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a b s t r a c t

We review recently reported scanned-probe capacitance measurements of electrons entering silicon

donors in a gallium-arsenide heterostructure. Single-electron peaks were observed in the capacitance-

versus-voltage curves. The precise voltage position of the peaks varied with the location of the probe,

reflecting a random distribution of silicon within the donor plane. In addition, three broader capacitance

peaks were observed independent of the probe location, indicating clusters of electrons entering the

system at approximately the same voltages. These broad peaks are consistent with the addition energy

spectrum of donor molecules, effectively formed by nearest-neighbor pairs of silicon donors.

& 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The ability to manipulate and probe small numbers of dopant
atoms in semiconductors represents an emerging line of research,
motivated by the continued miniaturization of semiconductor
devices and potential applications where the dopants themselves
form the functional part of a device [1–5]. Although donor

properties are well understood with respect to bulk semiconduc-
tors, new questions arise in nanosystems such as the interaction
between the donor confinement potential and the potential
applied by nearby nanometer-scale electrodes. Moreover, because
donors can be well approximated as hydrogenic atoms using an
effective-mass theory, experiments on small numbers of donors
have the potential to be a testing ground for fundamental
predictions of atomic and molecular physics [6,7].

Electron tunneling spectroscopy through isolated dopants has
been observed previously in two- and three-terminal devices such
as gallium-arsenide double-barrier heterostructures and more
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recently in gated silicon nanowires [8,9]. Moreover, Geim et al.
[10] identified resonance in double-barrier devices, likely due to
two closely spaced donors, effectively forming donor ‘‘molecules’’.
In contrast to the experiment described here, these ground-
breaking resonant-tunneling measurements were not able to
resolve the characteristic electronic spectrum of the donor pairs.
Here we review and discuss localized measurements of the
electron addition spectrum of silicon donors in a gallium-arsenide
heterostructure using a scanning probe technique—equivalent
to a one-terminal device [11]. This study is the first example
of single-electron capacitance spectroscopy (SECS) [12] performed
directly with a scanning probe tip. In addition to the single-
electron peaks, broader peaks were observed that are consistent
with donor molecules, effectively formed by nearest-neighbor
pairs of silicon donors [11].

2. Scanned-probe method

The technique is based on scanning charge accumulation
imaging, which in this context can be considered as a scanned-
probe version of SECS, pioneered by Ashoori and coworkers
[12–14]. Fig. 1(a) shows schematically the main components
of the experiment. The key sensing element is a metallic tip
connected to a charge sensor constructed from cryogenic high-
electron-mobility transistors, achieving a sensitivity of 0.01e

(Hz)�1/2 [15]. The measurement consisted of monitoring the tip’s
ac charging, as a function of dc bias voltage Vtip, in response to an
ac excitation voltage Vexc applied to an underlying electrode. The
measurement takes place with the sample and tip immersed in
liquid helium-3 at a temperature of 280 mK.

The sample we employed was grown by molecular beam
epitaxy and is of exceptional quality, similar to the samples used
in previous SECS experiments that probed lithographically defined
quantum dots [12,13]. The conduction band profile of the sample
is shown in Fig. 1(b). A degenerately doped substrate acts as a
metallic electrode. Above this is a two-dimensional (2D) electron
layer. This represents an ideal base electrode from which charge
can enter the higher layers in the sample. It is separated from
the metallic substrate by a superlattice tunneling barrier; the
tunneling rate into the 2D layer is an order of magnitude greater
than the 20 kHz excitation frequency employed for all the
measurements shown here. Hence for this experiment, the 2D
layer can be regarded as being in ohmic contact with the
substrate. Positioned 20 nm above the 2D conductor is the donor
layer, which consists of silicon atoms confined to a single
monolayer with respect to the z direction, but randomly
positioned with respect to the x–y direction with an average
density of 1.25�1016 cm�2. Charge may also become trapped in
the cap layer, which is 30 nm above the donors.

For the local probe measurements, we used a PtIr tip with a
radius of curvature of 50 nm and held its position fixed at a
distance of 1 nm from the exposed GaAs surface. Under these
conditions, the radius of the area over which we are probing is set
mostly by the tip–donor-layer separation, which is approximately
60 nm [16]. Given the �60 nm size of the probed area and average
dopant density, we expect to be sensitive to about 140 donors.
Fig. 1(c) shows an example of the expected energy landscape of
the donor-layer quantum system, in the effective-mass picture [6].

In general, single electrons can be resolved by capacitance
techniques at helium temperatures if the energy spacing to add
successive electrons is on the millivolt scale or greater. As
described in detail in Ref. [17], by measuring the capacitance C,
we can detect charges entering the quantum system below the
probe. Here for simplicity, we discuss the tip–sample system
using a parallel-plate picture. A more accurate model that

includes the fringing field of a sharp tip is discussed in detail in
Ref. [16]. We define the addition energy en as the energy for which
the nth electron enters the donor layer. As Vtip increases from zero,
relative to the 2D-layer chemical potential, the energy of the
donor layer with respect to electrons decreases as �atipeVtip,
where atip is the geometry-dependent proportionality constant. In
other words, electrons in the underlying 2D electrode are pulled
toward the donor layer. The first electron enters when �atipeVtip

crosses the ground state energy of the one-electron quantum
state, e1 ¼ E(1). As Vtip increases further, the second electron
will be induced to enter when �atipeVtip equals the energy
difference between two-electron and one-electron ground states,
e2 ¼ E(2)�E(1). In general, en ¼ E(n)�E(n�1), where we define
E(0)�0. The capacitance C is given by C ¼ dqtip=dV / qhni=qm,
where dV corresponds to the excitation voltage, m is the donor-
layer chemical potential, and /nS the expectation value for the
number of electrons in the donor system [17]. Essentially, if an
electron is able to enter the quantum system, the excitation
voltage causes it to resonate between the system and the
underlying electrode—giving rise to a peak in the capacitance.

3. Measurements

Before introducing the local probe measurements, we first
establish a baseline for the characteristic sample capacitance by
showing a measurement we performed on a sample cut from the
same wafer with a microfabricated gate electrode in place of the
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Fig. 1. (a) Schematic of the key layers in the gallium-arsenide heterostructure

sample and the measurement technique. An excitation voltage applied to the 2D

electrode can cause a charge to resonate between the Si donors and the 2D layer.

This results in image-charge appearing on a sharp conducting tip. A cryogenic

transistor attached directly to the tip is used to measure the charging. (b)

Conduction band diagram of the sample. (c) Schematic of the area probed by the

technique. The randomly positioned hydrogenic potentials represent ionized Si

donors.

S.H. Tessmer et al. / Physica B 403 (2008) 3774–3780 3775



Author's personal copy

tip. This is a more standard measurement, similar to the study
performed by Hampton et al. [18]. Fig. 2(a) shows the resulting
curve as a function of gate voltage, which we interpret in the
following way: For sufficiently negative gate voltage, the 2D layer
below the donors is depleted completely. As no charge can tunnel
vertically, the signal is simply the substrate-to-gate capacitance.
At around �1.0 V, as charge begins to enter the 2D layer; the
capacitance increases, forming a step feature, as indicated. At
around +0.1 V, charge begins to enter a second potential well
formed below the cap layer. This gives a second capacitance step
feature, as indicated.

For the voltage range displayed in Fig. 2(a), the signal showed
negligible phase shifts and hence can be considered as purely
capacitance. This also holds for the local probe data shown in
Figs. 2(b–e). Also for both types of measurements, all voltages
are plotted with respect to the effective zero voltage. This is the
voltage for which no electric field terminates on the top electrode
(gate or tip). It is shifted from the applied voltage by an amount
equal to the contact potential, Vcontact. For the PtIr tip used in the
local probe measurements, Vcontact ¼ 0.60 V, as determined from
in situ Kelvin Probe measurements [14]. For the gated-capacitance
data, the observed shift in the curves implies Vcontact ¼ 0.12 V; this
value agrees reasonably well with the reported work functions
of Ti and Au, in comparison to Pt and Ir [19].

In addition to showing the accumulation of electrons in the 2D
and cap layers, the gated-capacitance measurement allows us to
estimate the density of ionized donors. This follows from the
observation that the 2D electron system is fully formed at zero
applied voltage. Of course, ionized donors introduce electric field;
this in turn changes the slopes of the conduction band potential as
shown in Fig. 1(b). These slopes must be sufficiently steep to allow
the conduction band to dip below the Fermi level at the 2D
location. Solving Poisson’s equation with this constraint yields a
density of ions equal to at least 90% of the growth Si density
of 1.25�1016 cm�2. Hence, most of the Si atoms have indeed
donated an electron and are ionized at zero applied potential.

For the local probe measurements, we began each data run by
scanning the tip in both tunneling and capacitance modes to check
that the surface was sufficiently clean and free of major electronic
defects [15]. To acquire the capacitance curves, we positioned
the tip about 1 nm from the GaAs surface and held it at the
fixed location while sweeping the tip voltage. To compensate for
vibrations and drift effects, several curves were averaged together to
achieve an acceptable signal-to-noise ratio. The resulting local
capacitance curves consistently showed peaks in the vicinity of
Vtip�0.5 V, which were not present in the gated measurement.

To display the characteristic structure, Fig. 2(b) shows the
average of three measurements (black dots) that exhibited the
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Fig. 2. (a) Gated-capacitance measurement performed using a planar gold–titanium gate deposited on the sample surface. The capacitance increases with gate voltage,

forming three plateaus. The sketches show our interpretation as different layers below the gate accumulate charge. We do not display the data beyond 1.0 V, for which the

signal begins to show a significant phase shift, indicating that charge is leaking directly onto the gate electrode. For this measurement, the gain of the capacitance signal was

determined from sample geometry and gate area (5.7�10�7 m2). For all subsequent measurements, the signal was amplified with our HEMT charge sensor, for which the

gain was measured independently. (b) Capacitance measured with our local probe superposed with the gated measurement. The local measurement is the average of

measurements acquired at three locations. Three broad peaks labeled A–C were consistently observed. For both the local and gated curves, the voltage scales are plotted

relative to the effective zero voltage, compensating for the contact potentials between the materials. The excitation voltage amplitude was Vexc ¼ 15 mV rms for both curves.

The vertical scale of the probe measurement is exaggerated greatly relative to the gated measurement. (c) Capacitance variation DC versus tip voltage curve over the voltage

range shown in the gray circle in (b). These data were acquired at a single location but with two different excitation voltage amplitudes: ‘‘coarse’’, 15.0 mV rms and ‘‘fine’’,

3.8 mV rms. The inset shows two Vexc ¼ 3.8 mV measurements acquired under identical conditions but with a time delay of 9 h. (d) Three curves acquired at the voltage

marked by the arrow in (c) (same location) with an excitation voltage of 3.8 mV. The vertical scale has been converted to charge units and labeled as Dqtip to indicate that

we have subtracted away the background charge. Below we plot the average of the three curves. The measurement is compared to a model curve that shows the semi-

elliptical peak shape expected for single-electron tunneling [13,16]. The width of the model curve is set by the 3.8 mV excitation amplitude; the asymmetry is caused by the

lockin amplifier’s output filter, which is included in the model. (e) Comparison of the peak shapes for isolated peaks for both the coarse and fine excitation amplitudes. The

average data of (d) is re-plotted (black) along with an especially well-isolated peak observed at a different location and with the coarse excitation voltage of 15.0 mV (gray).

The data are compared to two model curves that show the expected peak shapes for single-electron tunneling for the coarse and fine measurement parameters.

S.H. Tessmer et al. / Physica B 403 (2008) 3774–37803776
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lowest noise, acquired at different locations. Three broad peaks,
labeled A–C, are clearly resolved. For comparison, these data are
superposed with the gated-capacitance curve (solid). Note that
the two data sets have different voltage scales. This is expected
given that the geometry-dependent alpha parameter should
be different for the two measurements. For the gated measure-
ment, the parallel-plate geometry and sample growth parameters
give a proportionality constant of 1/4.0 with respect to the
donor layer. For the local probe measurements, the relative scale
factor between the two voltage ranges used in Fig. 2(b) implies
atip ¼ 1/10.8. This is a reasonable value consistent with the
expected tip–sample mutual capacitance [20,21]. Clearly, the
broad peaks appear only in the local measurements; to help
explain their physical origin, we first examine fine-structure peaks
that also appear in the data.

Fig. 2(c) shows the capacitance variation versus tip voltage
curve over the voltage range shown in the gray circle in Fig. 2(b).
For these curves the background capacitance was subtracted away
using a bridge circuit. Here we compare data acquired at a single
location (not the average of three locations as in Fig. 2(b)) with
two different excitation voltage amplitudes, as indicated. The
coarse measurement (gray) is shifted vertically for clarity. The fine
measurement (black) shows a series of small peaks. To gauge
the reproducibility of the fine-structure peaks, the inset shows
two measurements acquired under identical conditions but with a
time delay of 9 h. We see the structure is reproducible partially,
where the asterisks mark voltages for which peaks are missing or
shifted in position. The observation that some peaks reproduce
with almost identical shape and position highlights the level
of stability the system achieves over several hours. The missing
and shifted peaks likely reflect long time scale variations due to a
small percentage of electrons trapped in deep metastable states
such as Dx centers [22].

Fig. 2(d) shows three curves acquired at the voltage marked by
the arrow in Fig. 2(c), with their average shown below. This peak
was selected as it is relatively well isolated from neighboring
peaks. For this plot we have converted the vertical scale to show
the rms charge induced on the tip in units of the electron charge e.
Fig. 2(e) shows isolated peaks for both the coarse (gray) and fine
(black) excitation amplitudes. For the coarse data, the peak was
especially well isolated. The data are compared to two model
curves that show the expected semi-elliptical peak shapes for
single-electron tunneling for the coarse and fine measurement
parameters [16]. With regard to the widths of the peaks, in the
low-temperature limit, the widths of the model curves are set by
the excitation amplitudes; we see that the single-electron model
agrees reasonably well with the measurements. With regard to
the vertical scale, if all the electric field lines were captured by the
tip, the magnitude of model single-electron peaks would be 0.99e

and 0.92e. However, to achieve a good fit, the heights of the model
curves are scaled by 0.075. This peak height is roughly consistent
with expected captured electric flux for single-electron charging
within the donor layer, for which the scale factor should be
approximately atip ¼ 1/10.8 ¼ 0.093 [16,21]. Hence we conclude
that the isolated fine-structure peaks likely reflect individual
electrons entering the donor layer below the tip.

4. Analysis of broad peaks

Given that the fine-structure peaks likely mark electrons
entering the donor layer, a natural explanation for the broader
peaks (A–C) is that they are formed by clusters of several electrons
entering at nearly the same energy. If we convert capacitance
to charge units, we find that each peak corresponds to roughly
15 electrons entering the donor system, as described in more

detail below. The reason such peaks were not seen in Fig. 2(a) and
previous capacitance studies, such as Ref. [18], is probably the
larger area probed in gated measurements. Micron-size areas are
more likely to contain at least one severe defect or impurity that
allows charge to penetrate the material and effectively short out
interactions with the donor system [11].

What physics could give rise to the broad resonances observed
in the local measurements? It is possible that dense groupings of
the donors result in electron puddles acting as small quantum
dots [23]. In that scenario, an ensemble of puddles that have
nearly the same addition energy spectra could explain the peaks.
However, given that the positions of donors should be random, it
seems unlikely that 15 such puddles would form within a radius
of only 60 nm with sufficiently similar characteristics. Considering
the opposite limit, a candidate for identical quantum objects is
single silicon donors. However, isolated Si donors in GaAs and
AlGaAs can bind exactly two electrons [22], analogous to an
isolated hydrogen ion in free space, which can also accommodate
two electrons and form the negative H� state. Hence, neglecting
for the moment the interaction with the tip, an ensemble of
isolated donors would yield only two broad peaks in the
capacitance spectrum, whereas we observe three. Pairs of closely
spaced silicon donors represent another candidate quantum
system, which we will refer to as two-donor molecules (2DMs).

4.1. Configuration-interaction calculations

To explore the addition spectrum of 2DMs, we have calculated
the electronic energies of two silicon donors separated by a
distance d, but otherwise isolated. The calculations were
performed using the configuration-interaction method [24,25] in
the effective-mass theory [6,22]. In this approximation, a donor is
regarded as a hydrogenic atom with an effective Bohr radius an0 ¼

4p�0k_2=mne2 and effective Rydberg energy Ry* ¼ e2/8pe0ka0*,
where e0 is the permittivity of free space, k the dielectric constant,
m* the electron effective mass, and e the electron charge. In our
system, Si donors reside in Al0.3Ga0.7As, for which an0 ¼ 7:3 nm and
Ry* ¼ 8.1 meV [26]. The results for the first four electrons are
plotted in Fig. 3(a). Interestingly, E(3) is lower than E(2) for large
separations, but the two lines cross at �3a0. This means that at
large separations, the molecule holds three electrons, similar to
the H� state; but for small separations only two electrons can be
accommodated. The intuitive picture is that the neutral system
can polarize and weakly bind the third electron. But this is
prohibited for small separations for which the direct Coulomb
repulsion dominates. This effect has been the subject of previous
studies. We see that E(4) is always higher energy than E(3), hence
the fourth electron is never bound.

To compare the calculations to our measurements, it is
instructive to gauge the likelihood of finding 2DMs in our system.
Fig. 3(b) shows the statistical nearest-neighbor distances for
donors dispersed randomly within a 2D layer. Nearest-neighbor
distances essentially follow Poissonian distributions [27]; select-
ing a donor at random, it can be shown that the probability to find
its mth nearest neighbor between a distance R and R+dR is

ðpR2rÞm�1

ðm� 1Þ!
2pRr expð�pR2rÞdR,

where r is the 2D density. For the curves shown in Fig. 3(b), we
used the nominal donor density of our sample, r ¼ 1.25�1016

cm�2. With regard to 2DMs, we see that on average the first
nearest neighbor will be less than an

0 away. Hence we expect
that many 2DMs will be present in the experiment. However, as
shown in Fig. 3(a), the configuration-interaction calculations
predict only two bound electrons for these small separations;
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this is inconsistent with our observation of three peaks. With
regard to isolated donors, Fig. 3(b) shows that only a small fraction
of the donors will have no neighbors within one effective Bohr
radius. Hence it is unlikely that isolated donors will contribute
significantly to the addition spectrum.

Thus far we have neglected the perturbative influence of the tip.
With respect to the donor-layer plane, the positive tip voltage gives a
curved background potential that tends to increase the confinement.
We can therefore improve our theoretical model by including an
image-charge in the calculations that approximates this potential.
The solid curve of Fig. 3(c) shows the expected confinement
potential for Vtip ¼ 0.45 V, which is the potential in the vicinity
of peak A; the dashed curve is the image-charge approximation
incorporated into the configuration-interaction calculations. We see
the image-charge approximation is somewhat weaker than the
expected confinement; moreover we take this potential as fixed,
even though the tip voltage varies during the measurement. Hence,
this is a very rough approximation of the tip’s influence, necessitated
by the computationally intensive nature of the calculations. The
decision to err on the side of weak confinement is justified by
the fact that the confinement effect weakens for donors not directly
below the tip. Fig. 3(d) shows the corresponding 2DM calculations
for the electronic energies for the first four electrons. In this case we
see that E(3) is lower than E(2) even for small separations. Hence this
spectrum shows that the third electron will always be bound.
Moreover, the fourth electron is also bound, but very weakly. All
subsequent electrons are unbound in this calculation.

4.2. Influence of non-nearest neighbors

In addition to interactions with the tip and with nearest-
neighbor donors, a complete model suitable to directly simulate

the measurements must also include the effects of the non-
nearest neighbors. We can gain insight into the physics of the
system by comparing rigorous calculations of the binding energy
of the first electron E(1) to a very simple Coulomb-shift approach.
The black curves of Fig. 4(a) compare the rigorous binding energy
of the two-atom molecule (solid) to a curve derived by shifting the
binding energy of an isolated H atom by the Coulomb energy of a
charged neighbor at a distance d: e/4pe0d (dashed). We see that
for distances greater than a0, the two agree to within a precision of
�15%. The gray curves make a similar comparison for a three-
atom equilateral triangle, reproduced from Ref. [10], and an
isolated H atom Coulomb shifted by two neighbors at a distance d.
We see that this simple-minded approach does a surprisingly
good job of predicting the addition energy for the first electron.
However, as the unshifted energies are based on an isolated H
atom, it is too simplistic to generate the full addition spectra for
two-atom molecules.

Motivated by these ideas, we have developed a model that
extends the 2DM configuration-interaction calculations to ac-
count for non-nearest neighbors. Fig. 4(b) schematically intro-
duces the method, which follows essentially a Monte Carlo
approach [11,27]. We consider a 2D area of p(60 nm)2 with 140
donors, labeled i in the figure. We position the donors randomly
within the area and group them into 70 nearest-neighbor pairs,
labeled k. Each pair has assigned to it an addition spectrum �k

1;2;3;4

based on the separation of the two atoms as given by Fig. 3(d),
indicated in gray in Fig. 4(b). To simulate the capacitance-versus-
voltage curve, we consider the Coulomb shift Uk

i of every quantum
level due to all the other donors. This leads to an ensemble of 2DM
energy levels, resulting in broad peaks similar to the measure-
ments. The width of the peaks is �1 Ry*, arising mostly from the
variation in Coulomb shifts as each 2DM has a different
configuration of neighbors [11,16].

ARTICLE IN PRESS

Fig. 3. (a) Configuration-interaction calculation of the electronic energies of two donors separated by a distance d, but otherwise isolated, as shown in the inset. At small

separations, the model predicts two bound electrons for each donor molecule. (b) Statistical nearest-neighbor distances for donors in our system, calculated using the

nominal growth density of donors in our sample. For comparison to theory, the distances are given with respect to the effective Bohr radius. (c) (Solid) calculated tip-

confinement potential in the donor layer [11,16]. (Dashed) image-charge approximation incorporated into the configuration-interaction calculations. A point charge of 1.7e

was employed at a distance of 4a0, as indicated in the inset. (d) Revised configuration-interaction calculations including the rough approximation for the tip potential. This

revised model predicts four bound electrons for each donor molecule—even for separations less than a0.

S.H. Tessmer et al. / Physica B 403 (2008) 3774–37803778
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To make the model realistic, we consider that the ionization of
the system changes throughout the measurement. For example,
for the first electron to enter the area, we assume all the donors
are ionized. Hence we calculate the Coulomb shifts for each pair
k
P

iU
k
i using a charge of +e for all donors. In this case, the pair that

has the lowest energy �k
1 þ

P
iU

k
i receives the electron, filling its

first state and thus contributing to the capacitance at this energy.
For all subsequent electron additions into other pairs, we must
consider that this particular pair no longer has two fully ionized
atoms. In other words, for the second electron, which would likely
enter some other pair, the Coulomb shifts will be slightly reduced
due to the previous charge that has already entered the system
and partially neutralized one pair of atoms. To account for this
effect in a straightforward way, we assume perfect screening:
every time an electron enters a 2DM, we add �e/2 to each atom of
the pair. The model also includes the screening effect of the
nearby 2D layer in our sample by using appropriately positioned
image charges. Our routine calculates capacitance curves in this
way, using the effective Rydberg as the energy scale. To generate
smooth data that represents the average capacitance curve, we
perform the calculation for hundreds of random ensembles and
average the results together.

4.3. Comparing the calculation and measurement

Fig. 4(c) shows a comparison between the observed capaci-
tance peaks and the full 2DM model, where we have subtracted

the background capacitance from the local measurement to better
display the peaks. The data are displayed in units of effective
Rydbergs and shifted horizontally so that peak C is at zero. This is
consistent with peak C lying near zero effective Rydbergs, the
energy above which the electrons are unbound. No other free
parameters were employed in the comparison. We see that the
model predicts that three broad peaks with distinct shapes will
be observable as shown by the black curve. The reason the
model gives only three peaks despite the fact that there are
four electrons per molecule is simple: both e3 ¼ E(3)�E(2) and
e4 ¼ E(4)�E(3) are less than 1Ry*, hence they are not resolvable as
individual peaks. The reason the peaks have distinct shapes is
more subtle, arising from the ionization effects described above.
Essentially, for the second electron additions, on average there are
fewer ionized charges in the donor layer than for the first-electron
additions. Therefore the overall Coulomb shift is reduced for the
second electrons, which form peak B, as well as the broadening
effect due to the randomness of the donor positions. For this
reason the model predicts that peak B will be sharper than peak A.
The shape of peak C is also broadened by the proximity of e3 and e4.
Comparing the model to the data, we see that the charge
magnitude and relative energy spacing of the model peaks are
in good agreement with the measurements, with peaks A and B
corresponding to the average addition energies of the first and
second electron peaks e1,2 as indicated; the model predicts that
the third and fourth electron peaks e3,4 will be unresolved,
consistent with peak C. Hence, we believe that the 2DM model
captures the key physics of the system.
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Fig. 4. (a) A comparison between a rigorous calculation of the binding energy of the first electron (solid) and a simple Coulomb-shift approximation (dashed). The black

curves correspond to two donors and the gray curves correspond to three. The solid gray curve is reproduced from Ref. [10]. (b) Schematic representation of the modeling

procedure. The net addition energy for any given molecule depends on the total Coulomb shift from all non-nearest neighbors. As indicated by the parentheses, we account

for the fact that this shift will be different for successive electrons due to changes in the screening charge of surrounding donors—as electrons enter other pairs. (c)

Comparison between the model and the measured data. The background capacitance (Fig. 2(b) solid curve) has been subtracted from the local measurement (Fig. 2(b) dots)

to isolate the peaks. We display both the measured and modeled curves with the same horizontal scale of Ry* and vertical scale of electrons per Ry*. Although the match

between experiment and theory is not exact, the overall agreement suggests that the donor-molecule model captures the correct physics. The gray curve addresses the

discrepancy with regard to peak A, for which the predicted peak is significantly broader than the measurement; here we have reduced the broadening in the calculation by

positioning the 2D layer 8 nm closer to the donor layer, which tends to sharpen the resonances [11].
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The model does not account for all of the features in the data,
in particular the smaller peaks indicated by the downward-
pointing arrows in Fig. 4(c). One reason for the discrepancy may
be that the model does not account for clusters of three or more
donors. Among these larger clusters, the contribution of three-
donor molecules (3DMs) should be most prominent; as discussed
in Ref. [11], on average 12 3DMs should be present in the probed
area, compared to 26 2DMs (and only six four-donor molecules).
Although we have not developed a simulation to account for
3DMs, we can use the results of the 2DM model as a rough guide
for the behavior of the 3DM first-electron additions. For both
2DMs and 3DMs, the first-electron addition e1 can be estimated
using the expression e1 ¼ �Z2, where Z is the nuclear charge of the
ions and the units of energy are Ry*; this is exact in the limit of
zero separation of the ions within the molecule, in which case we
have a hydrogenic potential (and no electron–electron interac-
tions to consider as this is the first electron). The expression gives
e1

2DM
¼ �22

¼ �4Ry*, in surprisingly good agreement with the
average first-electron peak calculated by the full 2DM model, as
shown in Fig. 4(c). The agreement results from an approximate
cancellation of three effects: on average the two molecules are
separated by 1:2an0, which tends to increase e1; however, the
Coulomb shift from non-nearest neighbors and the tip potential
tend to decrease e1.

Turning our attention to 3DMs, the above results imply that we
should expect, on average, e1

3DME�32
¼ �9Ry*. This is close to the

observed peak near �7Ry*, indicated by the left-most black arrow
in Fig. 4(c). With regard to the magnitude of the 3DM first-
electron peak, we expect it to scale approximately with the
number of molecules. Fig. 4(c) shows the calculated magnitude of
the first 2DM peak to be 7.5e/Ry*; hence we expect the first 3DM
peak to be �(12/26)7.5e/Ry* ¼ 3.5e/Ry*. This is approximately
consistent with the observed magnitude of the peak near �7Ry*.
Hence we believe that this peak is likely the first 3DM resonance.
No other 3DM peaks are as prominent in the measured data, likely
due to the overlap between the 3DM and 2DM spectra. We believe
some of the measured structure between �6Ry*and 0Ry*, such as
the small peak near �5Ry* (right-most black arrow), may arise
from 3DMs. Small peaks also occur at positive energy, indicated by
the light-gray arrows in Fig. 4(c). In this case, we speculate that
the peaks arise from the interplay between the tip potential and
donor-molecule resonant states (i.e., virtual bound states).

In summary, we have measured the electron addition spectrum
of silicon donors in a gallium-arsenide heterostructure using a
scanning probe technique. To analyze the data we have developed
a theoretical model based on the idea that nearest-neighbor pairs
effectively form TDMs. The model includes the influence of the tip
and the broadening effect of non-nearest neighbor donors,
predicting that three resonances will be observed due to four
bound states per molecule. Comparing the measurement to the

model, we find good qualitative and quantitative agreement in the
shape and position of the most prominent addition spectrum
peaks—suggesting that the 2DM model indeed captures the
relevant physics. To the best of our knowledge this study
represents the first measurement of the electron addition
spectrum of donor molecules in a semiconductor system.
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