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Negative Entropy and Information in Quantum Mechanics
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A framework for a quantum mechanical information theory is introduced that is based entire
on density operators, and gives rise to a unified description of classical correlation and quant
entanglement. Unlike in classical (Shannon) information theory, quantum (von Neumann) conditio
entropies can be negative when considering quantum entangled systems, a fact related to qua
nonseparability. The possibility that negative (virtual) information can be carried by entangled partic
suggests a consistent interpretation of quantum informational processes. [S0031-9007(97)04813-8
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Quantum information theory is a new field with po
tential implications for the conceptual foundations o
quantum mechanics. It appears to be the basis fo
proper understanding of the emerging fields of quantu
computation [1], quantum communication, and quantu
cryptography [2]. Although fundamental results on th
quantum noiseless coding theorem [3] and the capac
of quantum noisy channels [4] have been obtained
cently, quantum information is still puzzling in many re
spects. This is especially true for quantum teleportati
and superdense coding, two purely quantum communi
tion schemes devised recently [5]. Indeed, these dual p
cesses which rely on the quantum correlation between
two members of a spatially separated Einstein-Podolsk
Rosen (EPR) pair are difficult to interpret in terms o
information theory. We show in this Letter that these pr
cesses can be understood in a consistent way by exploi
a fundamental difference between Shannon theory [6] a
an extended information theory that accounts for qua
tum entanglement. As we shall see, the latter allows f
negativeconditional entropy even though this is forbidde
classically. This leads us to propose that such quant
informational processes can be described by diagrams
much like particle physics reactions—involving particle
carryingnegative(virtual) information. By analogy with
antiparticles, we refer to them asantiqubits.

Previous attempts to describe quantum information
processes have generally relied on the formulas of cl
sical information theory supplemented with quantu
probabilities,not amplitudes. However, it has been rea
ized since Schumacher [3] that the von Neumann entro
has an information-theoreticalmeaning, characterizing
(asymptotically) the minimum amount of quantum re
sources required to code an ensemble of quantum sta
This suggests that anextendedinformation theory can
be defined that explicitly takes quantum phases in
account, as attempted in this Letter. The theory describ
here characterizes multipartite quantum systems us
only density operators and von Neumann entropies.
includes Shannon theory as a special case but descr
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quantum entanglement as well, thereby providing aunified
treatment of classical and quantum information. To
specific, let us consider a composite system consisting
two (classical or quantum) variables,A andB, and outline
in parallel the classical and our quantum informatio
theoretic treatment of it. In classical information theor
we define the Shannon entropy ofA [6],

HsAd ­ 2
X
a

psad log2 psad , (1)

where the variableA takes on valuea with probability
psad. It is interpreted as the uncertainty aboutA [an
analogous definition holds forHsBd]. The quantum analog
is the von Neumann entropySsrAd of a quantum sourceA
described by the density operatorrA,

SsAd ­ 2TrAfrA log2 rAg , (2)

where TrA denotes the trace over the degrees of fre
dom associated withA. The von Neumann entropy
reduces to a Shannon entropy ifrA is a mixed state
composed of orthogonal quantum states. The co
bined classical systemAB is characterized by a join
probability psa, bd, and therefore by a joint entrop
HsABd ­ 2

P
a,b psa, bd log2 psa, bd which is the uncer-

tainty about the entire system. The quantum definit
SsABd ­ 2TrfrAB log2 rABg, a function of the density
operator of the combined systemrAB, is immediate. The
classical probabilities observepsad ­

P
b psa, bd and

psbd ­
P

a psa, bd; analogously, rA ­ TrBfrABg and
rB ­ TrAfrABg. Note that TrA and TrB stand for partial
traces, while Tr is the trace over the joint Hilbert spac
The classicalconditionalentropy is defined asHsAjBd ­
HsABd 2 HsBd ­ 2

P
a,b psa, bd log2 psajbd, where

psajbd ­ psa, bdypsbd is the probability ofa conditional
on b; HsAjBd characterizes the remaining uncertain
about the variableA whenB is known.

Here, we propose that the correspondence betw
classical and quantum constructions can be extended
defining the von Neumannconditionalentropy

SsAjBd ­ 2TrfrAB log2 rAjBg (3)
© 1997 The American Physical Society
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based on a conditional “amplitude” operator

rAjB ­ exp2s2sABd ­ lim
n°!`

fr1yn
AB s1A ≠ rBd21yngn, (4)

wheresAB ­ 1A ≠ log2 rB 2 log2 rAB, 1A being the unit
matrix in the Hilbert space ofA, and≠ the tensor product
in the joint Hilbert space. Equation (4) is a quantum
generalization of the conditional probabilitypsajbd and
reduces to it in the classical limit (diagonalrAB) [7].
In general,rAjB is a positive Hermitian operator on the
joint Hilbert space [just aspsajbd is a function ofa and
b], whose spectrum is invariant under frame changes
the product formUA ≠ UB on rAB. We refer torAjB

as anamplitudeoperator to emphasize that it retains th
quantum phases, in contrast topsajbd. It is defined on the
support ofrAB since the latter is included in the support o
1A ≠ rB, so thatSsAjBd is well defined. Indeed, inserting
Eq. (4) in Eq. (3) results inSsAjBd ­ SsABd 2 SsBd,
just as for Shannon entropies. However,rAjB is not a
density operator as its eigenvalues can exceed 1, in wh
case the operatorsAB is not positive semidefinite, in
contrast to its classical counterpart. It is precisely fo
this reason that the von Neumannconditional entropy
can benegative. In Shannon theory,HsAjBd is always
non-negative, reflecting that the classical entropy of
composite systemAB cannot be lower than the entropy o
any subsystemA or B, i.e., maxfHsAd, HsBdg # HsABd.
Quantum entropies on the other hand are known to
nonmonotonic; i.e.,SsAd . SsABd or SsBd . SsABd is
possible whenA andB are quantum entangled subsystem
(see, e.g., [8]). The above operator-based formalis
naturally accounts for this nonmonotonicity.

The appearance of nonclassical (.1) eigenvalues of
rAjB and nonclassical (,0) conditional entropies can be
related to quantum nonseparability and the violation
entropic Bell inequalities, as we show in [9]. It can b
proven that any separable staterAB ­

P
i wir

sid
A ≠ r

sid
B

(with 0 # wi # 1 and
P

i wi ­ 1) is such thatsAB $ 0,
and is therefore associated withSsAjBd ­ TrfrAB sABg $

0 [10]. Thus,all the eigenvalues ofrAjB (and rBjA) are
#1 for any convex mixture of product states, whic
implies that it is anecessarycondition for separability
in a Hilbert space of arbitrary dimensions. A negativ
conditional entropy implies thatrAjB ‹ 1 while the
converse is not true, so thatSsAjBd $ 0 is a weaker
necessary condition. As an example, this criterion can
applied to two spin-1y2 particles in a Werner state, i.e.
a mixture of a singlet fractionx and a random fraction
s1 2 xd. A simple calculation shows thatrAjB admits
three eigenvalues equal tos1 2 xdy2, and a fourth equal
to s1 1 3xdy2. The above separability criterion is thus
fulfilled when the latter does not exceed 1, that is, forx #

1y3. Thus, for this particular case (in fact, for any mixtur
of Bell states), our condition is simply equal to Pere
[11] and then happens to be also sufficient. Numeric
evidence suggests, however, that it is weaker than Pe
condition in general. This will be investigated elsewher
of
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In Shannon information theory, we define themutual
(or correlation) entropyHsA:Bd ­ HsAd 2 HsAjBd as
the decrease of the entropy ofA due to the knowl-
edge of B, resulting in HsA:Bd ­ HsAd 1 HsBd 2

HsABd ­ 2
P

a,b psa, bd log2 psa:bd, where psa:bd ­
psadpsbdypsa, bd is a mutual probability. The mutual
entropy corresponds to theinformationgained aboutA by
measuringB. It is symmetric, i.e.,HsA:Bd ­ HsB:Ad,
and can be viewed as the amount of entropy shared bA
andB. Also, HsA:Bd $ 0, as the entropy ofA can only
be reduced through the knowledge ofB. As we now
show, a quantum mechanical extension of this conce
can be straightforwardly defined; i.e., we can construc
von Neumannmutual entropySsA:Bd based on amutual
amplitude operator

rA:B ­ lim
n°!`

fsrA ≠ rBd1ynr
21yn
AB gn, (5)

generalizing the mutual probabilitypsa:bd. Again, the
associated quantummutualentropy

SsA:Bd ­ 2TrfrAB log2 rA:Bg (6)

is invariant under frame changes of the product form, a
can be written asSsA:Bd ­ SsAd 1 SsBd 2 SsABd. The
quantum mutual entropySsA:Bd is a natural extension
of HsA:Bd which measures quantum as well as class
cal correlations, and reduces to it for diagonal dens
matrices (probability distributions). It doesnot discrimi-
nate purely quantum entanglement from correlatio
however, but rather unifies their information-theoret
description. WhileSsA:Bd $ 0 just as its classical coun-
terpart, it can exceed the entire uncertainty of the sou
ensemble, namely,

SsA:Bd # 2 minfSsAd, SsBdg , (7)

as implied by the Araki-Lieb inequality (see [8]). This
precisely occurs for quantum-entangled subsystems, an
forbidden classically due to the non-negativity of the Sha
non conditional entropy; i.e.,HsA:Bd # minfHsAd, HsBdg.

The above unified treatment of classical and quantu
correlation is illustrated by considering three limiting
cases and their associated entropy Venn diagrams
defined in Fig. 1(a). For independent quantum syste
(I), one hasrAB ­ rA ≠ rB, so that rAjB ­ rA ≠ 1B

[analogous to psajbd ­ psad] and SsAjBd ­ SsAd,
thereby saturating the lower boundSsA:Bd ­ 0 as in
the classical case. This is illustrated in Fig. 1(b) fo
two quantum bits (qubits), i.e., if systemsA and B
belong to a 2-state Hilbert space. For two (maximall
classically correlated systems (II), theclassical upper
bound SsA:Bd ­ minfSsAd, SsBdg is saturated. The
range between the classical and quantum upper bou
corresponds to a purely quantum (classicallyforbidden)
regime, namely, quantum entanglement. Thequantum
upper bound, Eq. (7), is saturated for maximally entangl
systems such as EPR pairs (III); the conditional entrop
are negative, whileSsA:Bd exceeds the value which
5195
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FIG. 1. (a) Entropy Venn diagram for a bipartite systemAB.
(b) Diagram for two qubits withSsAd ­ SsBd ­ 1: (I) Inde-
pendent 50y50 mixtures of statesj0l and j1l; (II) maximally
classically (anti)correlated qubits, i.e., a 50y50 mixture of j01l
and j10l; (III) fully entangled EPR state with wave function
221y2sj01l 2 j10ld, or any Bell state in general.

defines 100% correlations, so that entanglement might
viewed assupercorrelation.

The information-theoretic formalism discussed her
should thus be regarded as anextensionof a classical for-
malism beyond its original range to identify the signatur
of quantum dynamics. As shown in further work (se
[12] and references therein), it can be successfully appli
to multipartiteentangled systems by extending Shannon
construction [e.g., defining the quantum conditional mu
tual entropySsA:BjCd]. Most of the standard concepts
of Shannon theory then find an intuitive quantum analo
which results in a convenient framework for analyzin
quantum channels or error correction, for example. He
we restrict ourselves to sketching an information-theore
description of quantum teleportation and superdense c
ing relying on this framework. We argue that a con
servative picture of information flow in these processe
consistent with unitarity, is possible only if the existenc
of negative conditional entropies is recognized. The d
tails of this analysis will be reported elsewhere [13].

The third diagram in Fig. 1(b) exhibits how the nega
tive conditional entropy of a member of an EPR pai
SsAjBd ­ 21, is balanced by the (unconditional) entrop
SsBd ­ 1 of its partner. As entropy can be viewed
as “latent” information, this suggests characterizing th
members of an EPR pair by avirtual information content
of 61 bit [14], a concept that turns out to be very fruitfu
when analyzing the information flow. To distinguish
these maximally entangled qubits, we call themebits[15].
In this picture inspired by particle physics, the ebit (e) and
antiebit (e) can be viewed as virtual conjugate particles
and the preparation of an EPR pair appears as the crea
of an “ee pair” from the entropy “vacuum”Sseed ­ 0.
The central point is that the virtual information content o
an ebit can be revealed (i.e., converted to real informatio
in interactions with qubits and classical bits (cbits), a
we shall see. In quantum teleportation [see Fig. 2(a
an unknown qubit (q) is transported with perfect fidelity
through the transmission of two cbits (2c), after the sender
and the receiver have shared anee pair. The sender
5196
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FIG. 2. Physical spacetime diagrams and quantum inform
tion dynamics diagrams for (a) quantum teleportation a
(b) superdense coding.

performs a joint measurement (M) of the qubit and th
ebit in the 2-particle Bell basis (i.e., four orthogona
maximally entangled 2-particle states), thereby generat
2 cbits. The receiver reconstructs the qubit from th
2 cbits by applying toe one of four possible unitary
transforms (U) in the 1-particle Hilbert space. Only
the (virtual) information content ofe and e is taken into
account properly (1 bit and21 bit, respectively) can the
information flow be conserved through the (M) and (U
stages. More specifically, ifq is maximally entangled
with an external reference (not represented here),
entropy conservation rule for (M) is

Ss2cd ­ Ssqed ­ Ssqd 1 Ssed ­ 1 1 1 ­ 2 , (8)

sinceq and e are initially independent, while thecondi-
tional entropy of the remaining particle isSsejqed ­ 21.
At (U), we have

Ssq0d ­ Ssqeed ­ Ssqed 1 Ssejqed ­ 2 2 1 ­ 1 ,
(9)

whereq0 is the outgoing qubit [16]. In the particle physic
language, if thee is replaced by ane going backwards
in time [see diagram in lower half of Fig. 2(a)], the
whole process is formally equivalent to the transmissio
of 1 qubit via 2 cbits, but with the additional burden o
1 ebit. A violation of causality by thee is prevented by
the fact that its information content cannot be reveal
without the presence of the 2 cbits, which travel causall

In superdense coding [see Fig. 2(b)], 2 cbits are a
parently transported via 1 qubit (a 2-state particle). Our
analysis suggests that the negative information content
the e is exploited by the sender so that 2 cbits can b
packed into a single qubit via the unitary transform (U
Subsequently, the receiver performs a joint measurem
(M) of the qubit and ebit in the 2-particle Bell basis
thereby recovering the two encoded cbits. The entro
conservation rule for (U) is
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Ssqjed ­ Ss2c ejed ­ Ss2cd 1 Ssejed ­ 2 2 1 ­ 1 ,
(10)

since 2c and e are initially independent, while the
unconditionalentropy of the remaining particle isSsed ­
1. At (M), we have

Ss2c0d ­ Ssqed ­ Ssqjed 1 Ssed ­ 1 1 1 ­ 2 , (11)
where2c0 are the outgoing cbits. The cbits2c left with
the sender must be ignored from an informational poi
of view, as they are correlated with2c0. The factor 2
that is apparently gained here is directly connected to
the factor 2 in Eq. (7), and originates from the fac
that Ss2c:qjed ­ 2, that is, the additional information
(about 2c) conveyed byq when knowing e exceeds
the entropy ofq by a factor of 2. It is the maximum
compression allowed by quantum mechanics (no oth
quantum communication scheme could be more efficien
However, this compression is onlyapparent since the
information flow is conserved in both (U) and (M) stage
if a qubit-antiqubit picture is used. Formally, the 2 cbit
are distributed overtwo particles [see lower half of
Fig. 2(b)] although the ebit does not appear during t
considered period of transmission as it is sent backwa
in time.

We have proposed a quantum mechanical extens
of Shannon information theory which incorporates enta
glement via negative conditional entropies. This anal
sis suggests the possibility that a qubit (the fundamen
quantum of information) could have an analogously d
fined antiqubit (a quantum ofnegativeinformation), for-
mally equivalent to a qubit traveling backwards in time a
anticipated in [5]. The concept that negative virtual in
formation can be carried by entangled particles provid
interesting insight into the information flow in quantum
communication processes such as quantum teleporta
and superdense coding. Furthermore, this leads us to c
jecture that these processes can be recast into react
involving information quanta (c, q, e,e) described bydia-
grams,much like particle physics reactions. The (M) an
(U) operations then correspond to vertices (see lower h
of Fig. 2) which describe the dual information-conservin
processes (U)2c 1 e °! q and (M)q 1 e °! 2c, sum-
marizing Eqs. (8)–(11). As theee contain no readable
information, they cannot appear in theexternal lines of
diagrams, just like the virtual particles of quantum fiel
theory.
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