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Developing Explicit Rate Control Algorithms

TM (asynchronous
transfer mode) is the

underlying technology
enabling B-ISDN

(broadband inte-
grated ser vices

digital network). B-ISDN was intro-
duced as the successor to narrow-
band ISDN after the latter fell short of
meeting the high demand for band-
width required by emerging applica-
tions such as real-time video and high
definition TV (HDTV). B-ISDN envi-
sions the transmission of fixed-size
packets (cells) over digital virtual cir-
cuits at rates exceeding 150 Mb/s.

ATM is basically a packet-switching
technology with 53-byte-long cells. The small cell size makes
it possible to build switches that can accept and switch a
large batch of cells. ATM is asynchronous in that it has no re-
quirements that cells rigidly alternate among the various
sources (i.e., cells arrive randomly from different sources).

An international nonprofit organization, the ATM Forum,
was established several years ago, with the primary objec-
tive of promoting and extending the use of ATM products and
services. The ATM standards set by the Forum define the
user-network interface; that is, the way a computer owned by

a private user can connect to the network and communicate
through it. For that, five different services are available and
are used for different types of communication [1]:

• Constant Bit Rate (CBR): This service category is used
by connections that request a static amount of band-
width that is continuously available during the con-
nection lifetime. Telephone and television use this
service.

• Variable Bit Rate (VBR): The cell rate is variable and is
mainly intended for bursty sources. This service can
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be real-time VBR (video conferencing) or nonreal-
time VBR (multimedia e-mail).

• Available Bit Rate (ABR): In this service category, the
cell rate depends on the availability of the network. It is
basically designed for bursty traffic whose bandwidth
range is known roughly. A rate control mechanism is
specified by the ATM Forum. Examples of this service
category include browsing the Web and e-mail.

• Unspecified Bit Rate (UBR): This category uses the
leftover network capacity. UBR service does not spec-
ify traffic-related service guarantees. Background file
transfer uses this service.

• Guaranteed Frame Rate (GFR): This service category
is intended to support non-real-time applications re-
quiring a minimum rate guarantee. It does not require
adherence to a rate control protocol. An example ap-
plication is frame relay interworking.

In principle, any UBR or GFR application can take advan-
tage of the ABR flow control protocol to achieve a low cell
loss ratio. Thus, the network traffic generated by various
sources can be thought of as composed of CBR, VBR, and
ABR connections only.

When a virtual circuit (VC) is established between a
source and a destination, both the customer (source) and
the carrier (switch) must agree on a contract defining the
quality of service (QoS). The ATM Forum defines three QoS
parameters:

• cell delay variation (CDV),
• maximum cell transfer delay (maxCTD),
• cell loss ratio (CLR).
In CBR and VBR services, a traffic contract specifying the

QoS guarantees is negotiated during the virtual circuit
setup phase and is maintained for the duration of the con-
nection. The ABR service, on the other hand, does not re-
quire bounding the delay or the delay variation experienced
by a given connection. Therefore, with CBR and VBR traffic,
it is generally not possible for the source to decrease its
rate, even when an intermediate node becomes congested,
because of the QoS guarantees made at VC setup time. How-
ever, ABR sources might adjust their rates to the level of
available service at times of congestion. Thus, ABR traffic
can be used to control congestion in the network.

About four years ago, the ATM Forum adopted a rate-
based congestion control scheme for the ABR service [1]. In
this scheme, explicit rate control messages are sent from in-
termediate nodes to the sources using special cells called
resource management (RM) cells. The goal of this conges-
tion control mechanism is to fairly share the bandwidth left
over from high-priority traffic (CBR and VBR) among the
ABR sources while making sure that the links throughout
the network are fully utilized.

An ATM network consists of several nodes (switches) in-
terconnected via bidirectional links. We say that a switch is
bottlenecked if the incoming ABR cell rate at any one of its
output ports is larger than the available rate to serve the

ABR cells. Clearly, at a given instant, there may be multiple
bottlenecks in the network, as in Fig. 1.

Although the rate-based congestion control schemes are
standardized, developing good explicit rate computation al-
gorithms is still an open issue. As the link speeds continue
to rise, the delay-bandwidth product (i.e., the product of the
round-trip propagation delay and the link capacity) in-
creases. An issue of importance that arises in this context is
how to deal with action delays, which is the time from the
moment control information is sent to a source, until an ac-
tion is taken by it, and until subsequently that action affects
the state of the switch that initiated that command. In this
article, we consider a control-based mathematical model
that helps us address this problem.

Our initial modeling assumption is that of a single bottle-
neck switch shared by several ABR sources. Although in a
real network topology the sources may be interconnected in
several ways, resulting in multiple bottlenecks (Fig. 1), the
single bottleneck assumption admits theoretical as well as
experimental justification [2] and provides a good starting
point for the derivation of effective rate controllers. More
precisely, we present three different congestion control al-
gorithms for ABR control and study their performance in a
simulated network environment. The mathematical model
uses idealized linear queue dynamics, already introduced in
[3]-[5], but the simulation model takes the saturation
nonlinearities into account. Particularly, in a real network,
queue length at a switch must lie between zero and the size
of the buffer, and this is taken into account in the simulation
model. Two of the algorithms we present formulate the con-
gestion control problem as a stochastic team where players
are users sharing the bottleneck switch. In this formulation,
the approach involves a model for the available bandwidth
as an autoregressive (AR) process, driven by an arbitrary,
independently distributed random sequence, and
minimization of an objective functional through which most
of the design criteria are reflected [6]-[7]. The third algo-
rithm we present is based on a deterministic model of the

February 2001 IEEE Control Systems Magazine 39

Switch
Bottleneck Switch

Figure 1. A generic ATM network with multiple bottlenecks.



available bandwidth. In this scheme, the emphasis is more
on robustness against the variations in round-trip delays
and estimating the number of sources sharing the bottle-
neck switch.

Several other types of ABR congestion control designs
have been considered. We briefly summarize these here to
compare and contrast them with our approach. The sim-
plest feedback control mechanism is called rate matching. In
rate matching, the node measures the average rate available
to ABR sources at periodic intervals and simply divides a
fraction of this capacity equally among the various users.

This is the basic approach used in [8], although several
modifications are used in the actual implementation. The
main advantage of this scheme is its simplicity, but it is diffi-
cult to control queue length optimally to avoid buffer over-
flows. This scheme, however, is stable (i.e., the queue length
remains bounded in an appropriate stochastic sense [9]).
Queue length information is not used in the basic algorithm,
although [8] allows one to incorporate queue length infor-
mation in an ad hoc manner. Alternatively, this problem can
be viewed as a feedback control problem where queue
length is used for explicit feedback. This approach is used in
[10]-[11] to study this problem using classical control tech-
niques or using a state-space approach. As in rate matching,
the primary goal is not optimality, but simply queue length
stability. In these approaches, the available bandwidth to
ABR sources is treated as an unmodeled disturbance. Thus,
the algorithms in [10]-[11] ensure stability in the presence
of this disturbance, but do not address the issue of perfor-
mance. In a recently published work [12], a closed-loop pro-
portional-derivative controller is proposed, which achieves
max-min fairness plus queue length stability, but the design
falls short of addressing the issue of robustness against un-
certainty in delays.

ABR Service
Flow Control Model for ABR
In the ABR service, the source adapts its rate to changing
network conditions. As previously mentioned, information

about the state of the network, such as bandwidth availabil-
ity, state of congestion, and impending congestion, is con-
veyed to the source through special control cells called RM
cells. ABR flow control occurs between a source and a desti-
nation, which are connected via bidirectional links. The for-
ward direction is the direction from the source to the
destination, and the backward direction is the direction
from the destination to the source.

A source generates forward RM cells every Nrm data cells,
where Nrm is generally taken to be 32. These cells travel
along the same path as the data cells but are treated specially

by the switches along the way (Fig. 2). The switch may:
• Directly insert feedback control information

into RM cells by using the explicit rate (ER) field
of RM cells.

• Provide binary feedback by marking the conges-
tion indication (CI) or no increase (NI) bit in the
RM cells.

• Indirectly inform the source about congestion by
setting the explicit forward congestion indication (EFCI)
bit in the data cell header, and rely on the destination to
convey congestion information back to the source by
marking the CI bit in the backward RM cells it generates.

• Spontaneously generate backward RM cells and ship
them back to the source.

Note that Fig. 2 is only a generic representation of the
control loop, as there may be more than one switch between
the source and the destination. On the establishment of an
ABR connection, the source specifies to the network both a
maximum required bandwidth and a minimum usable band-
width. These are designated as peak cell rate (PCR) and the
minimum cell rate (MCR), respectively. The MCR may be
specified as zero. The bandwidth available from the net-
work may vary, but should not become less than MCR. Each
ABR source has a current cell rate, allowed cell rate (ACR),
which it must modify upon receiving feedback from the net-
work via RM cells. The ACR always falls somewhere between
MCR and PCR. When a source sends out a forward RM cell, it
sets the ER field of the RM cell to the rate at which it would
currently like to transmit. As the RM cell passes through the
various switches on the way to the destination and back to
the source, those that are congested may reduce the ER.
When the source receives the RM cell back, it takes one of
the following actions depending on the settings of the ER
field and CI and NI bits.

• When there is no congestion (both CI and NI bits are
not set), ACR can be increased (but not above PCR) by
a quantity RIF×PCR, where RIF is the rate increase fac-
tor. ACR cannot be increased, however, above the ex-
plicit rate specified in the ER field.

• When a source receives a backward RM cell with CI
bit set, it decreases its ACR (but not below MCR) by
a quantity RDF×PCR, where RDF is the rate decrease
factor. However, again the ACR of the source cannot
be larger than the explicit rate specified in the ER
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adapts its rate to changing
network conditions.



field. Both RIF and RDF are negotiated in the VC
setup phase.

• Finally, when the source receives a backward RM cell
with only the NI bit set, it sets its rate to the minimum
of ACR and ER.

Performance Criteria
Numerous algorithms have been and
are being developed for ATM ABR
congestion control. To be able to
study and compare these algorithms
on equal grounds, we need to set
some performance measures inde-
pendently of the particular algorithm
under investigation. The main goal of
ABR control is to provide fairness
among all VCs with a minimal cell loss
ratio and maximal utilization of network resources. The lat-
ter two of these objectives can be achieved by regulating the
queue length at bottleneck nodes around a desirable level.
Tracking such a nominal queue length (whose exact value is
determined based on QoS requirements) is desirable to
avoid losses due to overflow and waste of the buffer capac-
ity due to underflow.

Fairness is an issue that requires more discussion, as it
may be hard to visualize what is meant by a fair allocation
in a large network with multiple bottlenecks. The most
widely accepted notion of fairness is the max-min fairness
criterion [15]. Under this criterion, the fair share of each
connection contending for a given link bandwidth should

be equal to ( ) / ( )µ − −r N Mu u . Here µ is the available ser-
vice rate for ABR sources at a particular switch, N is the
number of active sessions at that particular switch, r u is
the total rate of connections that are bottlenecked else-
where or are limited by their PCRs, and M u is the number of
such connections.

Basic Model of an ATM Switch
Generally, an ATM switch has several input and output
lines. The number of input lines is almost always the
same as the number of output lines, because the links are
bidirect ional . Cel ls arr ive on the input l ines
asynchronously, but the switching is done synchronously
with the help of a master clock. Each input line is con-
nected to a common bus, through which the incoming cells
are directed to their corresponding output ports. Most of
the commercial ATM switches use output queueing to pre-
vent high cell loss rates. In output queueing each output
line has a finite buffer, where the incoming cells are served
on a FIFO (first in, first out) basis. Associated with each
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utilization of network resources.



output line is an ER controller that suggests a data rate for
each ABR VC.

In what follows, we focus on a particular output line of an
ATM switch. Other output lines can be treated in a similar
manner. The model we adopt here is a discrete-time model,
where a time unit corresponds to the interval over which
the rate available to ABR sources is determined (that is, the
interval over which measurements are made). Further, this
measurement interval is assumed to be long enough for the
switch to be able to process several cells—a reasonable as -

sumption if the link speeds are high and packet sizes are
small. This allows us to ignore the cell-level dynamics and
model the ABR traffic as a fluid.

Let rn denote the total number of cells that arrive in one of
the output buffers of an ATM switch in the interval [ , )n n +1 ,
and let µ n denote the number of cells that depart from this
buffer in the same time interval. Note thatµ n represents the
available bandwidth (unused by higher priority traffic, par-
ticularly CBR and VBR). Denoting the queue length at time n
by qn and ignoring the boundary effects on the queue dy-
namics as in [16], we have the evolution

q q rn n n n+ = + −1 µ . (1)

Let there be a total number of N connections (sources)
switched through the output line under study, and the num-
ber of cells that arrive from source m during time-slot
[ , )n n +1 be denoted by rmn . Clearly

r rn mn
m

N

=
=

∑
1

.

In general, rn has two components: 1) The number of cells that
arrive from uncontrolled sources, i.e., those sources which are
bottlenecked elsewhere in the network or are limited by their

PCR constraints. The ER controller at this switch
has no control over these sources. In other
words, the ER field of an uncontrolled source is
either overwritten at some other switch or is re-
placed by its PCR value at the source. We denote
this component of rn by rn

u . 2) The number of cells
that arrive from controlled sources, which are
bottlenecked at this switch. The ER fields of RM
cells of this type of sources are modified to
achieve several traffic-related service guaran-
tees. We assume that each source, either con-
trolled or uncontrolled, has an MCR = 0. If the

MCRs are positive, we can reserve the minimum cell rate for
each user and make the assumption that a source will attempt
to send at a rate no smaller than its reserved MCR.

Let there be a total number of M controlled sources and
the number of cells that arrive from controlled source m in
the interval[ , )n n +1 be denoted by rmn

c . Then, we have the fol-
lowing relation between rn , rmm

c , and rn
u :

r r rn mn
c

m

M

n
u= +

=
∑

1

.

In the analysis to follow, we assume that the switch exer-
cises ER ABR congestion control, which amounts to setting
RIF =1, RDF = 0. Note that for a controlled connection, the PCR
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For a controlled connection, the
PCR constraint never becomes
active, as this would invalidate the
assumption that the source is
controlled.



constraint never becomes active, as this would invalidate the
assumption that the source is controlled. Also note that both
rn andµ n represent cell rates with the unit of time taken as the
sampling interval over which the measurements are made.

As indicated earlier, the decision regarding the rate at
which each source should transmit is made by the switch,
and the type of information accessible to the switch affects
this decision. Since ATM technology relies on the
high-speed switching of packets, the amount of overhead
caused by the ER controller should be kept at a minimal
level. At time n +1, when the decision on the rate of each
controlled source has to be made, three pieces of informa-
tion are available to the switch without any delay: queue
length,qn , available bandwidth,µ n , and the total number of
cells arrived in the interval [ , )n n +1 . Extracting these num-
bers does not require any elaborate measurements, as qn

can be measured by looking at how many cells in the buffer
are waiting to be served, whileµ n and rn can be determined

by counting the number of cells left and arrived in the
interval[ , )n n +1 , respectively. In general, to be able to fairly
divide the bandwidth among all sources, the switch needs
to know how many controlled sources are being served at a
given time. Calculating the number of VCs requires the
switch to look at the header of every single RM cell and tell
what source it originated from and what destination it is
routed to. Even though theoretically possible, this task
brings in a computational overhead slowing down the op-
eration of the ATM switch. Moreover, the number of VCs, N,
calculated this way may not be equal to the actual number
of controlled sessions, M, as some of the sources might be
limited by their PCRs, bottlenecked at some other switch
in the network, or just too bursty to be exercised any con-
trol over. Therefore, it is desirable to develop an ER control
algorithm that relies only on the knowledge of the three
easily accessible quantities described above.

As mentioned earlier, it takes time from the moment the
ER decision is made by the switch until an action is taken by
a source, and until subsequently that action affects the state
of the node that initiated the action. Thus, the cell rate of
source m at time n, rmn , is actually an outcome of an action
taken dm time units earlier, where dm represents the action
delay for source m and is taken to be independent of time n.
Without any loss of generality, we assume that the dms are
ordered such that

0 1≤ ≤ ≤ ≤d d dM�
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Table 1. Action delays for the fairness model.

SW1 SW2 SW3 SW4

ABR1 0 3 6 10

ABR2 0 3 6

ABR3 0 3



where d corresponds to the maximum round-trip net-
work delay.

Congestion Control Algorithms

Controller 1:
A Certainty Equivalent Controller

Basic Assumptions
The available bandwidth for ABR, µ n , may change in an un-
predictable way since the transmission rate of VBR traffic is
time varying. The bandwidth available to the controlled
sources, on the other hand, is subject to further uncertainty
due to the variations in the uncontrolled traffic, rn

u . These
observations motivate us to consider the CBR, the VBR, and
the uncontrolled ABR traffic collectively as interference,
modeled by an AR process, which is stable:

γ µ µ ξn n n
u u

nr r:= − = − + (2)

ξ α ξn
i

p

i n i n= + φ
=

− −∑
1

1.
(3)

Here µ is the constant nominal service rate, r u is the nomi-
nal rate of uncontrolled sessions, p is the order of the AR
process, α i i p, , ,=1 � are the parameters characterizing the
process, and the driving term { }φ ≥n n 1 is a zero-mean i.i.d.
Gaussian sequence with variance k2.

Given the dynamics of the AR process, the source rates,
rmn

c , are determined by minimizing a cost function that quan-
tifies the tradeoff between two partially conflicting goals:
steady queue length around a nominal value and fair alloca-
tion and actual sharing of the available bandwidth. The cost
function adopted for this purpose is
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Table 2. Action delays for the max-min fairness
model.
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Figure 6. Fairness model: Source rates under Controller 1.
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where Q is the target queue length, kms are positive constants,
amm

M

=∑ =
1

1, and E{}⋅ denotes expectation over the statistics of
the AR process. Exact fair sharing implies a Mm =1 / , which
will be the initial value for each am . Note that this choice of am

requires the knowledge of the number of controlled VCs, M.
The first term in (4) represents the penalty for deviating

from the desired queue length, Q, while the second term repre-
sents a penalty (for each source) for deviating from the autho-
rized transmission rate, which we have taken to be a fraction
of the available bandwidth for each source to achieve max-min
fairness. The kms quantify the relative priority given to each
source—the larger km is, the lower the priority.

Derivation of Controller 1
To arrive at a somewhat simpler configuration, we first in-
troduce the shifted variables

x q Q

u r a r
n n

mn mn
c

m
u

:

: ( )

= −
= − −µ

where xn stands for the state and umn for the control. Then
the state dynamics (1)-(3) become

x x un n mn
m

M

n

n i
i

p

n i n

+
=

+
=

+ −

= + −

= + φ

∑

∑

1
1

1
1

1

ξ

ξ α ξ

and the cost function is
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Let

~ : , ~ : ( ~ , , ~ )u u a u u umn mn m n n n Mn= − = ′ξ 1 � .

Then the cost function can be written as

J
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

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.

Also, in terms of ~u, the dynamics for x become
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x x un n mn
m

M

+
=

= + ∑1
1

~ .

If there was no delay (i.e., d d dM1 2 0= = = =� ), then the
standard discrete-time linear regulator theory [17] would
apply, yielding the unique solution

~ [ ]u R bb s bs xn n= − + ′ −1

where

b

R
k k

M

M

′ =

=






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×: ( )

: , ,

1 1 1

1 1

1

1
2 2

�
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and s is the unique positive root of

[ ]s s b R bb s bs= + − + ′ −1 1 1'( ) .

This can be solved explicitly to yield

s k
m

M

m= + + = 
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





=

−

∑1 1 4
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2
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The original controller would then be (with zero delay)

u u an n m n= +

















~ .

1

1

1

�
ξ

(5)

Since the impact ofumn on the network would be felt only
after dm time units, here we invoke certainty equivalence,
where, in the solution (5) for each controller umn ,
m M=1 2, , , ,� we replace the queue length and bandwidth by
their estimates dm time units later. These considerations
lead to the following certainty equivalent controller, which
we will refer to as Controller 1:

u p x a m Mm n m n d n m n d nm m, | |
� � , , ,∗

+ += − + =ξ 1 � . (6)

Here pm is the mth component of [ ]R bb s bs+ ′ −1 and �
|xn d nm+ ,

�
|ξn d nm+ are the predicted values of xn dm+ and ξn dm+ , respec-

tively, based on the what is known at time n and given that all
other controllers are also in the form (6). These predictors
are generated by
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m
m+ − −

+ − + −=
− + ≥ +

1
1 1 1ξ if

, .n j d mm
j d+ − − < +



 1 1if

These are the recursive equations generating the predictors
for the queue length and rate information at a future time,
where the future time is the current time plus the action de-
lay for the corresponding source. For example, �

|ξn j n+ de-
notes the predicted value at time n of the value of ξ at some
future time n j+ , based on the information available at time
n. A similar interpretation holds for �

|xn j n+ .
The above algorithm is relatively easy to implement.

The estimator algorithms are simple scalar operations,
and the scalar solution of the Riccati equation, s, has al-

ready been obtained explicitly. In summary, an easily
implementable version of Controller 1 is given below in the
form of pseudocode:

Pseudocode for the node’s computation at time n using
Controller 1
for j dM=1 to do

for m M=1 to do
if (n j d nm+ − − ≥1 )

� � �
, |u p x am n j d n m n j m n jm+ − − + − + −= − +1 1 1ξ

endif
endfor
� � � �

, |x x un j n j m n j d n
m

M

n jm+ + − + − +
=

+ −= + −∑1 1
1

1ξ
endfor
u p x amn m n d m n dm m

= − ++ +� �ξ

Controller 2: Optimal Controller
Recall that in the derivation of Controller 1, we first assumed
zero delays, solved the simplified linear quadratic regulator
(LQR) problem, and then incorporated the delays into con-
trollers through estimators using the certainty-equivalence
principle. An alternative approach, which leads to the opti-
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mal solution of the problem, is to augment the state space in
an appropriate way. Basically, one must introduce new state
variables for those sources that have nonzero delays. Since
this is a tedious process with many algebraic details, we do
not include the derivation of the optimal controller here, but
instead refer the interested reader to [18]. The optimal solu-
tion is characterized in terms of the solution of a discrete-
time algebraic Riccati equation (DARE), whose dimension is
determined by the magnitude of the largest delay and the or-
der of the AR process describing the available capacity.

Controller 3: A Robust Adaptive
Controller Under Uncertainty
Basic Assumptions
In our earlier paper [6], by considering a one-node example
with perfect delay information and instantaneous feedback,
we showed that delay is an important factor in any design of
rate flow controllers and hence must be explicitly taken into
account in any realistic model of high-speed networks, as
we have done above. In a realistic network, however, there
are several deviations from this ideal model.

Both Controllers 1 and 2 assume complete knowledge of
delays in the network. Although the end-to-end round-trip
delay may be known to the switch as part of the fixed
round-trip time (FRTT) computation performed at VC
setup time, we can still have small errors in delay esti-
mates. One source of error is the assumption that the delay
is an integer multiple of the time unit (measurement inter-
val), which may not be true. Further, there is variability in
the delays due to queues in the virtual circuits. Finally, RM
cells are generated only every 32 data cells and hence feed-
back is not instantaneous.

In the derivations of Controllers 1 and 2, we also assumed
that the switch has access to the information about the num-
ber of controlled sources, M. Recall that we need this number
to determine the fair share of each source. As mentioned ear-
lier, in a realistic environment with bursty sources, determi-
nation of M may not be an easy task. Hence, the switch must
have a method of estimating this parameter.

Motivated by these observations, we want to develop a
controller that is robust to uncertainty in delays, and at the
same time adaptive to the number of sources. Thus, in deriv-
ing what we call Controller 3, we only require the knowledge
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of d and M , which denote the upper bounds on the round-trip
delay and the number of controlled sessions, respectively.

Although the available bandwidth for ABR, µ n , and the
rate of uncontrolled sessions, rn

u , may change with time, as
in the previous section, we assume here that bothµ n and rn

u

are constants denoted by µ and r u , respectively. These as-
sumptions are justified ifµ n and rn

u vary slowly compared to
the time constant of the closed-loop system. With these sim-
plifying assumptions, the state equation (1) becomes

q q r rn n mn
c

m

M
u

+
=

= + + −∑1
1

µ .

Since the rate of the controlled source m at time n is actually
an outcome of an action taken by the switch dm time units
earlier, we have

r cmn
c

n dm
= −

where cn denotes the command issued by the switch at time n.

Derivation of Controller 3
As the actual number of controlled sources, M, is not known
to the switch, we start our analysis by proposing a method
to estimate this figure. Let us first consider the case when
r u = 0 (i.e., there are no uncontrolled sessions). Our method
relies on a simple observation: If the switch sends out the
same command, say c, for( )d +1 time units, at the end of the
( )d +1 st step, all of the controlled sources in the system will
be transmitting at rate c. Hence, at the end of the ( )d +1 st
time step, if we divide the incoming cell rate, rn , by the as-
signed rate c, we obtain the actual number of controlled
sources, M, at the switch. To have a running estimate of this
figure, one can construct an estimator, �M n , and update it ev-
ery( )d +1 time units using this scheme. We note that this al-
gorithm converges to the exact value of M in only a finite
number of steps. Having determined M in this manner, one
can set the command c at the next time slot to be equal to
µ / M and achieve fairness, which in this particular case also
corresponds to max-min fairness, as we took r u = 0.

Now if the rate of the uncontrolled connections, r u , is not
zero, the above scheme fails to converge to the actual number
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of bottlenecked connections, M. It still does converge, how-
ever, but to a different value. In fact, as we will show shortly, in
calculating the share of each controlled connection, if one
uses the number to which the algorithm converges, then the
resulting bandwidth allocation is max-min fair.

Before proceeding further, we note that the choice of the
rate c above is completely arbitrary, because it does not
play any role in the estimation process. Thus, we are free to
pick any rate larger than zero for the algorithm to work.
Mathematically speaking, letting �M n denote the estimate of
M at time n, we propose the following estimator:

c c c

M M

n d n d n d

n d n d

( ) ( ) ( )( )

( ) (

,

� �

+ + + + + −

+

= = ⋅⋅⋅ =

=

1 1 1 1 1 1

1 + + + + −
+

− +

= ⋅⋅ ⋅ = =
1 1 1 1 1

1

1 1
) ( )( )

( )

( )( )

�M
r

cn d

n d

n d

where the first equation sets cn to the same value for d +1
steps, while the second equation is used to estimate M every
d +1time units. For ease of notation, let us introduce the fol-
lowing subsequences:

q q c c r r M
r

cn
s

n d n
s

n d n
s

n d n
s n

s

n

: , : , : , � :
( ) ( ) ( )

= = = =
+ + +1 1 1

− −

= +
1 1

s

u

n
s

M
r

c

(7)
with �M Ms

0 = . To complete the design of Controller 3, we
need to specify how cn

s should be selected to achieve the
dual goal of max-min fairness and queue length stability. We
propose the following design for cn

s :

c
M

q Qn
s

n
s n

s= − −








max
�

( ),
µ β 0

(8)

whereβ > 0 is the gain to be selected to ensure stability, and
the max function is introduced to ensure that the switch
asks the source to transmit at a positive rate in excess of
MCR =0, as required by the QoS specifications. In (8), the
term − −β( )q Qn

s is introduced to drive the queue length, qn ,
to the desired set point, Q, by providing negative feedback
in the closed-loop system dynamics.

Note that if qn converges to Q, the command of the node
for controlled sources, cn

s , converges to the solution of
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c
M

r
c

s
u

s

∞

∞

=
+

















max ,
µ

0 ,

which is given by

c
r

M
r

M
s

u u

∞ = −







= −
max ,

µ µ
0

where the second equality follows from the obvious con-
straintµ − ≥r u 0. Hence, if we can show that the closed-loop
queue dynamics, qn , converge to Q, then the rate of con-
trolled sessions converges to the max-min fair share of the
available bandwidth. In fact, it can be shown that if the con-
troller gain, β, is picked such that

( )0
1

1
1< <

+
−






β

µd M

r u

,

then the robust control policy, given by (7)-(8), achieves
queue length control plus fair share of the available band-
width [20]. The proof of this fact is rather tedious and is
hence omitted in this article. Note that, as with Controllers 1
and 2, the algorithm we propose here does not suffer from
computational complexity, because there is a single design
parameter, namely β, to be tuned, and to determine the ER
the switch has to perform only two divisions, one multipli-
cation, and two additions per output line, every ( )d +1 time
units. Moreover, the information the switch needs to per-
form these calculations, { , , }r qn

s
n
s µ , is locally available, and

just a few memory elements per output port are required, as
there are only four numbers, { , , , }d M Q β , to be stored.

Simulations
Simulation Model
In simulations, we consider a four-node high-speed network
where the link speed is the speed of light, the service rate of-
fered by every link is 1 Gb/s, and the distance between adja-
cent nodes is constant and equal to 1000 Km. We take the
time unit to be the time required to serve 5000 cells (5000 ×
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53 ×8 bits). Then, the propagation delay for a cell (i.e., the
time required for a cell to traverse a link) is

t = ×
×

×
×

× ≈1 10
3 10

10
53 8

1
5000

16
6

8

9

. time units,

where we have again taken the speed of propagation to
equal the speed of light. Accordingly, we consider here the
four-node network depicted in Fig. 3. In the figure, SVi rep-
resents a set of VBR sources as detailed under the figure
and DVi is the destination of SVi. Moreover, the VBR
sources considered are of two types: video traces obtained
from [22]-[24] and simulated ON-OFF sources. The latter
are bursty sources simulated by us, which alternate be-
tween ON and OFF states according to a Markov chain, and
when in the ON state, cells arrive at a constant rate.

Superimposed on the model in Fig. 3, which depicts
only VBR sources, we consider two configurations for the
ABR sources:

• Parking lot model: This model will allow us to evaluate
the fairness of our algorithms when there is only one
bottleneck node. This network has a “parking lot” con -
figuration [25] where three ABR sources with different
delays (see Fig. 4) are bottlenecked at the third node.
The one-way propagation delay from one switch to an-
other is 1.6 time units. Since the delays used in the
control algorithms are integers, we will take the near-
est integers to the actual delays. For example, the ac-
tual action delay between source ABR1 and the
second switch is 2 16 3 2× =. . time units. The corre-
sponding delay used in the mathematical model is
then three. Table 1 specifies the action delays (the
ones used by the control algorithms) between the
sources and the switches. Recall that the action delay
characterizing a source with respect to a node is de-
fined as the time taken from the moment the node
sends control information to a source (via a backward
RM cell) until that source takes the corresponding ac-
tion, and until subsequently that action affects the
state of the node. For the adaptive control algorithm,
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we take d =10, which is the largest possible network
delay in this configuration. Note that to implement the
adaptive robust controller, we do not need the delay
information given in Table 1.

• Max-min model: The parking lot model has only one
bottleneck node. This does not allow us to fully eval-
uate the max-min fairness properties of our algo-
rithms. Hence we consider the model depicted in
Fig. 5. Three of the ABR sources are bottlenecked at
the third node. The remaining ABR source
(SA2) will then use the remaining capacity
at the second switch (according to the
max-min criterion [15]), which then be-
comes bottlenecked. The network eventu-
ally ends up with two bottleneck nodes.
Table 2 specifies the action delays used in
the mathematical model.

For the simulation examples, we used the follow-
ing parameter values:

• Time unit: Time required to serve 5000 cells
• Target queue length: Q = 700
• ICR = 300, MCR = 0, PCR = 4500
• RIF =1, RDF = 0
• Weights: k mm = ∀1 (Controllers 1 and 2)
• Maximum number of sessions: M = 5 (Controller 3)
• Maximum network delay: d =10 (Controller 3)
• Controller gain: β = × × + −1 12 1 0 0152/ ( . ( ))~ .M d (Con-

troller 3).
For Controllers 1 and 2, the nominal service rate µ and

the AR process parameters α i are estimated online using
the Yule-Walker algorithm [26], assuming that the order of
the AR process is eight. This is discussed in the next subsec-
tion. For Controller 3, we takeµ to be equal to 4500 cells per
time unit. The propagation delay from one node to the next
is 1.6 time units. Note that the actual delay is variable since
the cells go through node buffers, which leads to additional
queueing delays.

Following the current ATM standards, the feedback mecha-
nism has been implemented using RM cells that are generated
by the sources every 32 data cells. Even though the mathemat-
ical model for the controllers can only use integer values for
delay, the actual one-way propagation delay for the RM cells is
1.6 in the simulations. ATM standards allow for measurement
of propagation delays in the signaling protocol. Queueing de-
lay, however, remains variable and unknown. Thus, one of the
goals of our simulation is to show that the impact of these two
types of approximations (to the actual delays) on the perfor-
mance of Controllers 1 and 2 is negligible.

The AR Process
Two of our algorithms are based on modeling the available
capacity (i.e., total capacity minus the capacity used by the
VBR and uncontrolled ABR sources) as an AR process (see
(1)-(2)). The order p, the parameters α i, and the variance of
the noise have to be determined. We wish to emphasize that

the variance of the noise is determined as part of the estima-
tion of the AR parameters but is never actually used in the
control algorithms, as it is not needed.

Tuning the parameters of the AR process and finding the
best possible value of p is a challenging task in general. Sev-
eral methods exist to calculate the parameters, α i, once p is
fixed. We use the Yule-Walker algorithm [26] to determine p
and α is from the data that is observed online.

Let T be the time interval over which we attempt to fit an

AR model to the available capacity. Then one criterion to de-
termine the best order for an AR process is the final predic-
tion error (FPE), defined by

FPE = +
−

�σ2 T p
T p

where �σ is the estimate of the variance of the noise caused
by the cross traffic. The order p of the process that mini-
mizes the FPE is the best order [26]. The time interval in our
simulations wasT = 200, and using this, we determined that
p = 8 gives good results. For the sake of brevity, we do not in-
clude the details here.

Simulation Results
In simulations, all rates are expressed in cells per time unit.

Fairness
First, by considering the “parking lot” configuration (Fig. 4),
we study the fairness of our designs when there is only one
bottleneck node (SW3). In a single-bottleneck node sce-
nario, fairness is the capability of the algorithm to fairly dis-
tribute its available capacity among the various sources
despite the presence of different delays.

• Controllers 1 and 2: When VBR sources are present, the
mean available bandwidth at SW3 is around 4500 cells
per time unit. In addition, recall that sources ABR1,
ABR2, and ABR3 have delays of six, three, and zero, re-
spectively. The simulations for both controllers show
that the capacity is fairly shared among the three
sources (Figs. 6 and 8) with a mean rate of around
1495. Although the sources have different delays, the
design manages to provide fairness. The queue at the
third node is regulated around 700, as expected (Figs.
7 and 9).

• Controller 3: When there are no VBR sources, the avail-
able service rate at SW3 is exactly 4500 cells per time
unit. As can be seen from Fig. 10, our algorithm
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achieves fair share. Also the queue at SW3 converges
to the desired value of 700. In addition, the algorithm
finds the actual number of sources at SW3 in d + =1 11
time units, as expected. The rate of convergence of
source rates as well as the queue length depend on the
controller gain β. A smaller value of β results in a
smaller overshoot but a larger settling time.

Max-Min Fairness
The configuration under consideration is depicted in
Fig. 5. The main bottleneck node is the third one, where
the capacity should be equally distributed among the
sources ABR1, ABR3, and ABR4. Then, since ABR1 does
not use its fair share at node 2, ABR2 should use the re-
maining capacity and increase its cell rate to make up for
the difference.

• Controllers 1 and 2: With VBR sources present, the
mean available capacities are around 4870, 4720, 4480,
and 4860 cells per time unit for switches 1, 2, 3, and 4,
respectively. If the capacity at SW3 is equally distrib-
uted among the sources ABR1, ABR3, and ABR4, each
one of these sources should transmit at around 1500

cells per time unit. Then, ABR2 should use the unused
capacity at SW2 and increase its cell rate to around 3200.
Nevertheless, our basic algorithm sets the weights to
the exact fair share (1 / M for M sources), and the drop
observed in the queue length at switch 2 is not substan-
tial enough to increase the rate of ABR2. Therefore,
max-min fairness is not achieved with the original con-
trollers. An adaptive weight algorithm needs to be im-
plemented to adapt the weights to a max-min fairness
configuration. This problem has been addressed in
[27], where the authors determine the actual activity of
each source and deduce from that a max-min fair share.
We adopt a similar idea to choose the weights am , as de-
scribed below. Consider a switch with M sources going
through it. We first evaluate the mean cell rate of each
source m, say meanCCR m( ), by using the CCR (current
cell rate) field in the RM cells. If a source uses less than
1 /M times the capacity of the switch, then its am is re-
duced to the fraction that it actually uses. Such sources
are called underloading sources. As a result, the remain-
ing capacity is fairly allocated to the rest of the sources.
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To account for variability, we actually compare a
source’s bandwidth utilization to a number slightly
smaller than1 / ,M say 0 85. /M .

The switch then computes the source optimal
rates using these new weights. For example, consider
the three sources ABR1, ABR2, and ABR3 at the
switch. The total available capacity is 3000 cells per
time unit. Source ABR1 is bottlenecked somewhere
else at 500 cells per time unit. Then the new distribu-
tion of the weights is aABR1 =1 6/ , aABR2 = 5 12/ , and
aABR3 = 5 12/ . Therefore, the optimal rates at the pres-
ent switch will be 500 cells per time unit for ABR1 and
1250 cells per time unit for ABR2 and ABR3. These
rates will be used as feedback information.

The simulations done with the adaptive weight al-
gorithm indicate that max-min fairness is indeed
achieved (Figs. 11, 12, 13, and 14). Initially (with all ams
set to the fair share), the bottleneck node is the third
one and sources ABR1, ABR3, and ABR4 share fairly
the capacity at this switch (around 1500 cells per time
unit). Meanwhile, source ABR2 only uses half of the
capacity of switch 2. Actually its cell rate is slightly
higher than the fair share. Because of the small queue
length, the design appears to increase the allowed cell
rate slightly. Once ams at each switch are adapted,
source ABR2 should increase its rate to 3220 cells per
time unit while the other sources still transmit at 1500
cells per time unit. The simulations show that source
ABR2 effectively catches up (Figs. 11 and  13).

• Controller 3: One advantage of using Controller 3 is
that it achieves max-min fair bandwidth allocation
without necessitating any sort of adjustment of pa-
rameters, assuming of course that the available ser-
vice rate remains constant. We simulate the configura-
tion depicted in Fig. 5 taking the constant service rate
to be 4500 cells per time unit for each switch. As the
simulation results indicate (Fig. 15), the algorithm
converges to the max-min fair allocation rather fast
while stabilizing the queue around the desired set
point, Q = 700 at SW3.

Conclusions
In this article, we have presented a control-theoretic ap-
proach to designing ABR congestion control algorithms. ATM
networks deal with different types of traffic. Among the sev-
eral services offered by ATM, the ABR service plays a central
role in regulating the network traffic, as it is the only service
category that uses explicit feedback from the network. We
have presented several algorithms for ABR congestion con-
trol and have shown that they perform well under various cri-
teria such as basic fairness and max-min fairness while
achieving high bandwidth utilization. In addition, excessive
cell loss is avoided by controlling the queue length. In our de-
signs, the network delay is explicitly taken into account,
which we believe is useful in modeling network behavior over

links with high delays, such as satellite ATM networks, or IP
over ATM. Furthermore, we have shown that one of our algo-
rithms is robust to uncertainty in round-trip delays, and at
the same time it can adapt to the variations in the number of
sources sharing a switch. These properties make this algo-
rithm easier to apply in volatile networks, where both the net-
work delay and the number of active sessions are not known
or cannot be predicted accurately beforehand. In summary,
we strongly believe that control theoretic design tools can be
effectively used in designing high-performance algorithms in
the context of ATM ABR congestion control.
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