrian). Sliding-
window based detection systems usually fire multiple times
on true pedestrians on nearby positions in scale and space.
These detections need to be merged in order to allow for
a per-image based evaluation such as false positive per im-
age (FPPI) or precision and recall (PR). Here, we adopt an
adapted bandwidth mean-shift based mode seeking strat-
egy [3] to determine the position in x-y-scale-space, but
determine the final detection’s score to be the maximum of
all scores within the mode. While others (e.g. [4]) have
used the kernel density to form the final score, we found the
maximum to provide more robust results. While most of the
time the performance is comparable, in some cases choos-
ing the kernel density leads to a significantly decreased
performance in particular for the motion-enhanced detec-
tor (cf. Fig. 5(l)). Another important issue is the estimation
of the kernel density – in a scale pyramid setting with a con-
stant pixel stride for every scale, detections on larger scales
are sparser. Thus, contrary to [4] when computing the ker-
nel density we omit the kernel volume’s scale adaption for
the normalization factor.

5. New Dataset
To the best of our knowledge the sequences of [11, 12]

are currently the only publicly available video sequences
for pedestrian detection recorded from a moving platform.
While those are realistic for robotics scenarios, they are less
realistic for automotive safety applications. This is mainly
due to the relatively small ego-motion and the camera’s field
of view which is focusing on the near range. In order to
show results for a more realistic and challenging automotive
safety scenario in urban environment, we captured a new
onboard dataset (TUD-Brussels) from a driving car. Note



Figure 4: Positive sample crops and flow fields of TUD-MotionPairs.

that [8] simultaneously introduces a new onboard dataset
but evaluates static features only.

At the same time there is no dedicated training set con-
taining temporal image pairs which has sufficient variabil-
ity to train a discriminative detector based on motion fea-
tures. Thus, we additionally recorded a new training dataset
(TUD-MotionPairs) containing pairs of images to compute
optical flow. Both new datasets are made publicly avail-
able1.

Training sets Our new positive training set (TUD-
MotionPairs) consists of 1092 image pairs with 1776 anno-
tated pedestrians (resulting in 3552 positive samples with
mirroring), recorded from a hand-held camera at a resolu-
tion of 720 × 576 pixels. The images are recorded in busy
pedestrian zones. Some samples are shown in Fig. 4. Note
that contrary to [5] our data base is not restricted to upright
standing pedestrians but also contains pedestrians from side
views which are particularly relevant in applications due to
the possibility of crossing the camera’s own trajectory.

Our negative training set consists of 192 image pairs. 85
image pairs were recorded in an inner city district, using
the same camera as was used for the positive dataset at a
resolution of 720 × 576 pixels, while another 107 image
pairs were recorded from a moving car. For finding body
parts as hard samples as described in Sec. 4.1 we use an
additional set of 26 image pairs, recorded from a moving
vehicle containing 183 pedestrian annotations. We use this
training set for all experiments throughout this paper.

Test sets The new TUD-Brussels dataset is recorded from
a driving car in the inner city of Brussels. The set contains
508 image pairs (one pair per second and its successor of
the original video) at a resolution of 640× 480 with overall
1326 annotated pedestrians. The dataset is challenging due
to the fact that pedestrians appear from multiple viewpoints
and at very small scales. Additionally, many pedestrians
are partially occluded (mostly by cars) and the background
is cluttered (e.g. poles, parking cars and buildings and peo-
ple crowds) as typical for busy city districts. The use of
motion information is complicated not only by the fact that
the camera is moving, but also by the facts, that the speed
is varying and the car is turning. Some sample views are

1http://www.mis.informatik.tu-darmstadt.de

given in Fig. 1.
Additionally we evaluate our detectors on the publicly

available ETH-Person [11] dataset. In [11], Ess et al. pre-
sented three datasets of 640 × 480 pixel stereo images
recorded in a pedestrian zone from a moving stroller. The
camera is moving forward at a moderate speed with only
minor rotation. The sets contain 999, 450 and 354 consec-
utive frames of the left camera and 5193, 2359 and 1828
annotations respectively. As our detector detected many
pedestrians below the minimum annotation height in these
sets, we complemented the sets with annotations for the
smaller pedestrians. Thus, all pedestrians with a height of
at least 48 pixels are considered for our evaluation.

6. Results
Since we are interested in performance on a system level

we refrain from evaluation in terms of FPPW but present
plots in terms of recall and precision. This allows a better
assessment of the detector as the entire detector pipeline is
evaluated rather than the feature and classifier in isolation
(cf. [8]). As a common reference point we will report the
obtained recall at a precision of 90%. We also show plots
of false positives per image to compare with previous work
(i.e. [11]). We start the discussion of results with the static
image descriptors and then discuss the benefit of adding mo-
tion features.

Results for the static features are given in the first col-
umn of Fig. 5. In combination with the HOG feature
MPLBoost significantly outperforms AdaBoost on all tested
sequences. In detail the improvement in recall at 90%
precision is: 27.7% on ETH-01 (Fig. 5(a)), 24.4% on
ETH-02 (Fig. 5(d)), 41.1% on ETH-03 (Fig. 5(g)) and
20.3% on TUD-Brussels (Fig. 5(j)). Also it can be ob-
served that HOG features in combination with MPLBoost
do better than HOG features in combination with a lin-
ear SVM on all four datasets. The gain in detail in recall
at 90% precision is: 8.5% on ETH-01 (Fig. 5(a)), 4.9%
on ETH-02 (Fig. 5(d)), 22.6% on ETH-03 (Fig. 5(g)) and
2.0% on TUD-Brussels (Fig. 5(j)). Compared to a SVM
with histogram intersection kernel (HIKSVM) the results
are divergent. While HIKSVM outperforms MPLBoost by
1.4% on TUD-Brussels (Fig. 5(j)) and by 0.4% on ETH-01
(Fig. 5(a)), on ETH-02 and ETH-03 MPLBoost performs
better by 1.9%(Fig. 5(d)) and 12.9%(Fig. 5(g)) respectively.

Next we turn to the results with HOG and Haar fea-
tures in combination with different classifiers. On the
TUD-Brussels dataset (Fig. 5(j)) we observe an improve-
ment of 0.3% at 90% precision for MPLBoost, while on
equal error rate (EER) the improvement is 4.3%. For the
ETH databases we yield equal or slightly worse results com-
pared to the detectors with HOG features only (Fig. 5(a),
(d), (g)). Closer inspection revealed minor image quality
(cf. Fig. 7) with respect to colors and lighting on the ETH
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(b) Including motion features (ETH-01)
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(c) Comparison to [11] (ETH-01)
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(d) Static image features (ETH-02)
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(e) Including motion features (ETH-02)
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(f) Comparison to [11] (ETH-02)
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(g) Static image features (ETH-03)
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(h) Including motion features (ETH-03)
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(i) Comparison to [11] (ETH-03)
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(l) Comparison of NMS scoring modes
Figure 5: Results obtained with different combinations of features and classifiers. Rows (1)-(3) show results on ETH-Person [11], Row (4) details the
results on the new TUD-Brussels onboard dataset. Note that first and second column show details on static and motion features in combination with different
classifiers considering all detections larger than 48 pixels with recall and precision as metric. Column three compares our detector to the system of [11] (only
pedestrians larger than 70 pixel are regarded, evaluation in FPPI) and shows a comparison of different non-maximum suppression approaches (Fig. 5(l)).

databases to be problematic, impeding a performance im-
provement (cf. Fig. 5(a), (d), (g)). Haar wavelets computed
on color channels are not robust enough to these imaging
conditions. Note however, that MPLBoost outperforms lin-
ear SVM, HIKSVM and AdaBoost for this feature com-
bination showing its applicability for pedestrian detection.
HIKSVM consistently obtained worse results with Haar
features for static as well as for motion-enhanced detectors.
Hence, these plots are omitted for better readability.

We continue to analyze the performance when IMHwd
motion features in combination with HOG features are used
for detection. The resulting plots are depicted in the second
column of Fig. 5. For HIKSVM we observe a consistent im-
provement over the best static image detector. In detail the
improvement at a precision of 90% precision is: 3.7% on
ETH-01 (Fig. 5(b)), 16.9% on ETH-02 (Fig. 5(e)), 2.2% on
ETH-03 (Fig. 5(h)) and 14.0% on TUD-Brussels (Fig. 5(k)).
In contrast to [4] we can clearly show a significant perfor-



Figure 6: Sample detections on the TUD-Brussels onboard dataset at equal
error rate for HOG, Haar, IMHwd and MPLBoost(K=4) (left column) and
HOG, Haar, IMHwd and SVM (right column). True positives are yellow,
false positives red.

mance gain using motion features. The difference in per-
formance however depends on the dataset and the distribu-
tion of viewpoints in the test sets. More specifically motion
is beneficial mostly for side views but also for 45-degrees
views whereas front-back views profit less from the added
motion features. This explains the lower performance gain
for ETH-01 (Fig. 5(b)) and ETH-03 (Fig. 5(h)) which are
dominated by front-back views. We also observe that linear
SVMs perform about as good as MPLBoost for this feature
combination, while HIKSVM does better than both except
for ETH-03. Sample detections for MPLBoost and linear
SVMs are shown in Fig. 6. Note that false detections dif-
fer between both classifiers. While MPLBoost tends to fire
on high frequency background structure, SVMs tend to fire
more often on pedestrian-like structures such as poles. We
explain the similar overall performance by the fact that mo-
tion features allow a good linear separability in particular
for side-views. This is consistent with our observation that
MPLBoost mainly uses appearance features for the clusters
firing on front-back views and more IMHwd features for
clusters which fire on side views. Additionally, MPLBoost
and SVMs again clearly outperform AdaBoost.

Combining IMHwd and HOG features additionally with
Haar features yields similar results as for the static case
with only little changes for MPLBoost. Interestingly linear
SVMs obtain a better precision on TUD-Brussels for this
combination, but loose performance on the ETH sequences
as discussed for the static detectors. More sophisticated fea-
ture combination schemes (e.g. [29]) may allow to improve
performance more consistently based on multiple features.

We have also analyzed the viewpoints different MPL-
Boost classifiers fire on. Fig. 8 depicts the two highest scor-
ing detections on TUD-Brussels of the detector using HOG,
IMHwd and Haar features for each of the four clusters.
Clearly, two clusters predominantly fire on side and 45-
degree side views while two clusters mostly detect pedes-

Figure 7: Sample detections at 0.5 FPPI (First column: System of [11],
Second column: Our motion-enhanced detector). Rows 1 and 2 corre-
spond to figures 5(f) and 5(i) respectively, however all detections (even
those smaller than 70 pixels) are shown. Note the false positive in the
lower right image is actually a reflection of a true pedestrian.

Figure 8: Sample detections for the different models learned by MPL-
Boost (K=4) using HOG, Haar, IMHwd. The models to the left respond
more strongly to side/45-degree views, the models to the right to front/back
views.

trians from front-back views.
Finally, we compare our detector to the system of

Ess et al. [11] (last column of Fig. 5). The original au-
thors kindly provided us with their system’s output in or-
der to allow for a fair comparison based on the modified
set of annotations. For each sequence we plot the best per-
formance of a static image feature detector and of the best
detector including motion features. We consistently outper-
form Ess et al. [11] on all three sequences without any re-
finement of detections by the estimation of a ground plane.
This refinement could obviously be added and would al-
low for further improvement. At 0.5 false positives per im-
age we improve recall compared to their system by: 18.6%
on ETH-01 (Fig. 5(c)), 32.2% on ETH-02 (Fig. 5(f)) and
37.3% on ETH-03 (Fig. 5(i)). To keep this comparison
fair, we only considered pedestrians larger than 70 pixels
similar to the original evaluation setting. Also note that
HIKSVM with motion features clearly outperforms MPL-
Boost, while both classifiers are almost on par when all
pedestrians as small as 48 pixels are considered. We also
outperform Zhang et al. [36] who report 64.3% recall at 1.5
FFPI even though their detector is trained on ETH-02 and
ETH-03 whereas our detector is trained on an independent
and more general multi-view training set. Sample detec-
tions of our detector as well as system results of [11] are
shown in Fig. 7. Note that our detector can detect very small
pedestrians and achieves better recall throughout all scales



by exploiting motion information.

7. Conclusion
In this work we tackled the challenging task of detecting

pedestrians seen from multiple views from a moving car by
using multiple appearance features as well as motion fea-
tures. We show that HIKSVM and MPLBoost achieve su-
perior performance to linear SVM-based detectors for static
multi-viewpoint pedestrian detection. Moreover, both sig-
nificantly outperform AdaBoost on this task. When addi-
tional motion features are used, HIKSVMs perform best
while MPLBoost performs as good as linear SVMs but in
any case better than AdaBoost. In general however, MPL-
Boost seemed to be the most robust classifier with respect
to challenging lighting conditions while being computation-
ally less expensive than SVMs.

Additionally, our careful design of the learning and test-
ing procedures improves detection performance on a per-
image measure substantially when the IMHwd motion fea-
tures of Dalal et al. [6] are used which has been identified
as an open problem in [4]. This improvement is observed
for pedestrians at all scales but particularly for side views
which are of high importance for automotive safety appli-
cations, since those pedestrians tend to cross the car’s tra-
jectory. Additionally, we show (contrary to [6]) that regu-
larized flows [35], allow to improve detection performance.
Adding additional Haar wavelets as features allowed to im-
prove detection performance in some cases, but in general
we observe that the feature is quite sensitive to varying cam-
eras and lighting conditions.

For future work, we will further investigate ways of en-
coding motion information in an ego-motion invariant way.
Also we are planning to work on the issue of partial oc-
clusion, which is a prominent drawback of global object
descriptors. Moreover, temporal integration by means of
tracking over multiple frames will help to bridge missing
detections while a more complete scene analysis featuring
3D scene understanding will help to prune false positive de-
tections.

Acknowledgements This work has been funded, in part,
by Toyota Motor Europe. Further we thank Christoph Zach
and Thomas Pock for publicly releasing OFLib, Andreas
Ess for his dataset and results and Piotr Dollár for helpful
discussion.

References
[1] M. Andriluka, S. Roth, and B. Schiele. People-tracking-by-detection

and people-detection-by-tracking. In CVPR, 2008.
[2] B. Babenko, P. Dollár, Z. Tu, and S. Belongie. Simultaneous learning

and alignment: Multi-instance and multi-pose learning. In ECCV
Faces in Real-Life Images, 2008.

[3] D. Comaniciu. An algorithm for data-driven bandwidth selection.
PAMI, 25(2):281–288, 2003.

[4] N. Dalal. Finding People in Images and Videos. PhD thesis, Institut
National Polytechnique de Grenoble, 2006.

[5] N. Dalal and B. Triggs. Histogram of oriented gradient for human
detection. In CVPR, 2005.

[6] N. Dalal., B. Triggs., and C. Schmid. Human detection using oriented
hist. of flow and appearance. In ECCV, 2006.

[7] P. Dollár, B. Babenko, S. Belongie, P. Perona, and Z. Tu. Multiple
component learning for object detection. In ECCV, 2008.

[8] P. Dollár, C. Wojek, B. Schiele, and P. Perona. Pedestrian Detection:
A Benchmark. In CVPR, 2009.

[9] M. Enzweiler and D. Gavrila. Monocular pedestrian detection: Sur-
vey and experiments. PAMI, to appear.

[10] M. Enzweiler, P. Kanter, and D. Gavrila. Monocular pedestrian
recognition using motion parallax. In IV, 2008.

[11] A. Ess, B. Leibe, and L. V. Gool. Depth and appearance for mobile
scene analysis. In ICCV, 2007.

[12] A. Ess, B. Leibe, K. Schindler, and L. van Gool. A mobile vision
system for robust multi-person tracking. In CVPR, 2008.

[13] P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively
trained, multiscale, deformable part model. In CVPR, 2008.

[14] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic re-
gression: a statistical view of boosting. The Annals of Statistics,
38(2):337–374, 2000.

[15] D. M. Gavrila. A bayesian, exemplar-based approach to hierarchical
shape matching. PAMI, 2007.

[16] D. M. Gavrila and S. Munder. Multi-cue pedestrian detection and
tracking from a moving vehicle. IJCV, pages 41–59, 2007.

[17] J. J. Gibson. The Ecological Approach to Visual Perception.
Houghton Mifflin, Boston, MA, 1979.

[18] T.-K. Kim and R. Cipolla. MCBoost: Multiple classifier boosting
for perceptual co-clustering of images and visual features. In NIPS,
2008.

[19] Z. Lin and L. S. Davis. A pose-invariant descriptor for human detec-
tion and segmentation. In ECCV, 2008.

[20] S. Maji, A. Berg, and J. Malik. Classification using intersection ker-
nel SVMs is efficient. In CVPR, 2008.

[21] K. Mikolajczyk, C. Schmid, and A. Zisserman. Human detection
based on a prob. assembly of robust part det. In ECCV, 2004.

[22] C. Papageorgiou and T. Poggio. A trainable system for object detec-
tion. IJCV, 38(1):15–33, 2000.

[23] P. Sabzmeydani and G. Mori. Detecting pedestrians by learning
shapelet features. In CVPR, 2007.

[24] E. Seemann, M. Fritz, and B. Schiele. Towards robust pedestrian
detection in crowded image sequences. In CVPR, 2007.

[25] E. Seemann, B. Leibe, and B. Schiele. Multi-aspect detection of
articulated objects. In CVPR, 2006.

[26] A. Shashua, Y. Gdalyahu, and G. Hayun. Pedestrian detection for
driving assistance systems: single-frame classification and system
level performance. In IV, 2004.

[27] D. Tran and D. Forsyth. Configuration estimates improve pedestrian
finding. In NIPS, volume 20, 2008.

[28] O. Tuzel, F. M. Porikli, and P. Meer. Pedestrian det. via classification
on riemannian manifolds. PAMI, 30(10):1713–1727, 2008.

[29] M. Varma and D. Ray. Learning the discriminative power-invariance
trade-off. In ICCV, 2008.

[30] P. Viola, M. Jones, and D. Snow. Detecting pedestrians using patterns
of motion and appearance. In CVPR, 2003.

[31] P. A. Viola and M. J. Jones. Robust real-time face detection. IJCV,
57(2):137–154, 2004.

[32] C. Wojek and B. Schiele. A performance evaluation of single and
multi-feature people detection. In DAGM, 2008.

[33] B. Wu and R. Nevatia. Cluster boosted tree classifier for multi-view,
multi-pose object detection. In ICCV, 2007.

[34] B. Wu and R. Nevatia. Optimizing discrimination-efficiency tradeoff
in integrating heterogeneous local features for object detection. In
CVPR, 2008.

[35] C. Zach, T. Pock, and H. Bischof. A duality based approach for
realtime TV − L1 optical flow. In DAGM, 2007.

[36] L. Zhang, Y. Li, and R. Nevatia. Global data association for multi-
object tracking using network flows. In CVPR, 2008.


