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ABSTRACT

The term of “World Englishes” describes the current and real state
of English and one of their main characteristics is a large diversity of
pronunciation, called accents. We have developed two techniques of
individual-based clustering of the diversity [1, 2] and educationally-
effective visualization of the diversity [3]. Accent clustering requires
a technique to quantify the accent gap between any speaker pair
and visualization requires a technique of stress-free plotting of the
speakers. In the above studies, however, we developed and assessed
these two techniques independently and in this paper, we assess our
technique of automatic accept gap prediction when it is used for
our stress-free visualization. Further, since CALL applications to-
day are not always used in a quiet environment, we introduce a fea-
ture enhancement (denoising) technique to improve noise-robustness
of accent gap prediction. Results show that our accent gap predic-
tion shows correlation of 0.77 to IPA-based manually-defined accent
gaps and that, by applying feature enhancement to noisy input ut-
terances, our technique can predict the accent gap that could be ob-
tained in a clean condition, when the SNR is larger than 10 [dB].
Index Terms: World Englishes, pronunciation clustering, visualiza-
tion, feature enhancement, noise-robustness

1. INTRODUCTION

English is often used as a tool of international communication and
this fact inevitably causes a large variation to English, depending
on the language background of speakers and listeners. If we focus
on the phonological and phonetic aspect, pronunciation diversity is
called accents. Recently, more and more teachers accept the concept
of World Englishes (WE) [4, 5] and they regard US and UK accents
just as two major examples of accented English. If one accepts the
concept of WE as it is, he can claim that there does not exist the
standard pronunciation of English. In this situation, there will be
a great interest in how one type of pronunciation compares to other
varieties, not in how that type of pronunciation is incorrect compared
to US or UK pronunciation.

These days, we can easily find good online resources of WE
such as the TED talk archive [6] and a series of online lectures at
many universities [7, 8]. If we can build an accent-based browser of
WE, with which spoken documents are searched for by querying the
speakers’ accent characteristics, it will become a good tool for learn-
ers to know the current and real state of English and for international
business persons to make themselves accustomed to the pronunci-
ation diversity of WE. We can find several textbooks that introduce
the pronunciation diversity of WE for international business persons.
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For this aim, so far, we have developed two techniques of
individual-based clustering of the pronunciation diversity [1, 2] and
educationally-effective visualization of the diversity [3]. Generally
speaking, clustering of N items requires the distance matrix among
the N items. The first technique was developed to predict the accent
gap between any speaker pair to obtain the pronunciation distance
matrix among speakers [1, 2]. Visualization of a distance matrix
is often done by using MDS (Multi-Dimensional Scaling) or draw-
ing its dendrogram. In either case, a result of visualization includes
stress or distortion. This is inevitable because the N items often lie
in a high dimensional space and visualization is a process of pro-
jecting the N items’ geometrical distribution in a high dimensional
space onto a two dimensional plane. For example, if learners are
scattered via MDS, some parts of the resulting chart have stress but
learners cannot know which parts of the chart include stress. Ped-
agogically speaking, this is a serious problem. Then, we proposed
a technique to realize stress-free visualization of the distance matrix
by introducing a learner’s self-centered viewpoint [3].

In these two previous works, however, the two techniques were
developed and assessed independently. In this paper, we firstly as-
sess our automatic prediction of the accent gap between two speakers
in the context of our stress-free visualization of learners. Secondly,
we introduce a feature enhancement (denoising) technique to im-
prove noise-robustness of accent gap prediction. These days, CALL
applications are used not only in private and quiet rooms but also
in public rooms such as classrooms. In these environments, some
noises are inevitably added to speech input to CALL systems. Prac-
tically speaking, noise-robustness is required [9] as it is required for
speech recognition systems.

The rest of this paper is structured as follows. Section 2
describes our previous works [10, 1, 2, 3] on IPA-based ac-
cent gap quantification, individual-based clustering of WE, and
educationally-effective visualization of WE. In Section 3, we set
up an experimental environment to assess our accent gap predic-
tion for our stress-free visualization and some results are shown.
In Section 4, after brief explanation of the feature enhancement
technique that we apply here, its effectiveness will be validated.
Section 5 concludes this paper with some future directions.

2. RELATED WORKS

2.1. Problem formulation of accent gap prediction

In our previous works, the problem of accent gap prediction between
two speakers was formulated as regression problem to predict the
reference accent gap of the two speakers automatically only by using
their utterances. Here, the reference gap was obtained by comparing
IPA transcripts of the two speakers’ utterances of the same and com-
mon paragraph. For this task, the Speech Accent Archive (SAA) [11]
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Fig. 1. The elicitation paragraph of 69 words and an example of IPA
narrow transcription (speakerID = german17)

was used because it is a collection of readings of the same paragraph,
provided by approximately 2,000 native and non-native speakers of
English all over the world. Figure 1 shows the common paragraph
used for recording and an example of IPA narrow transcription.

2.2. IPA-based accent gap quantification

By comparing two IPA transcripts of two speakers, it is possible to
quantify the accent gap between them [12, 13], where good corre-
lation was observed between the quantified gaps and subjectively-
defined gaps although prosodic characteristics are not described
well on IPA transcripts. In [10], we realized another quantification
method by using Dynamic Time Warping (DTW) between two tran-
scripts. For this, the distance matrix among all the kinds of IPA
phones used in the SAA had to be prepared. We built an HMM for
each of the most frequent 153 phones, not phonemes, in the SAA,
which can cover 95% of the phone instances found in the SAA.
For each of the other 5% phones, we substituted the HMM with
no diacritic that shares the same base phone. These HMMs were
trained using an expert phonetician’s twenty productions of each of
the 153 phones and were used to prepare the distance matrix among
the phones in the SAA. In [14], our DTW-based method of accent
gap quantification was compared to some conventional methods us-
ing other strategies [12, 13]. Our method showed better correlation
to the accent gap subjectively rated by human listeners.

2.3. Automatic prediction of accent gaps between speakers

The IPA-based accent gap calculated via DTW was automati-
cally predicted without IPA transcripts [1, 2]. As mentioned in
Section 2.1, this problem was treated as regression problem. What
kind of features should be used for accent gap prediction? It should
be noted that acoustic differences between the SAA utterances of
two speakers are not good features for prediction [15]. This is be-
cause acoustic differences are strongly influenced by non-linguistic
factors such as differences of age and gender, which are totally irrele-
vant to accent gap prediction. To avoid the non-linguistic influences,
in [1, 2], we used pronunciation structure analysis, which was pro-
posed in [15]. Generally speaking, non-linguistic differences, such
as differences in speaker and microphone, can be modeled mathe-
matically as static feature transformation such as frequency warp-
ing. Pronunciation structure analysis characterizes an utterance only
by contrastive features, which are mathematically proven to be inde-
pendent of any invertible static feature transformation.
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The pronunciation of a speaker in a red rectangle is compared to
those of some speakers in the SAA. She is placed at the origin and
the accent gap from her to a speaker in the archive is represented as
distance between them. The angle of each archive speaker indicates
his/her age. The archive speakers of the same gender are plotted in
the upper semicircle and vice versa.

Fig. 2. Visualization of pronunciation diversity from a speaker’s self-
centered viewpoint [3]

To predict the IPA-based accent gap, differential contrastive fea-
tures between two speakers were used for Support Vector Regression
[1, 2]. The performance was evaluated in two modes of speaker-
pair-open and speaker-open. In the former mode, the correlation
of IPA-based gaps to automatically predicted gaps was much higher
than that of IPA-based gaps to phoneme-based gaps, which were cal-
culated via DTW of phonemic transcripts, not phonetic transcripts.
Phonemic transcripts are broader and more abstract description than
phonetic transcripts. Experimental procedures in [1, 2] will be ex-
plained in Section 3.

2.4. Educationally-effective visualization of the diversity

By using IPA-based gaps or automatically predicted gaps between
any speaker pair out of N speakers, we can obtain the accent gap
matrix or the pronunciation distance matrix among the N speakers.
Two well-known methods to visualize a distance matrix are drawing
an MDS-based scatter chart and a dendrogram from the matrix. Both
methods try to project the geometrical distribution of the N speak-
ers in the original high dimensional space onto a two-dimensional
plane. If those methods are used for learners in a language class and
the result is fed back to them, they will receive one and the same
visualization result. It is expected, however, that different learners
may pay special attention to different parts of the result. A learner’s
main interest will be in the relations from himself to others, which
should be emphasized for visualization, compared to the other rela-
tions. Learner-dependent visualization will be practically preferable.

A problem exists both in the above two methods. Projection
of a geometrical shape in a high dimensional space onto a two-
dimensional plane usually causes distortion or stress. This stress
can be avoided for a learner in the N speakers by visualizing only
a part of the distance matrix, which should be related to that spe-
cific learner. In other words, stress is inevitable when one attempts
to visualize the entire matrix of the N speakers. Suppose that that
specific learner is speaker n, {dnj} in the matrix are relations from
that learner to others and {dnj} can be visualized even on a one-
dimensional plane with no stress.

In [3], for speaker n, we used {dnj} and other non-linguistic at-
tributes of the N speakers for effective visualization. Figure 2 shows
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Fig. 3. Two modes of speaker-pair-open and speaker-open

Table 1. Three kinds of correlation for accent gap prediction
speaker-pair-open speaker-open phoneme-based

0.87 0.50 0.76

an example. Here, the age and gender are also referred to. We have
a strong reason why we adopted the non-linguistic factors of age and
gender in Figure 2. It is interesting that a learner’s listening ability is
sometimes overfitted to a specific speaker, i.e., his teacher. A learner
can understand easily what his teacher says but understand poorly
what other teachers say. Learners’ robustness of listening against
differences of age and gender is known to be lower than that of na-
tive speakers [16, 17]. Considering this fact, we introduced age and
gender attributes to visualization.

3. ACCENT GAP PREDICTION FOR STRESS-FREE
VISUALIZATION

As described in Section 1, our three previous works were conducted
independently and, especially, technical assessment of our method of
accent gap prediction and that of stress-free visualization was done
separately. In this section, the former technique is assessed when it
is combined with the latter one.

3.1. Three modes of automatic accent gap prediction

In [2], automatic accent gap prediction between two speakers was
examined in two modes, which are a speaker-pair-open mode and
a speaker-open mode. Difference between the two is illustrated in
Figure 3. The task of accent gap prediction takes two speakers as
input and predicts the accent gap between them. So, in the former
mode, training speaker pairs and testing speaker pairs are not over-
lapped at all. However, training speakers are allowed to be found
in testing speaker pairs and testing speakers can be found in train-
ing speaker pairs. Openness is guaranteed only in terms of speaker
pairs. On the other hand, in a speaker-open mode, all the available
speakers are divided into training speakers and testing speakers, and
training speaker pairs are formed only from the training speakers.
As for testing speaker pairs, only the testing speakers are used. In
this mode, openness is guaranteed in terms of speakers.

When we can use N speakers for experiments, the number of
speaker pairs is N(N−1)/2. If we divide these pairs into two
halves for training and testing, the number of training speaker pairs is
N(N−1)/4 in a speaker-pair-open mode. In the other mode, since
the number of training speakers is N/2, that of training speaker pairs
is N(N−2)/8, which is smaller than the half amount of training data
in a speaker-pair-open mode.

Another large difference exists between the two modes, which
is related to the regression mechanism of Support Vector Regres-
sion (SVR). In a speaker-pair-open mode, when speaker pair A-B is

training testing
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Speakers are shared only partially.
Speakers pairs are not shared.

Fig. 4. A new mode of accent gap prediction
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Fig. 5. Pronunciation structure extraction

found in the testing data, speaker pairs of A-{x} (x̸=B) and B-{y}
(y ̸=A) can be found in the training data. In SVR, input features
are mapped into a very high-dimensional feature space, where inner
product between an input sample and each of all the training samples
is calculated by using a kernel function. Values of inner product can
be regarded as similarity scores and regression is done by using these
scores as weights. When one wants to predict the accent gap of A-B
in a speaker-pair-open mode, the prediction performance is expected
to be affected by whether {x} include a speaker who is close to B or
{y} include a speaker who is close to A in the training data.

On the other hand in a speaker-open mode, when A-B is found in
the testing data, the training data includes neither of A or B. The pre-
diction performance is easily expected to be influenced by whether
or not a speaker pair who are close enough to A-B is found in the
training data.

We can claim that the task of accent gap prediction in a speaker-
pair-open mode comes to treat speaker-wise pronunciation diversity
and that the task in a speaker-open mode has to handle speaker-pair-
wise pronunciation diversity. In other words, in the former mode,
the magnitude of pronunciation diversity is estimated to be O(M)
and it is to be O(M2) in the latter mode, where M is the magnitude
of speaker diversity. Due to these two kinds of increased difficulty,
the regression performance in a speaker-open mode is much lower
than that in a speaker-pair-open mode. Table 1 shows three kinds of
correlation [2], correlation of predicted gaps to IPA-based gaps in
the two modes, and that of phoneme-based gaps to IPA-based gaps.
The phoneme-based gaps are calculated by conducting DTW over
phonemic transcripts of the SAA utterances, which are converted
from the original SAA phonetic transcripts.

Stress-free visualization [3] was proposed to locate a new
speaker, who is a central speaker in Figure 2, adequately in the
archive speakers of WE. In this case, it is reasonable to consider that
all the archive speakers have their own IPA transcripts while a new
speaker does not. Training of SVR is done by using all the archive
speakers and testing is done by predicting the accent gap between
that new speaker and each of the archive speakers. Strictly speak-
ing, the two modes investigated in [2] cannot be applied directly to
this experimental setup, which is illustrated in Figure 4. In this new
mode, a testing speaker is always a new speaker and is not included
in the training data, and in this sense, accent gap prediction is done
in a speaker-open way. However, accent gap is always predicted
between a new speaker and a known archive speaker, who is used
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Fig. 6. Procedure to calculate the pronunciation structure
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as training speaker of SVR. In this sense, accent gap prediction is
done only in a speaker-pair-open way. Namely, the mode adopted
in [3] can be placed between the two modes examined in [2] and
the performance in the new mode will be somewhere between their
performances.

In the following sections, the regression performance in the new
mode is experimentally investigated.

3.2. Pronunciation structure analysis

Figure 5 conceptually illustrates the process of pronunciation struc-
ture extraction from an input utterance [15]. The utterance, which is
a feature vector sequence, is converted to a sequence of distributions.
From every pair of them, f -divergence-based distances are calcu-
lated. The resulting distance matrix is called speech structure or pro-
nunciation structure. Due to transform-invariance of f -divergence
[18], the structure was shown to be very independent of static and
non-linguistic variations [15]. This structural representation was al-
ready applied to speech recognition and synthesis [19, 20], pronunci-
ation scoring [21], pronunciation error detection [22], pronunciation
clustering [23], and dialect analysis [24]. In this paper, the Bhat-
tacharyya distance is used as one of the f -divergences.

3.3. Procedure of accent gap prediction

The pronunciation structure was extracted from each of spoken para-
graphs of the SAA. Here, the paragraph-based speaker-independent
HMM was trained firstly and it was used as Universal Background
Model (UBM). Then, it was adapted through MAP (Maximum A
Posteriori) adaptation to each speaker. The initial model for the
UBM-HMM was prepared by concatenating American English (AE)
phoneme HMMs trained with the WSJ corpus [25] by referring to the
phoneme sequence derived from the CMU pronunciation dictionary
[26]. The initial model was updated through ML-based parameter
reestimation by using all the 369 available speakers of the SAA1.
This UBM-HMM was then adapted to each of the 369 speakers.
Acoustic features used for paragraph-based HMMs were MFCC +
∆MFCC. Figure 6 schematizes the procedure adopted in this paper
to calculate the pronunciation structure. The number of states of a
paragraph-based HMM is 3N , where N is the number of phonemes
of the SAA paragraph (=221).

1Many speakers in the SAA deleted some words in the SAA paragraph or
inserted new words. They were not used in the experiments.

For each speaker-adapted paragraph-based HMM, the averaged
Bhattacharyya distance (BD) between every pair of the phoneme
instance HMMs was calculated, where the i-th phoneme instance
HMM in the paragraph HMM is a three-state HMM spanning from
the (3i−2)-th state to the 3i-th state of that paragraph HMM. BD
was calculated by using MFCC features only. Finally in Figure 6,
the pronunciation structure of a spoken paragraph of the SAA was
obtained as 221×221 distance matrix. As illustrated in Figure 7,
from two distance matrices of speakers S and T , we can derive a
difference matrix D to characterize the accent gap between them.

Dij = |Sij − Tij |, (i < j). (1)

For SVR, all the elements of {Dij} were used as input features and
the total number of the features is 24,310 (=221×220/2). The target
of prediction is the pronunciation gap calculated by using the IPA
transcripts of S and T . ϵ-SVR in LIBSVM [27] was used with the
radial basis function kernel of K(x1, x2) = exp(−γ|x1 − x2|2).

3.4. Results and discussion

Using all the available speakers of the SAA corpus, 5-fold cross-
validation experiments were done in the new mode explained in
Section 3.1. Here, for each of the testing speakers, the accent gaps
between him/her and the training known speakers were predicted.
Using these gaps and their IPA-based reference gaps, the correla-
tion for that testing speaker was calculated. By conducting cross
validation, the averaged correlation of the predicted gaps to IPA-
based gaps over all the testing speakers was obtained as 0.77. This is
surely lower than the performance in a speaker-pair-open mode but
still very comparable to that of phoneme-based accent gap calcula-
tion. Although the practical usefulness of the proposed technique for
learning WE is not discussed here, the performance obtained exper-
imentally may be able to be interpreted in the following way.

Phonemes are often explained as the minimum linguistic units
that ordinary listeners can perceive, and they are defined dependently
on the native language of those listeners. Similarly, phones with di-
acritics are said to be the minimum linguistic units that expert pho-
neticians can perceive and they are independent of languages that are
spoken. Phoneme-based accent gap calculation was done via DTW
between American English (AE) phonemic transcripts that were con-
verted from the SAA IPA phonetic transcripts. Logically speaking,
we can claim that AE phonemic transcripts can be regarded as results
of ordinary American listeners’ perception while IPA phonetic tran-
scripts are surely results of expert phoneticians’ perception. Since
the correlation of phoneme-based gaps to IPA-based gaps and that
of automatically predicted gaps to IPA-based gaps is very compara-
ble, our proposed method of predicting the accent gap for stress-free
visualization may be comparable to ordinary AE listeners’ perfor-
mance of prediction. Further, we can say that the performance shall
be improved by using additional features already examined in [2].

4. NOISE-ROBUST PREDICTION OF ACCENT GAPS

In the current section, we aim at improving noise-robustness of
accent gap prediction by introducing a technique of feature en-
hancement or noise suppression. Here, as Deep Neural Network
(DNN)-based feature enhancement, we examine Deep Denoising
Auto-Encoder (DDAE), originally proposed for noise-robust speech
recognition [28].
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Fig. 8. Deep denoising auto-encoder tested in this paper

4.1. Deep denoising auto-encoder

DDAE uses DNN as feature transformer and attempts to reconstruct
clean features directly from their noisy version. Figure 8 shows the
DDAE tested in this paper. It has three hidden layers and the number
of nodes of each hidden layer was fixed to 1024. This DDAE can
estimate clean features as

x̂t = Uh(3)(dt) + c , (2)

h(3)(dt) = σ(W (3)h(2)(dt) + b(3)) , (3)

h(2)(dt) = σ(W (2)h(1)(dt) + b(2)) , (4)

h(1)(dt) = σ(W (1)dt + b(1)) , (5)

where U and W (n) are weight matrices and c and b(n) are bias vec-
tors. dt is an input speech feature vector, composed of seven con-
secutive frames of MFCC+∆+∆∆ (7×39=273 dimensions). Output
feature vector x̂ is a 39-dimensional vector. The DDAE was pre-
trained with Restricted Boltzmann Machine (RBM) for each layer
and finally fine-tuned by applying back-propagation based on the
minimum mean square error criterion.

4.2. Accent gap prediction in noisy environments

For this experiment, noise addition was done to all the utterances of
the 369 speakers. Considering practical situations of using CALL
applications, we selected two types of noise from the JEIDA-NOISE
database [29], computer noise and machine noise. The SNR levels
of the resulting noisy utterances were set to 0, 5, 10, 15, and 20
[dB] and these utterances will be depicted as NU-1. The feature-
enhanced version of NU-1 through DDAE will be called as EU-1.
For accent gap prediction, the UBM was trained only with clean
utterances, which was MAP-adapted to every paragraph utterance of
NU-1 and EU-1.

For training of DDAE, utterances of 1,016 speakers in the SAA,
which are not overlapped with the above 369 speakers, were used
with the above two kinds of noise. The SNR used for training DDAE
was also from 0 to 20 [dB], meaning no acoustic mismatch with
respect to the type and level of noise. It should be noted, however,
that a single network of DDAE was used commonly for all the types
and levels of noise. For testing DDAE, due to lack of time, a single
testing set out of the five sets of 5-fold cross validation was used.

To test DDAE in the case of a new type of noise, we additionally
selected another kind of practical noise, babble noise, and added it
to the 369 speakers’ utterances at the SNR levels of 0 to 20 [dB],
which are referred to as NU-2 henceforth. Their feature-enhanced
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Fig. 9. Effects of DDAE in closed-noise environments
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Fig. 10. Effects of DDAE in open-noise environments

version through DDAE is EU-2, where DDAE was trained only with
computer noise and machine noise.

4.3. Results and discussion

Figure 9 and Figure 10 show the correlations in closed-noise envi-
ronments (computer noise and machine noise) and those in open-
noise environments (babble noise), respectively. Different from
speech recognition applications, CALL applications are expected not
to be used in environments with unexpected and heavy noise such as
cars, trains, airplanes, streets, restaurants, etc. It is also highly ex-
pected that users will remove or turn off noise sources such as radios
before using CALL applications. Therefore, performance assess-
ment of DDAE in closed-noise environments can be said to be still
practical. Clearly shown in Figure 9, DDAE can improve the corre-
lation very effectively. If the SNR of input speech is larger than 5
[dB], the accent gap that could be obtained in a clean condition can
be predicted with DDAE. The correlation at the SNR being 5 [dB] is
0.77 while that in a clean condition is 0.78.

In open-noise environments, where babble noise is used, we can
say that DDAE is still very effective. It seems that the SNR of 10
[dB] is required to predict the accent gap of a clean condition. The
correlation at the SNR being 10 [dB] is 0.75 while that in a clean
condition is 0.78.

5. CONCLUSIONS

In many classes of English, utterances of a single accent are often
accepted as model utterances. In Japan, General American (GA) is
often used and in Europe, Received Pronunciation (RP) is widely
used. In this situation, learners will regard mistakenly that type of
English as the English and will expect that other English users will
use that accent when they speak to those learners. Once the learners
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