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Abstract Camera networks make an important compo-
nent of modern complex perceptual systems with widespread
applications spanning surveillance, human/machine interac-
tion and healthcare. Smart cameras that can perform part of
the perceptual data processing improve scalability in both
processing power and network resources. Based on these
insights, this paper presents a particle filter for multiple per-
son tracking designed for an FPGA-based smart camera. We
propose a new joint Markov Chain Monte Carlo-based par-
ticle filter (MCMC-PF) with short Markov chains, devoted
to each individual particle, in order to sample the particle
swarm in relevant regions of the high dimensional state-space
with increased particle diversity. Finding an efficient sam-
pling method has become another challenge when design-
ing particle filters, especially for those devoted to more than
two or three targets. A proposal distribution, combining dif-
fusion dynamics, learned HOG + SVM person detections,
and adaptive background mixture models, limits here the
well-known burst in terms of particles and MCMC itera-
tions. This informed proposal based on saliency maps has
only been marginally used in the literature in a joint state
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space PF framework. The presented qualitative and quanti-
tative results—for proprietary and public video datasets—
clearly show that our tracker outperforms the well-known
MCMC-PF in terms of (1) tracking performances, i.e. robust-
ness and precision, and (2) parallelization capabilities as the
MCMC-PF processes the particles sequentially.

Keywords Video surveillance · Monocular color vision ·
Particle filtering · MCMC · Data fusion · Multi person
tracking

1 Introduction

Visual multiple object tracking (MOT) has received tremen-
dous attention in the vision community due to its numerous
applications such as video surveillance in public or private
human-centered environments (see a survey in [18]). Deploy-
ing a network of ceiling-mounted cameras is challenging as it
should be easy to install by a non-expert user while the cam-
eras should include on-board CPU resources to exchange
high level data such as positions and characteristics of the
target persons over the network. Since no intelligent camera
dedicated to human tracking, contrary to human detection, is
currently available off-the-shelf, our tracker is devoted to an
intelligent camera with an FPGA board to execute parts of
the algorithm in parallel (Fig. 1).

Besides this broader technological aim, the traditional
challenge with MOT is to simultaneously track persons that
can a priori enter, exit, pass close to one another or merge in
the scene. The objectives are twofold: (1) to correctly detect
entering, leaving, and temporarily occluded targets, that is,
characterize the targets’ status and, (2) to obtain a record of
trajectories corresponding to the observed targets, i.e. the
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Fig. 1 Close-up of the wireless camera with an FPGA board from
Delta Technologies [1]

targets’ positions over time—maintaining a correct and
unique identification for each target throughout.

To cope with these difficulties, approaches based on
tracking-by-detection and sequential Monte Carlo have
become increasingly popular as they improve robustness in
MOT by coupling target detection and tracking in the well-
known particle filtering framework. They are well suited
for parallelization [12,22] as the standard PF weighs par-
ticles independently based on a likelihood function and
then propagates these weighted particles according to an
importance stage with an underlying proposal distribution
based on a classical motion model. Various researchers have
attempted to extend to MOT using decentralized approaches
(namely one particle filter per target) [9,10,35] or central-
ized approaches [11,26]; the latter deals more appropriately
with the problem of joint data association between multiple
targets. Recently, the introduction of Markov Chain Monte
Carlo (MCMC) in the importance sampling stage has proved:
(1) to deal more efficiently with high- and trans-dimensional
state spaces and, (2) to require far fewer samples to ade-
quately track the joint target state devoted to MOT [6,27,37].
The resulting MCMC-PF centralized approach propagates a
set of unweighted particles (over time) which are drawn iter-
atively through a first-order Markov process. The limitations
therefore are (1) its non parallelizability on clusters as the
framework remains sequential like pure MCMC strategies
and, (2) the high number of required burn-in iterations, espe-
cially for handling the continuous parameters, i.e. the targets’
positions.

Our filtering approach combines the strengths of the two
afore-mentioned algorithms—centralized PF and MCMC
sampling steps combined with detection routines. We design
a new filtering strategy where an MCMC sampling step using
a resample-move strategy handles the discrete variables of the
system, namely the targets’ status, leading to a more relevant
sample cloud diversity. This breaks the time consuming burn-
in iteration phase into multiple short Markov chains which
are easily parallelizable. The continuous parameters can be
handled with the traditional particle weighting stage.

Regarding the person detection routines, we propose
an efficient proposal distribution based on saliency maps
that combine several information sources like diffusion

dynamics, learned HOG+SVM person detections, and adap-
tive background mixture models. Combining detector
responses within saliency maps is also considered in [4,42],
but it is fed into single or multiple object meanshift-based
tracker in which the prediction is solely based on dynamics.
Choudhury et al. [14] also use probability maps produced
by a face detection routine in the PF weighting stage while
the sampling stage is based on a zero-order dynamic model.
Such probability maps, as far as we are aware, have only
been marginally used in the importance sampling stage. This
choice of proposal distribution is crucial in PF as it dictates
ways to draw/predict the particles in the relevant state space
areas.

Finally, we propose experiments that demonstrate how the
proposed approach outperforms the conventional and most
closely related MCMC-PF strategy and how it is more suited
for parallelization.

The rest of the paper is organized as follows: Sect. 2
presents a brief survey of the literature in the area of multiple
human tracking putting our work in perspective. Section 4
recalls some basic concepts about PF and MCMC-based
methods; it then depicts our hybrid MCMC-based particle
filtering framework. Sections 5 and 6, respectively, detail the
tracker implementation and a discussion on the relative per-
formance of our approach and prior filtering strategies in the
context of monocular color vision-based video-surveillance.
Finally, a brief summary and future works are discussed in
Sect. 7.

2 Related work

Literature review on visual tracking is beyond the scope of
this paper. As the proposed approach mixes the ideas of
MCMC-PF and detection driven multiple person tracking,
we mainly discuss these contexts in visual tracking.

Particle filtering [3] offers a framework for representing
the tracking uncertainty in a Markovian manner by only
considering information from the current and the previ-
ous frame. The strength of this stochastic formulation and
its numerous variants (CONDENSATION1 [24], Mixed-
state CONDENSATION [25], Auxiliary [32], etc.) lies in
their simplicity, flexibility, and systematic treatment of non-
linearity and non-Gaussianness while being more suitable for
time-critical, online applications. In the PF framework, the
classical MOT literature proposes decentralized or central-
ized solutions which are based on independent filters (one per
target) or a joint state-space state representation respectively.

As pointed out in [41], the classical decentralized PF-
based approach based on multiple independent PF performs
poorly when the posterior is multimodal as the result of

1 for “Conditional Density Propagation”.
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multiple targets. To circumvent this problem, several exten-
sions have been proposed. Some researchers [34,41] intro-
duce a mixture PF, where each component/mode is modeled
with an individual PF that forms part of the mixture. This
mixture strategy is shown to require fewer samples but neces-
sitates re-clustering of particles at each time step.

Another decentralized solution is to propose interactively
distributed filters, i.e. one filter per target, which is computa-
tionally inexpensive [31,35,45]. Wu et al. [45] use multiple
collaborative trackers for MOT modeled by a Markov random
network but they do not deal with the false labeling problem.
The decentralized approach is carried further in [35] which
proposed an interactively distributed MOT (IDMOT) frame-
work using a magnetic-inertia potential model. Schemes like
[43] are shown to improve the efficiency but also face limi-
tations.

However, the decentralized strategy suffers from the “data
association error” whenever targets pass close to one another
[5]. Consequently, the target with the best likelihood score
typically “hijacks” the filters of nearby targets. To overcome
this problem, recent approaches [9,44] combine tracking
with detection in decentralized PFs to re-initialize in case
of target loss.

In contrast, centralized PF-based approaches estimate a
joint state which concatenates all of the targets’ states and
so estimates both discrete (number of targets) and continu-
ous variables (targets’ positions) [11,19,23,26]. By charac-
terizing all possible associations between targets and obser-
vations, this formulation deals more appropriately with the
joint data association problem. Some variants like kernel PF
[11] improve efficiency, but also face the intrinsic limitations
of centralized methods. Indeed, centralized PF suffers from
exponential complexity in the number of targets due to the
inefficiency of importance sampling which classically draws
the particles from the system dynamics, i.e. “blindly” w.r.t the
measurements. A remedy would be to steer sampling towards
the high likelihood state space regions by incorporating both
the dynamics and the measurements in the proposal distrib-
ution.

Going one step further, an alternative addressed in [6,13,
27,37] is to replace the traditional importance-based sam-
pling by a Markov Chain Monte Carlo (MCMC) sampling
step within the joint PF. An unweighted sample swarm is
obtained by storing the samples after the initial burn-in itera-
tions in the Markov chain. Yet, this filtering strategy is shown
to outperform their pure PF or MCMC counterparts. The
required iteration number is yet worsened by the MCMC
sampling which usually draws the particles solely according
to the dynamics and so is possibly subject to a very high
rejection rate. A major issue is then to draw the particles in
the relevant areas of the high dimensional state-space while
limiting the notorious burst in terms of particles and MCMC
iterations.

3 Our approach

A first step to reduce the MCMC complexity is to design a
novel MCMC-based PF where the MCMC sampling step is
devoted only to the targets’ status with respect to people leav-
ing/entering the scene. This sampling step through a small
number of Markov chain moves is applied to each individual
particle. These moves increase particle diversity with respect
to the number of targets to track. This filtering strategy, which
remains well suited for parallelization (except for the short
Markov chain), is inspired by the resample-move filtering
formalized by Berzuini et al. [8]. But, we leverage this strat-
egy to address the visual tracking of a variable number of
interacting targets, while Berzuini’s work centers on single
track synthesis for trajectory calculation and uses MCMC to
switch between different dynamic models.

A second step to reduce the MCMC complexity is to
construct an efficient data driven proposal distribution; it is
widely accepted that proposal distributions that incorporate
the recent observation outperform naive transition propos-
als considerably [33,34,36]. We propose a novel saliency
map-based proposal to overcome the tricky/computational
problem of combining multiple detector outputs in the track-
ing loop. There are a few attempts to combine the strengths
of detection and tracking recently, but we can notice that
almost all tracking-by-detection approaches consider a single
detector. This is a major limitation of tracking-by-detection
approaches especially those based on a single motion detec-
tor which often integrate static objects into their dynamically
updated background models. To detect and track both moving
and static persons, the expression of our proposal is given by
a mixture of saliency maps corresponding to persons’ appear-
ances and motion, but it can easily be extended to a wider set
of detectors.

A last consideration about tracking-by-detection para-
digm concerns detectors trained either online or off-line.
Many recent approaches [2,9,20] consider, both in the detec-
tion and tracking routines, the same observation model which
is adapted on-the-fly. It is widely accepted that such unsu-
pervised adaptation is prone to jitter and model errors may
accumulate gradually [40,44]. Off-line trained detectors are
ideal means to provide such supervision as it relates to
absolute information. In the vein of [10,34], our approach
merges two distinct data sources from preceding frames in
traditional recursive fashion2 with that provided by off-line
detectors devoted to the proposal. In essence, we combine
the strengths of methods that rely on absolute information
with those based on chained transformations. The former
do not drift but cannot provide enough precision for every
frame and so result in jitter. The latter do not jitter but tend
to drift or even lose track altogether. Another fundamental

2 i.e. a color distribution in the particle weighting stage.
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difference from our detection routine is that classical tracking-
by-detection approaches [9,14,20,29,30] assume detectors
with high recall rates provide sufficient detection results. In
contrast, we assume detectors with high recall merely output
reliable detection results occasionally. Hence, contrary to [9,
14], the detectors are not used in the particle weighting stage
but in the importance sampling stage which also involves the
dynamics.

The above review highlights the contributions of our cen-
tralized PF-based approach. The work most closely related
to ours is the well-known MCMC-PF proposed by Khan
et al. [27] but two major extensions are exhibited here.
First, we use saliency maps (produced by several off-line
trained detection routines) in the construction of the pro-
posal. Second, we propose a new resample-move particle
filter based on a short Markov chain to increase the paral-
lelization capabilities compared to MCMC-PF. The result of
interleaving saliency maps with our resample-move filter is
a powerful and fully automatic MOT which outperforms the
traditional MCMC-PF [27] (annotated MCMCPFv1 subse-
quently) and its upgraded version with saliency maps (anno-
tated MCMCPFv2).

4 Monte carlo-based tracking strategies

Recall that we aim to fit a template relative to each target all
along the video stream through the estimation of its status r ∈
{New, T racked, Lost, Dead}, its image coordinates (u, v)

and its scale factor s. These parameters are accounted for in
the state vector xk related to the kth frame. With regard to the
system dynamics, the unpredictable motion of humans leads
to define the state vector xk = (rk, uk, vk, sk)

′
and to assume

that its entries evolve according to a mutually independent
random walk model, viz. p(xk |xk−1) = N (xk; xk−1,Σ)

where N (.;μ,Σ) is a Gaussian distribution with mean μ

and covariance Σ = diag(σ 2
u , σ 2

v , σ 2
s ). Finally, the global

state vector is defined by Xk = (x1
k , . . . , xNt

k )
′

where Nt is
the number of targets.

Each target might be in one of the four states: Dead, in
which case the target is outside the camera FOV; New, in
which it is a new target that appeared in the current image;
T racked, in which the target has been tracked for at least one
previous image, and therefore, is already known; and Lost , in
which the target has disappeared in the current frame. Logi-
cally, New targets turn into T racked targets after processing
the current image, and Lost targets likewise turn into Dead
targets and as such, are removed from the state vector.

In this section, we will take the above as a base and exam-
ine which different tracking strategies might be used to reli-
ably track people in the scene.

4.1 Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) methods have been
used in a number of MOT systems, e.g. in [38,46]. This
class of algorithms, of which the most well-known is the
Metropolis–Hastings algorithm, attempts to approximate an
unknown distribution. This is achieved by creating a Markov
chain of samples that successively approach the target dis-
tribution; in tracking systems, this corresponds to the actual
scene configuration.

As mentioned, the renowned MCMC algorithm is the
Metropolis-Hastings (M-H) algorithm, which is shown in
Table 1, applied to MOT. This algorithm starts with a start-
ing configuration X, from which a new state X′ moving the
state subspace x′ of a randomly drawn target j (step #5)
according to a transition model (the so-called proposal den-
sity) q(x′

k |xk, zk), with z1:k = z1, . . . , zk the measurements
set, is proposed. The acceptance ratio Ra of this X′ state
is then calculated (step #7) where the Ψ (.) are the pairwise
interaction potentials between targets. This ratio is then com-
pared to a uniformly drawn threshold β, which determines if
the new state is accepted as state X for the next iteration, or
rejected. This process continues for a high enough number of
iterations that the algorithm can be said to have converged to
a point in which drawing any further states is approximately
equivalent to drawing from the distribution the Markov chain
is simulating.

While an MCMC with an adequate state transition model
and acceptance ratio calculation will eventually converge, the
number of iterations necessary to do so heavily depends on
the starting position X0 and the discriminative capabilities
of the measures used in the calculation of Ra . As a result,
it becomes necessary to run the Markov chain for a number
of burn-in iterations before any accurate sampling can be
attempted.

An MCMC algorithm can adequately handle variable
dimension state spaces, which is one of the challenges of
MOT, as shown by the Reversible Jump algorithm [21]. The
criteria for dimensionality changes are that if the drawing
of a new state X′ includes a probability for a dimensional-
ity change, there must exist a corresponding probability for
the opposite operation. This ensures that the search for the
convergence can properly navigate the state-space.

A common technique that simplifies both the drawing of
x′m and the evaluation of Ra is for the state transition model
to consider only changes to a randomly chosen subset of the
state (in the case of MOT, this translates into changing a
single target per iteration). As a result, the parts of the state
vector that remain constant can be simplified from the Ra

calculation. While this does increase the number of necessary
iterations, the complexity of the system is greatly reduced as
a consequence.
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Table 1 MCMC tracking strategy with Metropolis–Hastings algorithm

Table 2 MCMCPFv1 tracking strategy [27]

4.2 MCMC-based particle filtering (MCMC-PF)

Khan et al. [27] proposed a mixed Markov Chain and Particle
Filtering (MCMC-PF) algorithm, which we will henceforth
call MCMCPFv1.

MCMCPFv1 commences by running a number of burn-in
MCMC iterations, so that the Markov chain converges before
it is used for particle sampling (Step #3, Table 2). The ini-
tial state xm

k is chosen randomly from the set of particles of
instant k−1. Once the requisite number of iterations (Nburnin)

has passed, a particle is chosen every Ninterval particles, until
the desired number of particles (Nparticles) has been reached.
Recall that these intervals are necessary because the MCMC
process is modifying only a single target at a time, as men-
tioned in Sect. 4.1. Once all the particles have been drawn,

the MAP estimate corresponds to choosing the particle with
the highest repeat count.

The addition of the Particle Filtering step to the MCMC
core renders MCMCPFv1 less vulnerable to “unlucky”
draws, in which an extremely low threshold is drawn in the
last few iterations that allow a low-probability state to be
accepted without having enough iterations left to recover.

It should be noted that, in its original implementation,
MCMCPFv1 does not incorporate any detector data, instead
relying on knowledge of the entry point of any new targets
and having a very discriminant appearance model for targets.
As MCMCPFv1 was intended to track ants on a white sur-
face where there is a single entry point with closed borders,
such simplification is possible. On a human tracking situa-
tion where the borders are open, this becomes more difficult,
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and for this evaluation it has been implemented as a uni-
form entry field along the left, right and lower borders of
the image (since the upper border is closed, and there are no
off-border entry points). Therefore, we consider a variation
annotated MCMCPFv2, where the drawing for new targets
incorporates detector information, using the detectors out-
lined in Sect. 5. As in the case of MCMC, MCMC-PF is an
inherently sequential process, which makes it poorly suited
to optimization via parallelization.

4.3 Our filtering strategy (HYBRID)

Our filtering scheme, called HYBRID from here on and
detailed in Table 3, combines Markov chain iterations and
principles of the CONDENSATION algorithm [24].

Multiple saliency maps {Sd
k }d=1,...,Nd are processed from

visual detector outputs Detd(zk) and from the targets’
dynamics p(x j

k |x j
k−1). These maps, independent and so com-

puted in parallel on multi-core processing units, are then
merged in a unified saliency map (step #5) as illustrated in
Fig. 3, which highlights “relevant” areas of the state space.
The underlying data driven proposal densities and particle
sampling mechanisms will (re)-concentrate the particles on
the right regions of interest. The calculation of the saliency
maps is independent of both the number of targets and num-
ber of particles, depending only on the detector’s runtime and
the number of detectors.

In step #7, the continuous parameters (xi,1
k , . . . , xi,Nt

k ) of
the i th particle are randomly drawn from a uniform distri-
bution, and the values for these positions in the saliency
map lead to a likelihood

∑Nt
j=1 Sk(u

j
k , v

j
k ) which allows to

accept/reject the sample based on rejection sampling mech-
anism. This involves simply looking up the value in the
saliency map Sk , and permits: (1) the reduction of the com-
putation cost, (2) an efficient sampling in the high likeli-
hood areas of the continuous state-subspace and so a drastic
limitation of the particle burst, (3) an easier implementation
of the proposal density where this is difficult to model ana-
lytically3.

This first sampling ignores possible target jumps, i.e. we
assume the tracked targets remain the same from one frame to
the next. In step #12, a second sampling step through MCMC
moves leads each individual particle from the current targets’
configuration to another one (based on likely jumps) which
is more representative of the current image contents. Draw-
ing new samples by moving jointly all the dimensions suffers
from exponential complexity with the state-space dimension-
ality [37]. The popular resolution is to propose target-wise
marginal moves, i.e. only moving one target at each itera-
tion. The transition from state hypothesis Xk to the proposed

3 Even if only Gaussian mixtures are considered in this work.

next X′
k is conditioned by a proposal density q(x′

k |xk, zk)

for each jump in the targets’ status.
Traditionally, an MCMC process requires a high num-

ber of burn-in iterations as the Markov chain must usually,
given an initial state, move between trans-dimensional state-
spaces. The iteration number Nmcmc, whose role is to increase
diversity in the particle swarm, is here reduced drastically as:
(1) we only have to deal with targets’ configuration as the
continuous component subspace has been already sampled,
(2) the associated target number does not change significantly
from one frame to the next, and (3) we consider Markov chain
moves for each individual particle and the resulting particle
swarm induces diversity itself. A last observation concerns
the low computation cost of each iteration since it changes
the computation of the acceptance ratio Ra into a lookup into
the saliency map Sk , instead of a more expensive operation,
e.g. the comparison of color distributions.

Step #21 corresponds to the particle weighting update. To
this end, we assign each particle Xi

k a weight wi
k involving its

likelihood p2(zk |Xi
k). This likelihood involves three differ-

ent calculations, depending on the target status. If a target is
Dead or Lost , it is calculated as a similarity measure to the
background (i.e., likelihood the target is not present); if the
target is New, it is a dissimilarity measure to the background
(i.e., likelihood the target is present); finally, if the target is
T racked, it is calculated as both dissimilarity to the back-
ground, and similarity to an adaptive per-target appearance
model (i.e., likelihood the target is present and is similar in
appearance to what we have seen in earlier frames).

Finally, the particle with the highest weight wi
k is chosen

as the most probable configuration of the system, and is used
as input to the dynamic model for the next frame.

5 Implementation issues

Recall that we aim to combine several (complementary)
detector outputs and associated saliency maps denoted
{Sd

k (x|zk)}d=1,...,Nd in Table 3. We focus hereafter on two
state-of the-art detectors based, respectively, on motion and
human appearance. Such detectors provide a more robust
coverage of the targets: the motion detector reliably detects
moving targets, while the person detector is able to find peo-
ple that can be either mobile or static in the video stream.
Our primary motivation is to illustrate the data fusion capa-
bilities and impact of the saliency map in the tracker; the
principle can be straightforwardly extended to a larger bank
of detectors.

The implemented motion detector is based on the classical
background subtraction where the background is represented
by an adaptive Mixture of Gaussians models (MGM) [39]
where each pixel is modelled by multiple Gaussians. This
well-known MGM detector is not detailed here for space
reasons; it has just been extended to handle colour images,
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Table 3 Our filtering strategy(HYBRID)

Table 4 Comparative studies of
visual person detectors

The experiments are carried out
on an Intel(R) Core(TM)2 Duo
CPU T8100 @ 2.1 GhZ with 3
GB of RAM

Visual person detection results

Detector Recall (%) Precision (%) Average time per frame (s)

HOGs+latent SVM [17] 64.0 95.7 1.4

HOGs+Adaboost [28] 49.8 89.2 2.5

HOGs+linear SVM [15] 70.1 99.5 0.1

which is trivial. Figure 4c shows an example of foreground
segmentation by this detector.

For person detection based on appearance, three visual
person detectors, namely that of Felzenszwalb et al. [17],
Dalal et al. [15], and Laptev [28], have been evaluated on our
proprietary dataset introduced in Sect. 6. All the three eval-
uated detectors consider person detection as part of a gen-
eral object detection problem. To highlight the similarities
and differences of the three detectors, it is best to consider

their candidate generation, feature set, and utilized classi-
fier separately. All of them use an exhaustive sliding window
approach with fixed aspect ratio in image scale-space for can-
didate generation. Dalal et al. [15] use Histogram of Oriented
Gradients (HOGs) as feature sets and a linear SVM as a clas-
sifier to detect full human bodies. Similarly, Felzenszwalb
et al. [17] use HOGs with analytically reduced dimension
as features and a latent-SVM as a classifier with a parts-
based approach. Laptev [28] uses weighted local HOGs in
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Fig. 2 Sample detection outputs from Felzenszwalb et al. [17] (top),
Dalal et al. [15] (middle), Laptev [28] (bottom)

all rectangular sub-windows of the target as features and the
AdaBoost framework to select prominent features for full
human body detection.

Source codes provided by the authors, using their default
parameter settings and trained classifiers, with the exception
of [17] for which our complete C implementation of the origi-
nal Matlab version, are used for evaluation on our proprietary
dataset composed of 958 image frames. To quantify the per-
son detection performance, true positives (TP), false positives
(FP), and false negatives (FN) are counted in each frame.
Based on the counts, Recall (true positive rate) and Preci-
sion are computed as shown in Eq. 1. Table 4 summarizes
the obtained results; sample images corresponding to each
detector output are shown in Fig. 2. The latter shows some
examples of successful detections and false alarms where
local image patches look like humans. All the detectors run
with high precision rates and acceptable rates without any
specific training for this corpus. Going a step further, Dalal
et al.’s visual person detector outperforms the other two with
a higher detection rate as well as precision. Computation-
ally, Dalal et al.’s detector is faster with a 14-fold improve-
ment compared to [17]. Therefore, given our setting, we have
retained Dalal et al.’s person detector as a detector due to its
superior true detection rate, precision and computation time.

Recall (in %) = TP

TP + FN
, Precision (in %) = TP

TP + FP
.

(1)

The generation of the saliency map involves both the
detector output for all detectors and the dynamic motion
model for the targets. The only assumption made as to the
data input by each part is that it is in the form of a probability
distribution throughout the image, i.e. each point has a value
in the [0, 1] range that indicates the probability assigned by
the detector or the dynamic motion model that the target is

Fig. 3 Saliency map generation: original image on the upper left;
saliency generated by a detector on the upper right; saliency gener-
ated by the dynamic model on the lower left; and combined saliency
map on the lower right

present. These probability distributions are then combined
through a weighted sum into a complete saliency map for the
image, as seen in Fig. 3.

Given the previous notations, the joint state vector to esti-
mate in the tracker is composed of a variable number of Nt

targets and so follows:

Xk =
{
(r1

k , u1
k, v

1
k , s1

k ), . . . , (r Nt
k , uNt

k , v
Nt
k , s Nt

k )
}

(2)

To compare our data driven proposal-based filter against the
state of the art, we also implemented the standard MCMC-PF
pioneered by Khan et al. [27] and extended the approach
to take into account visual measurements, namely two con-
ventional visual detector outputs. The first uses background
subtraction via a Multiple Gaussian Mixture model in the
vein of [39] but extended to color images; the second is a
standard person detector based on HOG and SVM classifi-
cation [15]. Let B be the number of detected regions for a
given detector Detd(zk) and pi = (ui , vi ), i = 1, . . . , B,
the centroid coordinate of each such region. The associated
saliency map Sd

k (xk |zk) (step #3) follows the Gaussian mix-
ture proposal (although, as remarked earlier, it can accom-
modate more complex distributions, even if they are not easy
to describe analytically)

Sd
k (x|zk) =

B∑

i=1

N (x; pi , diag(σ 2
ui

, σ 2
vi

)) (3)

An example of a particle swarm drawn from these saliency
maps is shown in Fig. 4. As can be seen, the particles naturally
concentrate in areas where the saliency map shows a high
probability of target presence given the outputs of the above
detectors.
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Fig. 4 Detection outputs: Original image (a), HOG+SVM (b) and MGM (c), associated unified saliency map (d) and particle (green dots) sampling
(e)

In the vein of [46], the likelihood function p2(zk |Xk)

involved in step #21 favors both the difference to the
background and the similarity with its correspondence in the
previous frames. Given a state Xk , we partition the image into
different regions corresponding to the targets and the back-
ground. We denote R j

k as the region (an elliptic mask) of a

target j defined by x j
k . This function is evaluated within the

entire target region Rk = ⋃Nt
j=1 R j

k . Let h j
back be the color

histogram of the background image within the target mask
j, hx and h j

ref be the color histograms corresponding to a
region Rx parameterized by the state Xk and to the current
appearance model of the j th target4. These multiple color dis-
tributions provide some level of person discrimination from
the clothes appearance and so limit drastically the targets’
label switching during the tracking process. To overcome
the appearance changes of the region R j

k in the video stream,
the associated target reference model is updated at time k
from the computed estimates through a first-order filtering
process i.e.

h j
ref,k = (1 − κ). h j

ref,k−1 + κ · h j
E[xk ], (4)

where κ weights the contribution of the mean state histogram
h j

E[xk ] to the target model h j
ref,k−1 of the target j . To reflect

the similarity of two Nbi-normalized histograms h1 and h2,
we use the Bhattacharyya distance:

B(h1, h2) =
Nbi∑

l=1

√
h1,l · h2,l (5)

The likelihood function in step #21 of the HYBRID strat-
egy follows p2(zk |Xk) = Π

Nt
j=1w

i, j
k with

w
i, j
k =

⎧
⎪⎪⎨

⎪⎪⎩

1 − exp{λ1 B(hback, hx j
k
)} if r j == New

exp{λ2 B(href , hx j
k
)}/(1 − exp{λ1 B(hback, hx j

k
)}) if r j == T racked

(1 − exp{λ2 B(href , hx j
k
)}) ∗ exp{λ1 B(hback, hx j

k
)} if r j == Lost

(6)

while in MCMCPFv1 and MCMCPFv2 they are used to cal-
culate the term p1(zk |Xk) in the MCMC acceptance ratio,

4 In fact two histograms to represent the appearance of the upper and
lower human body.

namely p1(zk |Xk) = p2(zk |Xk) for a fair comparison with
our algorithm HYBRID. Note that only the target moves in
the current MCMC iteration is used in this computation, as
opposed to HYBRID, which uses all the targets.

As for the proposal density q(x′
k |xk, zk), there are two

cases to take into account: in MCMCPFv1, this density is
conceptually equal to sampling from a saliency map that is
composed solely of the dynamic model probabilities, while
in MCMCPFv2 and HYBRID, it is equivalent to sampling
from a mixed saliency map created by adding the detector
data to the dynamic model (in the case of HYBRID, this is
exactly how it is implemented). As a result, in MCMCPFv1
this density is built such that q(x′

k |xk) == q(xk |x′
k), i.e.,

the reversal for any given status change is equiprobable w.r.t.
that status change. In MCMCPFv2 and HYBRID, the addi-
tion of detector data makes that equality impossible, and so
q(x′

k |xk, zk) turns into a sampling of the probability values
at that point (which, in HYBRID, means a lookup into the
saliency map).

An interaction function Ψ (x j
k , xm

k ) also intervenes in the
calculation of acceptance function Ra . This interaction func-
tion models the interaction between targets that are spatially
close, in order to avoid having multiple targets tracking the
same object. Similar to Khan et. al. [27], a Markov Random
Field (MRF) is adopted to address this. A pairwise MRF
where the cliques are restricted to the pairs of nodes (targets
define the nodes of the graph) that are directly connected to
the graph is implemented as part of our tracker.

Regarding the likelihood function in the MCMC accep-
tance ratio, our algorithm HYBRID uses the already com-
puted saliency map which results in

p1(zk |Xi
k) =

Nt∏

j=1

p1(zk |xi, j
k ) (7)

with
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p1(zk |xi, j
k )

=
{

Sk(x
i, j
k |zk) if r j

k == New or r j
k == T racked

1 − Sk(x
i, j
k |zk) if r j

k = Lost

(8)

giving us a much faster computation of the acceptance ratio.
This allows HYBRID to use MCMC to evolve each particle
separately.

The comparative studies are performed for the empiri-
cally designed filtering strategies parameter values listed in
Table 5. They are tuned empirically on a small subset of
the video sequence. The program is written in C++ using
OpenCV functions.

Finally, some consideration is given to processing time:
in order to compare both algorithms fairly, the comparison
is set up in a way that both algorithms consume similar
computational resources. All strategies are normalized with
respect to the number of likelihood evaluations, which is the
most time consuming part. MCMCPFv1 and MCMCPFv2
perform exactly one likelihood evaluation per MCMC iter-
ation, while HYBRID performs one such computation per
particle and target present in the current image. Therefore,
MCMCPFv1 and MCMCPFv2 will use N̄t times more iter-
ations than HYBRID does particles, where N̄t is the average
number of targets per image in the test sequence.

6 Comparative studies and discussion

6.1 Datasets and methodology

We have tested our three strategies on a public dataset,
namely the sequence taken by camera 3 in the S7 dataset
of PETS 20065. We have also evaluated the HYBRID algo-
rithm on our own dataset, composed of images acquired in
a robotic lab hall. In either case, the sequences are captured
with a stationary camera, mounted a few meters above the
ground oriented towards the floor.

5 See the URL www.cvg.cs.rdg.ac.uk/slides/pets.html.

The sequence from the PETS dataset is composed of 3,400
images (size 720×576 pixels), which consist of one or more
people (up to 6), generally with similar clothing. The targets
are seen walking alone or together across a train station, pass-
ing each other, and meeting at the center of the scene. This
makes correct tracking very challenging.

The proprietary dataset, which features an in-lab hall, is
composed of 1,800 images at a resolution of 640 × 480,
in which up to five targets move in an area with a heavily
cluttered background. The clothing of the people involved
is more distinctive than in the PETS sequence, which, along
with the small number of targets to track and somewhat more
simplistic interactions, is easier to perform accurate tracking.

For a quantitative assessment, we annotated every frame
of the two sequences manually. We marked all image loca-
tion with 2D bounding box in which a person is visible. We
then derived similar bounding boxes from the tracker and
compared them to the annotations. Following recent track-
ing evaluations, we consider a box as correct if it overlaps
with the ground-truth annotation by more than 50 % using
the intersection-over-union criterion like in [16].

To compare the algorithms, we derive three metrics in the
vein of the CLEAR MOT metrics [7]:

• False positive rate per image (FPR) average false pos-
itives per image, i.e. 1

K

∑
k, j δk, j where δk, j = 1 if a

target j is tracked in the k th frame where there is none,
and 0 otherwise.

• Tracking success rate (TSR) ratio between correctly
tracked targets per frame and the actual amount of targets
per frame, i.e. 1

J

∑
k, j δk, j where δk, j = 1 if target j is

correctly tracked in frame k, and 0 otherwise.
• Precision error (PE) measures how precisely the targets

are tracked, as the sum of the squared error from the
position given by the tracker to the one in the ground

truth i.e.
√

1
J

∑
k, j (δ

′
k, j .δk, j ), with δk, j = x j

k − x j
k,truth.

The afore-mentioned metrics are computed by averaging
over a number of runs, for each sequence, to account for
their stochastic nature. Consequently, we have also included

Table 5 Parameter values used in the filtering strategies HYBRID, MCMCPFv1, and MCMCPFv2

Symbol Meaning Value (HYBRID) Value (MCMCPFv1, MCMCPFv2)

N Number of particles 150 10

(σu , σv, σs) Standard deviation in random walk models (64, 48, 1) (64, 48, 1)

Nbi Number of color bins in the Bhattacharyya distance 512 512

Nd Number of involved visual detectors 2 i.e. [15,39] 2 i.e. [15,39]

Nmcmc Number of MCMC iterations 3 per particle 150

Nburnin Number of burn-in iterations 0 225

κ Color learning factor 0.15 0.15
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the standard deviation σ for each metric to give an idea of
repeatability.

As previously mentioned, in order to put all algorithms in
a level playing field w.r.t. processing resources, the HYBRID
algorithm has been scaled down due to the fact that process-
ing a HYBRID particle is more processor-intensive than
processing a single MCMC iteration in MCMCPFv1 or
MCMCPFv2. The scale-down factor corresponds to the aver-
age number of targets per frame N̄t , as mentioned, which in
our case is 2.3 (there are 7,800 targets to be processed in 3,400
images, roughly). Rounding up to N̄t = 2.5, we have settled
on N = 150 particles in HYBRID to Nmcmc + Nburnin = 375
iterations in MCMCPFv1 and MCMCPFv2.

6.2 Results and comparative study

Table 6 shows the results of all three strategies in the PETS
sequence mentioned earlier. Some snapshots of this sequence
are also shown in Fig. 5. This figure shows snapshots of
the video where people are coming in and out. The tracker
quickly detects a new person in the scene, then immediately
assigns particles to this target and starts tracking it. The entire
video for the HYBRID strategy has been submitted as sup-
plementary material but can also be found at the URL http://
homepages.laas.fr/aamekonn/videos.htm.

It can be seen that all methods work reasonably well
on the video corpus. More specifically, MCMCPFv1 has a
slight edge over both MCMCPFv2 and HYBRID when it
comes to false positives. However, both MCMCPFv2 and

HYBRID show better results in target tracking and precision,
as expected. Clearly, the addition of more precise information
in the form of detector data aids successful tracking.

The performance measures confirm that HYBRID outper-
forms both MCMCPFv1 and MCMCPFv2 when it comes to
correctly tracking targets. This can be explained by (1) the
greater variety of possible hypotheses to choose from because
of the evolution of the whole particle cloud, as opposed to
a single particle, and (2) the more precise placing of the
said hypothesis by taking advantage of the saliency maps.
It also contributes to its being slightly ahead of MCMCPFv2
in terms of consistency of its results, as the lower σ values
attest. Consequently, HYBRID is also more precise than both
MCMCPFv1 and MCMCPFv2.

The main factor contributing to MCMCPFv1’s less accu-
rate tracking performance is that a lost target can only be
re-initialized near the entry point, and will thus remain lost
until the target moves close to said entry point (in this case, the
image border). This can be seen in the first samples of Fig. 6,
where two targets have just crossed each other. MCMCPFv2
performs better and does not suffer from this problem, so it
recovers just a frame later, but HYBRID still recovers faster.
This is likely because of the higher variety between the par-
ticles, which allows HYBRID to explore the solution space
faster.

As a complementary test, we have run HYBRID on
another sequence, taken in an open space of our laboratory, in
which the color characteristics of the people in the scene are
more easily differentiable. The results are shown in Table 6,

Table 6 MOT results on
datasets PETS 2006 and in-lab
sequences

Dataset FPR (σ )(%) TSR (σ )(%) PE (σ ) pixels

PETS (MCMCPFv1) [27] 2.6 (8.3.10−4) 68.9 (1.80) 10.17 (0.965)

PETS (MCMCPFv2) 3.0 (1.2.10−3) 72.2 (0.52) 8.65 (1.217)

PETS (HYBRID) 2.3 (2.2.10−3) 77.9 (0.35) 7.62 (1.136)

In-lab (HYBRID) 0.1 (3.53.10−5) 85.27 (2.73.10−3) 8.15 (1.119)

Fig. 5 From top-left to bottom-right sample results from PETS dataset for the HYBRID algorithm
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Fig. 6 Sample results from PETS dataset: the three lines correspond
to frames 1,424, 1,450, 1,485, 1,554, 2,369, and 2,527 as a result of
MCMCPFv1, MCMCPFv2 and HYBRID from top to bottom. In frame
#2369, the target on the upper side is not too dissimilar to the back-
ground, and so MCMCPFv1 and MCMCPFv2 have not been able to

follow it correctly. In frame #2527, the targets have just crossed, and
neither MCMCPFv1 nor MCMCPFv2 has recovered the lost target yet.
MCMCPFv2 will recover a frame later, MCMCPFv1 will not recover
at all

Fig. 7 Sample images from a run of HYBRID on our own dataset, showing particle locations and results. The differences in the shirt colors (red,
black and grey) aid in the tracking, although occlusion remains a problem

and some images from this sequence can be seen in Fig. 7. The
images show how the particles are sampled and the results
it leads to. It is worth noting that the great majority of par-
ticles are tightly clustered around the location of the target,
as a result of the saliency map and rejection sampling. As
can be seen, the results are markedly better, particularly on
the tracking success rate. In all likelihood, this is due to the
better discriminating power of the clothes’ colors, as well
as the more simplistic interactions between targets. Simi-
larly, the slight increase in position error may be attributed
to a difference in perspective allowing slightly higher ver-
tical movement without being penalized by the appearance
model.

6.3 Discussion about the computational cost

The tests in the previous sections have been performed on a
PC with a 2 GHz processor and 4 GB RAM, where it per-
forms at a frequency of 1.5 fps without any optimization.
SystemC simulations of a straight-forward integration of the
algorithm in a Spartan 3 FPGA result in a frequency of 18 fps,
once again without optimization. These results are presumed

accurate in a tentative manner by implementing part of the
algorithm deemed to be complex (hence, representative of the
whole flow), and yet simple enough that the implementation
effort is not prohibitive [47]. However, by taking advantage
of the parallel nature of the algorithm itself, the execution
time can be substantially improved.

To begin with, the execution time per frame can be defined
as in Eq. (9), where Tframe is the time spent per frame,
which is obtained via the time spent in the different detec-
tors (Tdetectors), the time spent generating the saliency maps
(Tsaliency), the time to process all the particles (Tparticles,
which in the unoptimized case is N × Tparticles), and finally
the time required to select the most probable particle (TMAP).
These times correspond, respectively, to steps #3, #4 and #5,
#6 to #22, and #23 in algorithm 3.

Tframe = Tdetectors + Tsaliency + Tparticles + TMAP. (9)

Of these terms, Tsaliency depends only on the size of the
image and the number of detectors involved, while TMAP

depends on the number of particles the system uses for track-
ing. Furthermore, the time spent on these two steps can be
considered negligible compared to the other two. Therefore,
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the two best candidates for optimization are Tdetectors and
Tparticles, which take up around 95 % of the processing time,
distributed roughly evenly. Tdetectors depends on the imple-
mentation of the chosen detectors and is independent of the
tracking algorithm itself, so we will set it aside and examine
Tparticles more closely.

As mentioned before, in an implementation that takes no
advantage of the parallel nature of the algorithm, Tparticles

equals the time spent processing a single particle times the
number of particles (N ). However, as the processing (sam-
pling and evaluation) of each particle is independent of all
other particles, it is possible to use multiple particle process-
ing units to drastically reduce the time necessary to process
all particles.

In practical terms, the architecture necessary for such
implementation in an FPGA is shown in Fig. 8. This archi-
tecture takes advantage of the built-in dual-port block mem-
ory (BRAM) present in many modern FPGAs to replicate
the necessary data to avoid collisions in the memory access,
which proved to be the bottleneck in the SystemC simu-
lations. As can be seen in the figure, each pair of particle
processors needs 3 BRAM blocks: 2 of these are read-only,
for the saliency map and the appearance reference data for
the targets; the remaining block, which the processors write
their output to, is shared between the two processors, with
each processor using a separate area of that memory.

With this architecture, Tparticles can be substantially reduced,
as far as the resources available in the FPGA allow, up to
the limiting case of Tparticles (in the case where there are

Fig. 8 Hardware architecture with parallel particle processing. The
number of particle processing units can be increased as long as FPGA
resources allow

as many particle processors as there are particles). In reality,
this improvement is subject to the law of diminishing returns,
with just eight particle processors already reducing Tparticles

by 87%, which reduces the total processing time by 43 %.

7 Conclusion and future works

In this paper, we have proposed a novel MCMC-PF algorithm
for multiple person tracking intended for implementation in
a FPGA-based smart camera. The principal distinction of our
approach from standard MCMC-PF is twofold. First, we sam-
ple the particles in high probability areas of the high dimen-
sional state-space thanks to short Markov chains devoted to
each individual particle. Second, this sampling step is driven
by saliency maps from multiple person detector outputs and
a rejection sampling algorithm to limit the well-known burst
in terms of particles and MCMC iterations.

We have compared this algorithm with another similar
algorithm, showing that it outperforms both the original form
and a variant with added detectors in terms of (1) tracking
performances, and (2) parallelization capabilities as the stan-
dard MCMC-PF processes particles sequentially.

Current investigations concern extending the algorithm
using knowledge of the camera perspective model and the
assumption that motion is on a known plane; this allows us to
make inferences in 3D and account for changes in image due
to perspective effects. Our mid-term research goal deals with
the effective algorithm implementation in a manner suitable
for an FPGA-based intelligent camera, which will greatly
improve performance by taking advantage of the paralleliz-
able nature of the algorithm. Our long-term research concerns
the use of such multiple communicating smart camera nodes
to reliably track people across large scale human-centered
environments. The major challenge is to avoid sending many
full-resolution, real-time images to the video processor of the
networked PCs, by offloading the processing power into the
cameras themselves.
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