
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Available online at www.sciencedirect.com

Journal of the Franklin Institute 349 (2012) 2735–2749

Exponential synchronization for complex dynamical
networks with sampled-data

Zheng-Guang Wua,b, Ju H. Parka,n, Hongye Sub,
Bo Songa,c, Jian Chub

aDepartment of Electrical Engineering, Yeungnam University, 214-1 Dae-Dong, Kyongsan 712-749, Republic of

Korea
bNational Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang

University, Yuquan Campus, Hangzhou, Zhejiang 310027, PR China
cElectrical Engineering and Automation, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China

Received 13 April 2012; received in revised form 31 July 2012; accepted 7 September 2012

Available online 15 September 2012

Abstract

This paper is concerned with the problem of exponential synchronization for a kind of complex

dynamical networks (CDNs) with time-varying coupling delay and sampled-data. The sampling

period considered here is assumed to be time-varying but bounded. A newly exponential

synchronization condition is provided by using the Lyapunov method. Based on the condition, a

set of sampled-data synchronization controllers is designed in terms of the solution to linear matrix

inequalities (LMIs) that can be solved effectively by using available softwares. The derived results are

theoretically and numerically proved to be less conservative than the existing results. Two numerical

examples are introduced to show the effectiveness and improvement of the given results.

& 2012 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In the past decades, there has been a highly focused interest in complex dynamical
networks (CDNs), which have extensive applications in both science and engineering such
as Internet, World Wide Web, food webs, and electric power grids [1]. It is well known that
there are a lot of interesting and important collective phenomena in CDNs that can be
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described by coupled ordinary differential equations, such as self-organization, synchro-
nization, and spatiotemporal chaos [2,3]. Among these phenomena, the synchronization
phenomena have been intensively investigated in various different fields [4–12]. For
example, in [4] the global synchronization of complex dynamical networks with network
failures has been studied based on the framework of switching system, and the upper
bounds of both the unavailability rate of the network and the frequency of network
failures have been obtained to ensure the global synchronization of CDNs with network
failures. In [6], a detailed analysis has been presented for the synchronization of CDNs
with impulsive coupling based on the concept of average impulsive interval, and an unified
synchronization criterion has been derived for directed impulsive dynamical networks,
which takes into account two types of impulses simultaneously.
On the other hand, with the rapid advances in digital measurement and intelligent

instrument, the analog signal processing methods are often replaced by digital signal
processing methods to provide better reliability, accuracy and stable performance. Thus,
sampled-data systems have attracted great attention, and many important and essential
results have been reported in the literature over the past decades [13–17]. Very recently, the
sampled-data synchronization control problem has been investigated for a class of general
complex networks with time-varying coupling delays in [18], where a sufficient condition
has been derived to ensure the exponential stability of the closed-loop error system based
on the well known Jensen inequality, and the desired sampled-data feedback controllers
have been designed. However, there is room for further investigation because the
information of the involved delays has not been fully used. To be specific, the delay terms
tðtÞ and t�tðtÞ with 0rtðtÞrt are enlarged as t, and the delay terms d(t) and p�dðtÞ with
0rdðtÞrp are enlarged as p, that is, t¼ tðtÞ þ t�tðtÞ and p¼ pðtÞ þ p�pðtÞ are enlarged as
2t and 2p, respectively. It is clear that the aforementioned treatment may lead to a
conservative result.
In this paper, the problem of sampled-data synchronization is studied for CDNs with

time-varying coupling delay. The sampling period considered here is assumed to be time-
varying but bounded. In the framework of the input delay approach [14], an exponential
synchronization condition is proposed based on the LMI approach. The design method of
the desired sampled-data synchronization controllers is provided. The derived results are
theoretically and numerically proved to be less conservative than the existing results.

Notation: The notations used throughout this paper are fairly standard. Rn and Rm�n

denote the n-dimensional Euclidean space and the set of all m� n real matrices,
respectively. The notation X4Y (XZY ), where X and Y are symmetric matrices, means
that X�Y is positive definite (positive semidefinite). I and 0 represent the identity
matrix and a zero matrix, respectively. The superscript ‘‘T’’ represents the transpose, and
diagf� � �g stands for a block-diagonal matrix. J � J denotes the Euclidean norm of a vector
and its induced norm of a matrix. For an arbitrary matrix B and two symmetric matrices A

and C,

A B

n C

� �

denotes a symmetric matrix, where ‘‘n’’ denotes the term that is induced by symmetry.
Matrices, if their dimensions are not explicitly stated, are assumed to have compatible
dimensions for algebraic operations.

Z.-G. Wu et al. / Journal of the Franklin Institute 349 (2012) 2735–27492736



Author's personal copy

2. Preliminaries

Consider the following CDN consisting of N identical coupled nodes with each node
being an n-dimensional dynamical system:

_xiðtÞ ¼ f ðxiðtÞÞ þ
XN

j ¼ 1

GijDxjðtÞ þ
XN

j ¼ 1

GijAxjðt�tðtÞÞ þ uiðtÞ, i¼ 1,2, . . . ,N ð1Þ

where xi(t) and ui(t) are, respectively, the state variable and the control input of the node i,
D¼ ðdijÞn�n 2 Rn�n and A¼ ðaijÞn�n 2 Rn�n are constant inner-coupling matrices of the
nodes, and G¼ ðGijÞN�N is the outer-coupling matrix of the network. If there is a
connection between node i and node j (iaj), then Gij ¼ 1, otherwise, Gij ¼ 0 (iaj). The
diagonal elements of matrix G are defined by

Gii ¼�
XN

j ¼ 1,jai

Gij, i¼ 1,2, . . . ,N ð2Þ

The scalar tðtÞ denotes the time-varying delay satisfying

0rtðtÞrm, _tðtÞrn ð3Þ

where t40 and n40 are known constants. f : Rn-Rn is a continuous vector-valued
function and satisfies the following sector-bounded condition [19]:

½f ðxÞ�f ðyÞ�Uðx�yÞ�T½f ðxÞ�f ðyÞ�V ðx�yÞ�r0, 8x,y 2 Rn ð4Þ

where U and V are constant matrices of appropriate dimensions.
Let eiðtÞ ¼ xiðtÞ�sðtÞ be the synchronization error, where sðtÞ 2 Rn is the state trajectory

of the unforced isolate node _sðtÞ ¼ f ðsðtÞÞ. Then, the error dynamics of CND (1) can be
obtained as follows:

_eiðtÞ ¼ gðeiðtÞÞ þ
XN

j ¼ 1

GijDejðtÞ þ
XN

j ¼ 1

GijAejðt�tðtÞÞ þ uiðtÞ, i¼ 1,2, . . . ,N ð5Þ

where gðeiðtÞÞ ¼ f ðxiðtÞÞ�f ðsðtÞÞ.
The control signal is assumed to be generated by using a zero-order-hold (ZOH)

function with a sequence of hold times 0¼ t0ot1o � � �otko � � �. Therefore, the state
feedback controller takes the following form:

uiðtÞ ¼KieiðtkÞ, tkrtotkþ1, i¼ 1,2, . . . ,N ð6Þ

where Ki is sampled-data feedback controller gain matrix to be determined, eiðtkÞ is discrete
measurement of ei(t) at the sampling instant tk, limk-þ1tk ¼ þ1. It is assumed that
tkþ1�tk ¼ hkrp for any integer kZ0, where p40 represents the largest sampling interval.

By substituting Eq. (6) into Eq. (1), we obtain

_eiðtÞ ¼ gðeiðtÞÞ þ
XN

j ¼ 1

GijDejðtÞ þ
XN

j ¼ 1

GijAejðt�tðtÞÞ

þKieiðt�dðtÞÞ, i¼ 1,2, . . . ,N ð7Þ

where dðtÞ ¼ t�tk. It can be seen that

0rdðtÞrp ð8Þ
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It is clear that Eq. (7) can be rewritten as

_eðtÞ ¼ gðeðtÞÞ þ ðG �DÞeðtÞ þ ðG � AÞeðt�tðtÞÞ þ Keðt�dðtÞÞ ð9Þ

where K ¼ diagfK1,K2, . . . ,KNg, and

eðtÞ ¼

e1ðtÞ

e2ðtÞ

^

eN ðtÞ

2
66664

3
77775, gðeðtÞÞ ¼

gðe1ðtÞÞ

gðe2ðtÞÞ

^

gðeNðtÞÞ

2
66664

3
77775

Before proceeding further, the following lemma and definition are given.

Lemma 1 (Shu and Lam [20]). For any matrix W40, scalars g1 and g2 satisfying g24g1, a

vector function o : ½g1,g2�-Rn such that the integrations concerned are well defined, then

ðg2�g1Þ
Z g2

g1

oðaÞTWoðaÞ daZ
Z g2

g1

oðaÞ da

" #T
W

Z g2

g1

oðaÞ da

" #
ð10Þ

Definition 1. The CDN (1) is said to be exponentially synchronized if the error system (9) is
exponentially stable, i.e., there exist two constants a40 and b40 such that

JeðtÞJ2rae�bt sup
�maxfm,pgryr0

JeðyÞJ2 ð11Þ

The aim of this paper is to design a set of sampled-data controllers (6) to ensure the
exponential synchronization of the complex network (1), that is, we are interested in
designing the gain matrices K such that the error system (9) is exponentially stable.

3. Main results

In this section, we first give a sufficient condition, which ensures error system (9) to be
exponentially stable. Then, we propose a design method of the sampled-data controllers
for CND (1). Before presenting the main results, for the sake of presentation simplicity, we
denote:

U ¼
ðIN �UÞTðIN � V Þ

2
þ
ðIN � V ÞTðIN �UÞ

2

V ¼�
ðIN �UÞT þ ðIN � V ÞT

2

Theorem 1. The system (9) is exponentially stable if there exist matrices P40, Q140,
Q240, Q340, Z140, Z240, Z340, and a scalar l40 such that

Z2 þ ð1�nÞZ340 ð12Þ

X1�p�1DT
1 Z1D1�YT

1UY1 YT

n �Z

" #
o0 ð13Þ
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X1�p�1DT
1 Z1D1�m�1YT

2 Z2Y2 YT

n �Z

" #
o0 ð14Þ

X1�p�1DT
2 Z1D2�YT

1UY1 YT

n �Z

" #
o0 ð15Þ

X1�p�1DT
2 Z1D2�m�1YT

2 Z2Y2 YT

n �Z

" #
o0 ð16Þ

where

X1 ¼

X11 PK þ p�1Z1 0 X14 0 P�lV

n �2p�1Z1 p�1Z1 0 0 0

n n �Q1�p�1Z1 0 0 0

n n n X44 m�1Z2 0

n n n n �Q2�m�1Z2 0

n n n n n �lI

2
666666664

3
777777775

X11 ¼ PðG �DÞ þ ðG �DÞTPþQ1 þQ2 þQ3�lU�p�1Z1�U
X14 ¼ PðG � AÞ þ U
X44 ¼�ð1�nÞQ3�U�m�1Z2

Z¼ pZ1 þ mZ2 þ mZ3

U ¼ m�1ðZ2 þ ð1�nÞZ3Þ

Y ¼ ½ZðG �DÞ ZK 0 ZðG � AÞ 0 Z�

D1 ¼ ½I �I 0 0 0 0�

D2 ¼ ½0 I �I 0 0 0�

Y1 ¼ ½I 0 0 �I 0 0�

Y2 ¼ ½0 0 0 I �I 0�

Proof. Consider the following Lyapunov functional for the system (9):

V ðtÞ ¼V1ðtÞ þ V2ðtÞ þ V3ðtÞ ð17Þ

where

V1ðtÞ ¼ eðtÞTPeðtÞ þ

Z t

t�p

eðsÞTQ1eðsÞdsþ

Z t

t�m
eðsÞTQ2eðsÞ þ

Z t

t�tðtÞ
eðsÞTQ3eðsÞ ds

V2ðtÞ ¼

Z 0

�p

Z t

tþy
_eðsÞTZ1 _eðsÞ ds dy

V3ðtÞ ¼

Z 0

�m

Z t

tþy
_eðsÞTZ2 _eðsÞ ds dyþ

Z 0

�tðtÞ

Z t

tþy
_eðsÞTZ3 _eðsÞ ds dy

Taking the derivative of Eq. (17) along the solution of system (9) yields

_V 1ðtÞr2eðtÞTP_eðtÞ þ eðtÞTðQ1 þQ2 þQ3ÞeðtÞ�eðt�pÞTQ1eðt�pÞ
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�eðt�mÞTQ2eðt�mÞ�ð1�nÞeðt�tðtÞÞTQ3eðt�tðtÞÞ ð18Þ

_V 2ðtÞ ¼ p_eðtÞTZ1 _eðtÞ�

Z t

t�p

_eðsÞTZ1 _eðsÞ ds ð19Þ

_V 3ðtÞrm_eðtÞTZ2 _eðtÞ þ m_eðtÞTZ3 _eðtÞ

�

Z t

t�m
_eðsÞTZ2 _eðsÞ ds�ð1�nÞ

Z t

t�tðtÞ
_eðsÞTZ3 _eðsÞ ds ð20Þ

On the other hand, denoting jðtÞ ¼ ðp�dðtÞÞ=p [21], then we have that 0rjðtÞr1 and
dðtÞ ¼ ð1�jðtÞÞp. According to Lemma 1, we get that

�

Z t

t�p

_eðsÞTZ1 _eðsÞ ds¼�p

Z t

t�dðtÞ

_eðsÞTp�1Z1 _eðsÞ ds�p

Z t�dðtÞ

t�p

_eðsÞTp�1Z1 _eðsÞ ds

¼�dðtÞ

Z t

t�dðtÞ

_eðsÞTp�1Z1 _eðsÞ ds�ðp�dðtÞÞ

Z t

t�dðtÞ

_eðsÞTp�1Z1 _eðsÞ ds

�ðp�dðtÞÞ

Z t�dðtÞ

t�p

_eðsÞTp�1Z1 _eðsÞ ds�dðtÞ

Z t�dðtÞ

t�p

_eðsÞTp�1Z1 _eðsÞ ds

r�dðtÞ

Z t

t�dðtÞ

_eðsÞTp�1Z1 _eðsÞ ds�jðtÞdðtÞ
Z t

t�dðtÞ

_eðsÞTp�1Z1 _eðsÞ ds

�ðp�dðtÞÞ

Z t�dðtÞ

t�p

_eðsÞTp�1Z1 _eðsÞ ds�ð1�jðtÞÞðp�dðtÞÞ

Z t�dðtÞ

t�p

_eðsÞTp�1Z1 _eðsÞ ds

r�
Z t

t�dðtÞ

_eðsÞT dsp�1Z1

Z t

t�dðtÞ

_eðsÞ ds�jðtÞ
Z t

t�dðtÞ

_eðsÞT dsp�1Z1

Z t

t�dðtÞ

_eðsÞ ds

�

Z t�dðtÞ

t�p

_eðsÞT dsp�1Z1

Z t�dðtÞ

t�p

_eðsÞ ds ds

�ð1�jðtÞÞ
Z t�dðtÞ

t�p

_eðsÞT dsp�1Z1

Z t�dðtÞ

t�p

_eðsÞ ds ds

¼
eðtÞ

eðt�dðtÞÞ

" #T
�p�1Z1 p�1Z1

n �p�1Z1

" #
eðtÞ

eðt�dðtÞÞ

" #
�jðtÞdðtÞTDT

1 p�1Z1D1dðtÞ

þ
eðt�dðtÞÞ

eðt�pÞ

" #T
�p�1Z1 p�1Z1

n �p�1Z1

" #
eðt�dðtÞÞ

eðt�pÞ

" #
�ð1�jðtÞÞdðtÞTDT

2 p�1Z1D2dðtÞ

ð21Þ

where

dðtÞ ¼ ½eðtÞT eðt�dðtÞÞT eðt�pÞT eðt�tðtÞÞT eðt�mÞT gðeðtÞÞT�T

Similarly, denoting rðtÞ ¼ ðm�tðtÞÞ=m, then we have that 0rrðtÞr1 and tðtÞ ¼ ð1�rðtÞÞm.
According to Lemma 1, we get that

�

Z t

t�m
_eðsÞTZ2 _eðsÞ ds�ð1�nÞ

Z t

t�tðtÞ
_eðsÞTZ3 _eðsÞ ds
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¼�m
Z t

t�tðtÞ
_eðsÞTU _eðsÞ ds�m

Z t�tðtÞ

t�m
_eðsÞTm�1Z2 _eðsÞ ds

¼�tðtÞ
Z t

t�tðtÞ
_eðsÞTU _eðsÞ ds�ðm�tðtÞÞ

Z t

t�tðtÞ
_eðsÞTU _eðsÞ ds

�ðm�tðtÞÞ
Z t�tðtÞ

t�m
_eðsÞTm�1Z2 _eðsÞ ds�tðtÞ

Z t�tðtÞ

t�m
_eðsÞTm�1Z2 _eðsÞ ds

r�tðtÞ
Z t

t�tðtÞ
_eðsÞTU _eðsÞ ds�rðtÞtðtÞ

Z t

t�tðtÞ
_eðsÞTU _eðsÞ ds

�ðm�tðtÞÞ
Z t�tðtÞ

t�m
_eðsÞTm�1Z2 _eðsÞ ds�ð1�rðtÞÞðm�tðtÞÞ

Z t�tðtÞ

t�m
_eðsÞTm�1Z2 _eðsÞ ds

r�
Z t

t�tðtÞ
_eðsÞT dsU

Z t

t�tðtÞ
_eðsÞ ds�rðtÞ

Z t

t�tðtÞ
_eðsÞT dsU

Z t

t�tðtÞ
_eðsÞ ds

�

Z t�tðtÞ

t�m
_eðsÞT dsm�1Z2

Z t�tðtÞ

t�m
_eðsÞT _eðsÞ ds�ð1�rðtÞÞ

Z t�tðtÞ

t�m
_eðsÞT dsm�1

Z2

Z t�tðtÞ

t�m
_eðsÞT _eðsÞ ds

¼
eðtÞ

eðt�tðtÞÞ

" #T
�U U
n �U

� �
eðtÞ

eðt�tðtÞÞ

" #
�rðtÞdðtÞTYT

1UY1dðtÞ

þ
eðt�tðtÞÞ

eðt�mÞ

" #T
�m�1Z2 m�1Z2

n �m�1Z2

" #
eðt�tðtÞÞ

eðt�mÞ

" #

�ð1�rðtÞÞdðtÞTYT
2 m
�1Z2Y2dðtÞ ð22Þ

On the other hand, based on Assumption 1, we have that any l40

yðtÞ ¼ l
eðtÞ

gðeðtÞÞ

" #T
U V

n I

" #
eðtÞ

gðeðtÞÞ

" #
r0 ð23Þ

Thus,

_V ðtÞr _V 1ðtÞ þ _V 2ðtÞ þ _V 3ðtÞ�yðtÞ

¼ dðtÞTjðtÞðX1 þ YTZY�p�1DT
1 Z1D1�rðtÞYT

1UY1�ð1�rðtÞÞYT
2 m
�1Z2Y2ÞdðtÞ

þdðtÞTð1�jðtÞÞðX1 þ YTZY�p�1DT
2 Z1D2�rðtÞYT

1UY1�ð1�rðtÞÞYT
2 m
�1Z2Y2ÞdðtÞ

¼ dðtÞTjðtÞrðtÞðX1 þ YTZY�p�1DT
1 Z1D1�YT

1UY1ÞdðtÞ
þdðtÞTjðtÞð1�rðtÞÞðX1 þ YTZY�p�1DT

1 Z1D1�YT
2 m
�1Z2Y2ÞdðtÞ

þdðtÞTð1�jðtÞÞrðtÞðX1 þ YTZY�p�1DT
2 Z1D2�YT

1UY1ÞdðtÞ
þdðtÞTð1�jðtÞÞð1�rðtÞÞðX1 þ YTZY�p�1DT

2 Z1D2�YT
2 m
�1Z2Y2ÞdðtÞ ð24Þ

By using the Schur complement, we can find from Eqs. (13)–(16) that there exists a scalar
a40 such that

X1 þ YTZY�p�1DT
1 Z1D1�YT

1UY1o�aI ð25Þ

Z.-G. Wu et al. / Journal of the Franklin Institute 349 (2012) 2735–2749 2741
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X1 þ YTZY�p�1DT
1 Z1D1�YT

2 m
�1Z2Y2o�aI ð26Þ

X1 þ YTZY�p�1DT
2 Z1D2�YT

1UY1o�aI ð27Þ

X1 þ YTZY�p�1DT
2 Z1D2�YT

2 m
�1Z2Y2o�aI : ð28Þ

Thus,

_V ðtÞr�aJeðtÞJ2: ð29Þ

Applying the similar method of [22], we can find that the system (9) is exponentially stable.
This completes the proof. &

Based on Theorem 1, we can obtain the design method of the desired sampled-data
controllers to ensure the CDN (1) exponentially synchronized.

Theorem 2. The CDN (1) is exponentially synchronized by controllers of the form (6) if there

exist matrices P¼ diagfP1,P2, . . . ,PNg40, Q140, Q240, Q340, Z140, Z240, Z340,
X ¼ diagfX1,X2, . . . ,XNg and a scalar l40 such that Eq. (12) and the following LMIs hold:

X̂1�p�1DT
1 Z1D1�YT

1UY1 ŶT

n �2Pþ Z

" #
o0 ð30Þ

X̂1�p�1DT
1 Z1D1�m�1YT

2 Z2Y2 ŶT

n �2Pþ Z

" #
o0 ð31Þ

X̂1�p�1DT
2 Z1D2�YT

1UY1 ŶT

n �2Pþ Z

" #
o0 ð32Þ

X̂1�p�1DT
2 Z1D2�m�1YT

2 Z2Y2 ŶT

n �2Pþ Z

" #
o0 ð33Þ

where

X̂1 ¼

X11 X þ p�1Z1 0 X14 0 P�lV

n �2p�1Z1 p�1Z1 0 0 0

n n �Q1�p�1Z1 0 0 0

n n n X44 m�1Z2 0

n n n n �Q2�m�1Z2 0

n n n n n �lI

2
666666664

3
777777775

Ŷ ¼ ½PðG �DÞ X 0 PðG � AÞ 0 P�

and the other parameters follow the same definitions as those in Theorem1. Furthermore, the

desired controllers gain matrices are given by

Ki ¼P�1i Xi, i¼ 1,2, . . . ,N ð34Þ

Z.-G. Wu et al. / Journal of the Franklin Institute 349 (2012) 2735–27492742
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Proof. Define matrix J ¼ diagfI ,I ,I ,I ,I ,I ,PZ�1g and X¼PK. Then, pre- and post-
multiplying Eqs. (13)–(16) with J and JT, respectively, we obtain that Eqs. (13)–(16) are
equivalent to

X̂1�p�1DT
1 Z1D1�YT

1UY1 ŶT

n �PZ�1P

" #
o0 ð35Þ

X̂1�p�1DT
1 Z1D1�m�1YT

2 Z2Y2 ŶT

n �PZ�1P

" #
o0 ð36Þ

X̂1�p�1DT
2 Z1D2�YT

1UY1 ŶT

n �PZ�1P

" #
o0 ð37Þ

X̂1�p�1DT
2 Z1D2�m�1YT

2 Z2Y2 ŶT

n �PZ�1P

" #
o0 ð38Þ

Noting Z40, we have �PZ�1Pr�2Pþ Z. Thus, it is clear that if Eqs. (30)–(32) hold,
then (35)–(38) hold, which implies that Eqs. (13)–(16) hold. This completes the proof. &

Remark 1. It is noted that the sampled-data synchronization problem has been solved for
CDN (1) in Theorem 2, and the desired controllers can be obtained when LMIs (12) and
(30)–(32) are feasible. It is noted that in [18] the delay terms tðtÞ and t�tðtÞ are enlarged as
t, and the delay terms d(t) and p�dðtÞ are enlarged as p, that is, t¼ tðtÞ þ t�tðtÞ and
p¼ pðtÞ þ p�pðtÞ are enlarged as 2t and 2p, respectively. It is clear this treatment cannot
make full use of the information on the involved delays d(t) and tðtÞ, and may lead to a
conservative result. Different from [18], we introduce two scalars jðtÞ and rðtÞ in Eqs. (21)
and (22) to take full advantage of the information on the involved delays d(t) and tðtÞ. In
fact, it is easy to find that if Theorems 1 and 2 of [18] hold, our given results also hold, that
is, the results proposed in this paper have theoretically less conservatism than [18].

Remark 2. It should be pointed out that the given results can be extended to more general
CDNs with external disturbances, uncertainties, and time-delay in the control input in
accordance with standard flow of robust control theory. For example, when time-delay in
the control input is considered, we can get the following error system:

_eðtÞ ¼ gðeðtÞÞ þ ðG �DÞeðtÞ þ ðG � AÞeðt�tðtÞÞ þ Keðt�dðtÞÞ

where

p1rdðtÞrp2

For the above given system, we choose the following Lyapunov functional:

V ðtÞ ¼V1ðtÞ þ V2ðtÞ þ V3ðtÞ

where

V1ðtÞ ¼ eðtÞTPeðtÞ þ

Z t

t�m
eðsÞTQ2eðsÞ þ

Z t

t�tðtÞ
eðsÞTQ3eðsÞ ds

V2ðtÞ ¼

Z 0

�p1

Z t

tþy
_eðsÞTZ1 _eðsÞ ds dyþ

Z t

t�p1

eðsÞTQ1eðsÞ ds
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þ

Z t

t�p2

eðsÞTQ2eðsÞ dsþ

Z �p1

�p2

Z t

tþy
_eðsÞTZ4 _eðsÞ ds dy

V3ðtÞ ¼

Z 0

�m

Z t

tþy
_eðsÞTZ2 _eðsÞ ds dyþ

Z 0

�tðtÞ

Z t

tþy
_eðsÞTZ3 _eðsÞ ds dy:

Then, the results can be obtained by using the similar methods.

4. Numerical examples

In this section, two numerical examples are given to illustrate the validness of our
results.

Example 1. Chua’s circuit is considered as the isolated node of the dynamical network,
which is described by the following equation:

_x1 ¼ s1ð�x1 þ x2�uðx1ÞÞ

_x2 ¼ x1�x2 þ x3

_x3 ¼�s2x2

8><
>:

where s1 ¼ 10, s2 ¼ 14:87, and uðx1ÞÞ ¼�0:68x1 þ 0:5ð�1:27þ 0:68Þðjx1 þ 1j�jx1�1jÞ. It
can be calculated that in Eq. (4)

U ¼

2:7 10 0

1 �1 1

0 �14:87 0

2
64

3
75, V ¼

�3:2 10 0

1 �1 1

0 �14:87 0

2
64

3
75

The inner-coupling matrices are given as D¼0 and

A¼

0:9 0 0

0 0:9 0

0 0 0:9

2
64

3
75

and the outer-coupling matrix

G¼

�2 1 1

1 �1 0

1 0 �1

2
64

3
75

The time-varying delay is chosen as tðtÞ ¼ 0:03þ 0:01 sinðtÞ, which implies m¼ 0:04 and
n¼ 0:01, and the controller gains

K1 ¼K2 ¼K3 ¼

�12 0 0

0 �12 0

0 0 �12

2
64

3
75

Based on Theorem 1 in our paper, we can find that the maximum value of sampling period
p¼0.0711.
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Example 2. Consider CND (1) with three nodes [18]. The outer-coupling matrix is
assumed to be G¼ ðGijÞN�N with

G¼

�1 0 1

0 �1 1

1 1 �2

2
64

3
75

The time-varying delay is chosen as tðtÞ ¼ 0:2þ 0:05 sinð10tÞ. A straightforward
calculation gives m¼ 0:25 and n¼ 0:5. The nonlinear function f is taken as

f ðxiðtÞÞ ¼
�0:5xi1 þ tanhð0:2xi1Þ þ 0:2xi2

0:95xi2�tanhð0:75xi2Þ

" #

It can be found that f satisfies Eq. (8) with

U ¼
�0:5 0:2

0 0:95

� �
, V ¼

�0:3 0:2

0 0:2

� �

(1) The inner-coupling matrices are given as D¼0 and

A¼
0:5 0

0 0:5

� �
:

By applying Theorem 2 of [18], the maximum value of sampling period p¼0.5409.
While using Theorem 2 in our paper, the maximum value of sampling period
p¼0.5573. Thus, our result has less conservatism than the existing one. Moreover, the
gain matrices of the desired controllers can be obtained as follows:

K1 ¼
�0:4201 �0:1614

0:0001 �1:1698

� �

K2 ¼
�0:4201 �0:1614

0:0001 �1:1698

� �

K3 ¼
0:1221 �0:2073

�0:0024 �1:0093

� �

Using the above parameters, the state trajectories of the error system (9) are given in
Fig. 1, and the control inputs ui(t) are shown in Fig. 2, where x1ð0Þ ¼ ½3 �2�

T,
x2ð0Þ ¼ ½2 5�T, x3ð0Þ ¼ ½�5 6�T, sð0Þ ¼ ½3 2�T.

(2) The inner-coupling matrices are given as

D¼
0:3 0

0 0:3

� �
, A¼

0:4 0

0 0:4

� �

According to Theorem 2 with p¼0.05, we can get the corresponding controller
parameters:

K1 ¼
�0:4330 �0:2071

�0:0631 �1:5627

� �
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K2 ¼
�0:4330 �0:2071

�0:0631 �1:5627

� �

K3 ¼
�0:1631 �0:1744

�0:0355 �1:0803

� �

Under the above parameters, the state trajectories of the error system (9) are given in
Fig. 3, and the control inputs ui(t) are shown in Fig. 4, where x1ð0Þ ¼ ½�5 6�T,
x2ð0Þ ¼ ½3 4�T, x3ð0Þ ¼ ½�2 5�T, sð0Þ ¼ ½�3 4�T.

Fig. 2. Responses of the control inputs ui(t).

Fig. 1. State trajectories of the error system (9).
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5. Conclusions

In this paper, the sampled-data synchronization problem has been solved for a kind of
CDNs with time-varying coupling delay. The sampling period considered here is assumed
to be time-varying but bounded. By combining the LMI approach, a newly exponential

Fig. 4. Responses of the control inputs ui(t).

Fig. 3. State trajectories of the error system (9).
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synchronization condition has been proposed. A set of sampled-data controllers has been
designed. The derived results are theoretically and numerically proved to be less
conservative than existing results. Two illustrative examples and their simulation results
have been given to illustrate the effectiveness and less conservatism of the proposed
methods.
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