
Temporal partitioning methodology optimizing FPGA resources

for dynamically reconfigurable embedded real-time system

C. Tanougast*, Y. Berviller, P. Brunet, S. Weber, H. Rabah

Laboratoire d’Instrumentation Electronique de Nancy, Université de Nancy 1, BP 239, Vandoeuvre Lès Nancy 54506, France

Received 2 September 2002; revised 22 November 2002; accepted 27 November 2002

Abstract

In this paper we present a new temporal partitioning methodology used for the data-path part of an algorithm for the reconfigurable

embedded system design. This temporal partitioning uses an assessing trade-offs in time constraint, design size and field programmable gate

arrays device parameters (circuit speed, reconfiguration time). The originality of our method is that we use the dynamic reconfiguration in

order to minimize the number of cells needed to implement the data-path of an application under a time constraint. Our method consists, by

taking into account the used technology, in evaluating the algorithm area and operators execution time from data flow graph. Thus, we

deduce the right number of reconfigurations and the algorithm partitioning for Run-Time Reconfiguration implementation. This method

allows avoiding an oversizing of implementation resources needed. This optimizing approach can be useful for the design of an embedded

device or system. Our approach is illustrated by various reconfigurable implementations of real time image processing data-path.

q 2003 Elsevier Science B.V. All rights reserved.

Keywords: Field programmable gate arrays; Embedded system; Temporal partitioning; Run-time reconfiguration; Dynamically reconfigurable systems; Image

processing; Design implementation; High-level synthesis

1. Introduction

Since the introduction of field programmable gate arrays

(FPGA), the process of digital systems design has changed

radically [1,2]. Indeed, FPGAs occupy an increasingly

significant place in the realization of real time applications

and has allowed the appearance of a new paradigm:

hardware as flexible as programming.

The dynamically reconfigurable computing consists in

the successive execution of a sequence of algorithms on the

same device. The objective is to swap different algorithms

on the same hardware structure, by reconfiguring the FPGA

array in hardware several times in a constrained time and

with a defined partitioning and scheduling [3,4]. Dynamic

reconfiguration offers important benefits for the implemen-

tation of designs. Several architectures have been designed

and have validated the dynamically reconfigurable comput-

ing concept for the real time processing [5–9]. However,

the optimal decomposition (partitioning) of an algorithm by

exploiting the run-time reconfiguration (RTR) is a domain

in which many works are left. The works in the domain of

temporal partitioning and logic synthesis exploiting the

dynamic reconfiguration generally focus on the application

development approach [10]. Thus, firstly we observe that

the efficiency obtained is not always optimum with respect

to the available spatio-temporal resources. Secondly, the

choice of the number of partitions is never specified.

Thirdly, this can be improved by a judicious temporal

partitioning [11].

We discuss here the partitioning problem for the RTR. In

the task of implementing an algorithm on reconfigurable

hardware, we can distinguish two approaches [10]. The

most common is what we call the application development

approach and the other is what we call the system design

approach. In the first case, we have to fit an algorithm with

an optional time constraint in an existing system made from

a host CPU connected to a reconfigurable logic array. In this

case, the goal of an optimal implementation is to minimize

one or more of the following criteria: processing time,

memory bandwidth, number of reconfigurations and power

consumption. In the second case, we have to implement an

0141-933/03/$ - see front matter q 2003 Elsevier Science B.V. All rights reserved.

PII: S0 14 1 -9 33 1 (0 2) 00 1 02 -3

Microprocessors and Microsystems 27 (2003) 115–130

www.elsevier.com/locate/micpro

* Corresponding author. Tel.: þ33-383-6841-59; fax: þ33-383-6841-53.

E-mail addresses: tanougast@lien.u-nancy.fr (C. Tanougast),

berville@lien.u-nancy.fr (Y. Berviller), brunet@lien.u-nancy.fr (P.

Brunet), sweber@lien.u-nancy.fr (S. Weber), rabah@lien.u-nancy.fr (H.

Rabah).

http://www.elsevier.com/locate/micpro


algorithm with a required time constraint on a system

throughout the design exploration phase. The design

parameter is the size of the logic array that is used to

implement the data-path part of the algorithm. Here an

optimal implementation is the one that leads to the minimal

area of the reconfigurable array.

Previous advanced works in the field of temporal

partitioning and synthesis for RTR architecture [12–19]

focus on application development approach targeting

already designed reconfigurable architecture. These meth-

odologies are used in the domain of existing reconfigurable

accelerators or reconfigurable processors. All these

approaches assume the existence of a resources constraint.

The most important thing here is that the number of

reconfigurable resources is a predefined constant

(implementation constraint). In this strategy, the associated

tools capture the algorithm and the characteristics of the

target platform on which the algorithm will be implemented.

In this case, the goal is to minimize the processing time and/

or the memory bandwidth requirement. Moreover, all these

approaches are not capable of solving practical DRL

(dynamically reconfigurable logic) synthesis problems yet.

These techniques use in general simplified models of

dynamically reconfigurable systems, which often ignore

the impact of routing or reconfiguration resource sharing in

order to reduce complexity of a DRL design space search.

Among them, there is the GARP project [12]. The goal

of GARP is the hardware acceleration of loops in a C

program by the use of the data path synthesis tool GAMA

[13] and the GARP reconfigurable processor. GARP is a

processor tightly coupled to a custom FPGA-like array

and designed specially to speed-up the execution of

general case loops. The logic array has a DMA feature

and is tailored to implement 32 bits wide arithmetic and

logic operations with the control logic, all this allows to

minimize the reconfiguration overhead. GAMA is a fast

mapping and placement tool for the data-path implemen-

tation in FPGAs. It is based on a library of patterns for all

possible data-path operators. The SPARCS project [14,15]

is a CAD tool suite tailored for applications development

on multi-FPGAs reconfigurable computing architectures.

Such architectures need both spatial and temporal

partitioning, a genetic algorithm is used to solve the

spatial partitioning problem. The main cost function used

here is the data memory bandwidth. Other works propose

a strategy to automate the design process that considers all

possible optimizations (partitioning and task scheduling)

that can be carried out from a particular reconfigurable

system [16,17]. Shirazi et al. and Luk et al. [18,19]

proposes both a model and a methodology to take

advantages of common operators in successive partitions.

A simple model for specifying, visualizing and developing

designs that contains reconfigurable elements in run-time

has been proposed. This judicious approach allows

reducing the configuration time and thus the application

execution time. But additional logic resources (area) are

required to realize an implementation with this approach.

Furthermore this model does not include timing aspects in

order to satisfy the real time and it does not specify the

partitioning of the implementation. Indeed, the algorithm

partitioning must be previously known to determine the

elements that do not need to be reconfigured for the next

step. However, this concept is interesting to use for DRL

designs simulation as Dynamic circuit switching (DCS)

[20]. This simulation uses virtual multiplexors, demulti-

plexors and switches, which are implemented to simulate

the dynamic configuration design.

These interesting works do not pursue the same goal

as we do. In priority, we try to find the minimal area that

allows meeting the time-constraint. This is different from

searching the minimal memory bandwidth or execution

time which allows meeting the resources constraint.

Here, we propose a temporal partitioning that uses

dynamic reconfiguration of FPGA (also called DRL

Scheduling) to minimize the implementation logic area.

Each partition corresponds to a temporal floorplanning

for DRL embedded systems (Fig. 1) [21]. We search the

minimal floorplan area that implements successively a

particular algorithm. This approach improves the per-

formance and efficiency of the design implementation. In

contrast to previous work, our aim is to obtain, from an

algorithm description, a target technology and implemen-

tation constraints, the characteristics of the platform to

design or to use. This allows avoiding an oversizing of

implementation resources. For example, by summarizing

the sparse information found in some articles [22–24],

we can assume the following. Suppose we have to

implement a design requiring P equivalent gates and

taking an area SFC of silicon in the case of a full custom

ASIC design. Then we will need about 10 £ SFC in the

case of a standard cell ASIC approach and about 100 £

SFC if we decide to use an FPGA. But the large

advantage of the FPGA is, of course, its great flexibility

and the speed of the associated design flow. This is

probably the main reason to include a FPGA array on

System on Chip platforms. Suppose that a design is

requiring that 10% of the gates must be implemented as

full custom, 80% as standard cell ASIC and 10% in

FPGA cells. By roughly estimating the areas, we come to

the following results: The FPGA array will require more

than 55% of the die area, the standard cell part more

than 44% and the full custom part less than 1%. In such

a case it could make sense to try to reduce the equivalent

gate count needed to implement the FPGA part of the

application. This is interesting because the regularity of

the FPGA part of the mask leads to a quite easy

modularity of the platform with respect to this parameter.

Embedded systems design can take several advantages

of the use our approach based on RTR FPGAs. The most

obvious is the possibility to frequently update the digital

hardware functions. But we can also use the dynamic

resources allocation feature to instantiate each operator

C. Tanougast et al. / Microprocessors and Microsystems 27 (2003) 115–130116



http://isiarticles.com/article/7181

