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Negative Entropy and Information in Quantum Mechanics
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A framework for a quantum mechanical information theory is introduced that is based entirely
on density operators, and gives rise to a unified description of classical correlation and quantum
entanglement. Unlike in classical (Shannon) information theory, quantum (von Neumann) conditional
entropies can be negative when considering quantum entangled systems, a fact related to quantum
nonseparability. The possibility that negative (virtual) information can be carried by entangled particles
suggests a consistent interpretation of quantum informational processes. [S0031-9007(97)04813-8]

PACS numbers: 03.65.Bz, 05.30.—d, 89.70.+c

Quantum information theory is a new field with po- quantum entanglement as well, thereby providinondied
tential implications for the conceptual foundations oftreatment of classical and quantum information. To be
guantum mechanics. It appears to be the basis for gpecific, let us consider a composite system consisting of
proper understanding of the emerging fields of quantunwo (classical or quantum) variablesandB, and outline
computation [1], quantum communication, and quantumn parallel the classical and our quantum information-
cryptography [2]. Although fundamental results on thetheoretic treatment of it. In classical information theory,
quantum noiseless coding theorem [3] and the capacitwe define the Shannon entropy 4f6],
of quantum noisy channels [4] have been obtained re-
cently, quantum information is still puzzling in many re- H(A) = =Y pla)log, p(a), (1)
spects. This is especially true for quantum teleportation a
and superdense coding, two purely quantum communicavhere the variabled takes on valuez with probability
tion schemes devised recently [5]. Indeed, these dual prg(a). It is interpreted as the uncertainty abotit[an
cesses which rely on the quantum correlation between th@nalogous definition holds féf (B)]. The quantum analog
two members of a spatially separated Einstein-Podolskyis the von Neumann entrog(p4) of a quantum source
Rosen (EPR) pair are difficult to interpret in terms of described by the density operajey,
information theory. We show in this Letter that these pro- S(A) = —Tralpalog, pal, )
cesses can be understood in a consistent way by exploitin
a fundamental difference between Shannon theory [6] anﬁhere Th denotes the trace over the degrees of free-
an extended information theory that accounts for quandOm associated wit.  The von Neumann entropy
tum entanglement. As we shall see, the latter allows fofeduces to a Shannon entropy 4f is a mixed state
negativeconditional entropy even though this is forbidden COMPosed of orthogonal quantum states. The com-
classically. This leads us to propose that such quanturtdined classical systemB is characterized by a joint
informational processes can be described by diagrams-2roability p(a,b), and therefore by a joint entropy
much like particle physics reactions—involving particles (AB) = — 2.5 pla, b)log, p(a,b) which is the uncer-
carrying negative(virtual) information. By analogy with tainty about the entire system. The quantum definition
antiparticles, we refer to them astiqubits

S(AB) = —Trlpaglog, pag], @ function of the density
Previous attempts to describe quantum informationaPPerator of the combined system, is immediate. The
processes have generally relied on the formulas of cla

Llassical probabilities observe(a) = >, p(a,b) and
sical information theory supplemented with quantum?(?) = 2. p(a.b); analogously, ps = Trslpas] and
probabilities,not amplitudes. However, it has been real-?8 = T7alpag]. Note that Ty and Ty stand for partial
ized since Schumacher [3] that the von Neumann entrop{fac€s, While Tr is the trace over the joint Hilbert space.
has aninformation-theoreticalmeaning, characterizing he classicatonditionalentropy is defined a&l (A|B) =
(asymptotically) the minimum amount of quantum re-H(AB) = H(B) = =3, p(a,b)log, p(alb),  where
sources required to code an ensemble of quantum statgdalb) = p(a,b)/p(b) is the probability of conditional
This suggests that aextendedinformation theory can ©On 5 H(A|B) characterizes the remaining uncertainty
be defined that explicitly takes quantum phases intgPout the variablet whenB is known.

account, as attempted in this Letter. The theory described H€ré, we propose that the correspondence between
here characterizes multipartite quantum systems usin?""_ss_'Cal and quantum constructions can be extended by
only density operators and von Neumann entropies. [H€fining the von Neumaneonditionalentropy

includes Shannon theory as a special case but describes S(A|IB) = —Tr[pag 109, pajs] 3)
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based on a conditional “amplitude” operator In Shannon information theory, we define thmitual
. 1/n —1/nn 1 . — —
palp = expy(—oap) = lim [pAé (14 ® pg) Unyn, (4) (or correlation) entropyH(A:B) = H(A) — H(A|B) as
n— _ ~ the decrease of the entropy of due to the knowl-

whereoap = 14 ® log, pg — 100, pag, 14 being the unit  edge of B, resulting in H(A:B) = H(A) + H(B) —
matrix in the Hilbert space of, and® the tensor product H(AB) = — Y, , p(a,b)log, p(a:b), where p(a:b) =
in the joint Hilbert space. Equation (4) is a quantump(a)p(b)/p(a,b) is a mutual probability. The mutual
generalization of the conditional probability(a|b) and  entropy corresponds to theformationgained about by
reduces to it in the classical limit (diagonahs) [7].  measuringB. It is symmetric, i.e..H(A:B) = H(B:A),
In general,p5 is @ positive Hermitian operator on the and can be viewed as the amount of entropy shared by
joint Hilbert space [just ap(alb) is a function ofa and  andB. Also, H(A:B) = 0, as the entropy oft can only
b], whose spectrum is invariant under frame changes obe reducedthrough the knowledge oB. As we now
the product formUs ® Uz on pap. We refer topas  show, a quantum mechanical extension of this concept
as anamplitudeoperator to emphasize that it retains thecan be straightforwardly defined; i.e., we can construct a

quantum phases, in contrasti|b). Itis defined onthe von Neumanmutual entropyS(A:B) based on anutual
support ofp, since the latter is included in the support of amplitude operator

14 ® pg, so thatS(A|B) is well defined. Indeed, inserting ) Vn 1/

Eq. (4) in Eq. (3) results inS(A|B) = S(AB) — S(B), pas = lim [(ps ® pp) " pas" 1", (5)
just as for Shannon entropies. Howevphs iS NOta  ganerglizing the mutual probability(a:b). Again, the
density operator as its eigenvalues can exceed 1, in whi sociated quantumutualentropy

case the operator,p is not positive semidefinite, in

contrast to its classical counterpart. It is precisely for S(A:B) = —Tr[pagplog, pas] (6)

this reason that the von Neumamenditional entropy s invariant under frame changes of the product form, and
can benegative In Shannon theoryH(A|B) is always  can pe written as(A:B) = S(A) + S(B) — S(AB). The
non-negative, reflecting that the classical entropy of Fuantum mutual entropy(A:B) is a natural extension
composite systemB cannot be lower than the entropy of 4y H(A:B) which measures quantum as well as classi-
any subsystem or B, i.e., makH(A), H(B)] = H(AB).  ¢a| correlations, and reduces to it for diagonal density
Quantum entropies on the other hand are known to bgatrices (probability distributions). It doemt discrimi-
nonmonotonic; i.e.,S(4) > S(AB) or S(B) > S(AB) IS pate purely quantum entanglement from correlation,
possible whem andB are quantum entangled subsystemsyowever, but rather unifies their information-theoretic
(see, e.g., [8]). The above operator-based formalismyescription. WhileS(A:B) = 0 just as its classical coun-

naturally accounts for this nonmonotonicity. terpart, it can exceed the entire uncertainty of the source
The appearance of nonclassicatl) eigenvalues of onsemble namely

pajp and nonclassical<(0) conditional entropies can be )
related to quantum nonseparability and the violation of S(A:B) = 2min[S(A), S(B)], (7)

entropic Bell inequalities, as we show in [9]. It can be as implied by the Araki-Lieb inequality (see [8]). This
proven that any separable statgg = > ; wip,(() ® pg precisely occurs for quantum-entangled subsystems, and is
(with 0 = w; = 1 andX; w; = 1) is such thaio, = 0,  forbidden classically due to the non-negativity of the Shan-
and is therefore associated WKA|B) = Tr{pap oaz] = non conditional entropy; i.eH (A:B) = min[H(A), H(B)].

0 [10]. Thus,all the eigenvalues op4jp (and ppja) are The above unified treatment of classical and quantum
=1 for any convex mixture of product states, which correlation is illustrated by considering three limiting
implies that it is anecessarycondition for separability cases and their associated entropy Venn diagrams as
in a Hilbert space of arbitrary dimensions. A negativedefined in Fig. 1(a). For independent quantum systems
conditional entropy implies thajpsp = 1 while the (I), one haspss = pa ® pp, SO thatpas = pa ® 13
converse is not true, so that(A|B) = 0 is a weaker [analogous to p(alb) = p(a)] and S(A|B) = S(A),
necessary condition. As an example, this criterion can bthereby saturating the lower bounf{A:B) = 0 as in
applied to two spin-12 particles in a Werner state, i.e., the classical case. This is illustrated in Fig. 1(b) for
a mixture of a singlet fractionr and a random fraction two quantum bits (qubits), i.e., if systemé and B

(1 — x). A simple calculation shows thaisp admits belong to a 2-state Hilbert space. For two (maximally)
three eigenvalues equal {d — x)/2, and a fourth equal classically correlated systems (ll), theassical upper

to (1 + 3x)/2. The above separability criterion is thus bound S(A:B) = min[S(A), S(B)] is saturated. The
fulfilled when the latter does not exceed 1, that is,foe  range between the classical and quantum upper bounds
1/3. Thus, for this particular case (in fact, for any mixture corresponds to a purely quantum (classicdtivbidder)

of Bell states), our condition is simply equal to Peres’regime, namely, quantum entanglement. Tdueantum

[11] and then happens to be also sufficient. Numericalipper bound, Eq. (7), is saturated for maximally entangled
evidence suggests, however, that it is weaker than Peresystems such as EPR pairs (11); the conditional entropies
condition in general. This will be investigated elsewhereare negative, whileS(A:B) exceeds the value which
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FIG. 1. (a) Entropy Venn diagram for a bipartite systdiB.
(b) Diagram for two qubits withS(A) = S(B) = 1: (I) Inde-
pendent 5050 mixtures of stateg0) and |1); (II) maximally
classically (anti)correlated qubits, i.e., a/50 mixture of|01) . . )
and [10Y; () fully entangled EPR state with wave function 9., 2 9
2712(101) — |10)), or any Bell state in general. M U
FIG. 2. Physical spacetime diagrams and quantum informa-
tion dynamics diagrams for (a) quantum teleportation and
defines 100% correlations, so that entanglement might b@) superdense coding.
viewed assupercorrelation
The information-theoretic formalism discussed here o )
should thus be regarded as extensiorof a classical for- Performs a joint measurement (M) of the qubit and the
malism beyond its original range to identify the signatureebit in the 2-particle Bell basis (i.e., four orthogonal
of quantum dynamics. As shown in further work (seemaximally entangled 2-particle states), thereby generating
[12] and references therein), it can be successfully applied CPits. The receiver reconstructs the qubit from the
to multipartite entangled systems by extending Shannon' cbits by applying toe one of four possible unitary
construction [e.g., defining the quantum conditional mu{ransforms (U) in the 1-particle Hilbert space. Only if
tual entropyS(A:B|C)]. Most of the standard concepts the (virtual) mformathn content of ande is taken into
of Shannon theory then find an intuitive quantum analog@ccount properly (1 bit ane-1 bit, respectively) can the
which results in a convenient framework for analyzing!nformation flow be conserved through the (M) and (U)
guantum channels or error correction, for example. HereStages. More specifically, i is maximally entangled
we restrict ourselves to sketching an information-theoreti¢Vith an external reference (not represented here), the
description of quantum teleportation and superdense co@ntropy conservation rule for (M) is
ing re!ylng_on this framewo_rk. We argue that a con- SQ2¢) = S(ge) = S(g) + Se)=1+1=2, (8)
servative picture of information flow in these processes, o _ _
consistent with unitarity, is possible only if the existencesinceq ande are initially independent, while theondi-

a
>

of negative conditional entropies is recognized. The detional entropy of the remaining particle &(elge) = —1.
tails of this analysis will be reported elsewhere [13]. At (U), we have

. The thirq diagram in Fig. 1(b) exhibits how the nega-  ¢(,') = S(qee) = S(ge) + S(elge) =2 — 1 =1,
tive conditional entropy of a member of an EPR pair, ©)

S(A|B) = —1, is balanced by the (unconditional) entropy

S(B) =1 of its partner. As entropy can be viewed whereq’ is the outgoing qubit [16]. In the particle physics
as “latent” information, this suggests characterizing thdanguage, if thee is replaced by are going backwards
members of an EPR pair byvértual information content in time [see diagram in lower half of Fig. 2(a)], the
of =1 bit [14], a concept that turns out to be very fruitful whole process is formally equivalent to the transmission
when analyzing the information flow. To distinguish of 1 qubit via 2 cbits, but with the additional burden of
these maximally entangled qubits, we call thebits[15]. 1 ebit. A violation of causality by the is prevented by

In this picture inspired by particle physics, the ebi)ténd the fact that its information content cannot be revealed
antiebit ¢) can be viewed as virtual conjugate particles,without the presence of the 2 cbits, which travel causally.
and the preparation of an EPR pair appears as the creationin superdense coding [see Fig. 2(b)], 2 cbits are ap-
of an “ee pair” from the entropy “vacuum’S(ee) = 0.  parently transported via 1 qubia @-state particle Our

The central point is that the virtual information content of analysis suggests that the negative information content of
an ebit can be revealed (i.e., converted to real informationthe e is exploited by the sender so that 2 cbits can be
in interactions with qubits and classical bits (cbits), aspacked into a single qubit via the unitary transform (U).
we shall see. In quantum teleportation [see Fig. 2(a)]Subsequently, the receiver performs a joint measurement
an unknown qubit{) is transported with perfect fidelity (M) of the qubit and ebit in the 2-particle Bell basis,
through the transmission of two cbhit&, after the sender thereby recovering the two encoded cbits. The entropy
and the receiver have shared am pair. The sender conservation rule for (U) is
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S(gle) = SQ2cele) = S2c) + S(ele) =2 —-1=1, [1] D.P. DiVincenzo, Scienc70, 255 (1995); S. Lloydibid.
(10) 261, 1569 (1993)273 1073 (1996).
[2] A. Ekert, Nature (LondonB58 14 (1992); C.H. Bennett,

since 2¢ and e are initially independent, while the G. Brassard, and N.D. Mermin, Phys. Rev. L&8, 557

unconditionalentropy of the remaining particle 8e) = (1992).
1. At (M), we have [3] B. Schumacher, Phys. Rev. Bl, 2738 (1995); R. Jozsa
S2c") = S(ge) = S(gle) + S(e) =1+ 1 =2, (11) and B. Schumacher, J. Mod. Ogtl, 2343 (1994).

where2c’ are the outgoing cbits. The cbits left with [4] S. Lloyd, Phys. Rev. A5, 1613 (1997).
the sender must be ignored from an informational point [5] C-H. Bennett and S.J. W'Iesnir’ Phys. Rev. Le%.2881
of view, as they are correlated witte/. The factor 2 (1992); C.H. Bennetet al., Phys. Rev. Lett.70, 1895

; : , (1993).
that is appargntlygalned here IS QIreCtIy connected to [6] C.E. Shannon and W. Weavérhe Mathematical Theory
the factor 2 in Eq. (7), and originates from the fact

of Communication(University of lllinois Press, Urbana,

that S(2c:gle) = 2, that is, the additional information 1949).
(about 2¢) conveyed byg when knO\_Nlnge eXC?edS [7] This is more obvious ifp,z and 1, ® pp commute, in
the entropy ofg by a factor of 2. It is the maximum which case the Trotter decomposition in Eq. (4) reduces

compression allowed by quantum mechanics (no other to paz = pas(1s ® pz) L.

quantum communication scheme could be more efficient).[8] A. Wehrl, Rev. Mod. Phys50, 221 (1978).

However, this compression is onlgpparentsince the  [9] N.J. Cerf and C. Adami, Phys. Rev. 35, 3371 (1997).
information flow is conserved in both (U) and (M) stages[10] The concavity ofS(AIB) in p.s [8] also implies that

if a qubit-antiqubit picture is used. Formally, the 2 chits S(AIB) = 3, wiS(pi') = 0, so thatS(4|B) = 0 is clearly
are distributed overtwo particles [see lower half of " Z ”gcefgia%?gdigzc fﬁ;?ﬁp?ﬂg”gi’égfﬂ

Fig. 2(b)] although the ebit does not appear during th : ’ : L '

considered period of transmission as it is sent backwardd? N-J. Cerf and C. Adami, e-print quant-ph/9605039, Phys-
in time. ica D (Amsterdam) (to be published); roceedings of

. . the 4th Workshop on Physics and Computatiedited by
We have _proposgd a quantum_ mgchanlcal extension 1 1ol et al. (New England Complex Systems Institute,
of Shannon information theory which incorporates entan-  cambridge, MA, 1996), p. 65.
glement via negative conditional entropies. This analy{13] N.J. Cerf and C. Adami (to be published).
sis suggests the possibility that a qubit (the fundamentgh4] we define information asirtual if its extraction would

quantum of information) could have an analogously de-  violate causality. In other words, virtual information

fined antiqubit (a quantum ofhegativeinformation), for- cannot give rise to superluminal .communicatio.n. between
mally equivalent to a qubit traveling backwards in time as ~ the two particles of an EPR pair. Whethpositive or
anticipated in [5]. The concept that negative virtual in- negativevirtual information is carried by a member of

an EPR pair isnot an intrinsic property of the particle,
but rather can only be assignefter the information
dynamics is completed. In teleportation or superdense

formation can be carried by entangled particles provides
interesting insight into the information flow in quantum
communication Processes such as quar_1tum teleportation coding, positive (virtual) information is carried by that
_and superdense coding. Furthermore, this quds us to con- particle which is measured. If both particles are measured
jecture that these processes can be recast into reactions (e.g., in Bell experiments), no information transfer can
involving information quantad, ¢, ¢, ) described bylia- take place and no virtual information content can be
grams,much like particle physics reactions. The (M) and assigned to either particle.

(V) operations then correspond to vertices (see lower halfl5] The termebit was coined in C.H. Bennett al., Phys.

of Fig. 2) which describe the dual information-conserving ~ Rev. A 53, 2046 (1996) to describe the “shared entan-
processes (WQc + ¢ — g and (M)g + e — 2c¢, sum- glement” of two particles_,_as “an undirgct_ed informational
marizing Egs. (8)—(11). As thee contain no readable resource_" giving t.he ab|I|@y to transmit information (al_-
information, they cannot appear in tlexternallines of though it is not information in itself). Here, an ebit

diagrams, just like the virtual particles of quantum field ~ (antiebit) is that member of an EPR pair which carries
positive (negativeyirtual information.

theory. : - : . -
. . [16] In this description, the cbits remain unamplified. How-
We thank Steve Koonln,'Ashe.r Pergs, qury Slmoin, ever, the original teleportation scheme can be understood
and Armin Uhlmann for enlightening discussions. This iy 3 similar manner. Then, the leftover chits after (U)
work has been funded by NSF Grants No. PHY 94- are in a product state with’, so that the remaining en-
12818 and PHY 94-20470, and by DARPARO through tropy S(2¢) = 2 should not be included in the entropy

the QUIC Program (No. DAAH04-96-1-3086). N.J.C.is balance. It simply originates from the measurement of
Collaborateur Scientifique of the Belgian National Fund ~ two |0) + [1) states in the standard basis, as revealed by
for Scientific Research. a more detailed analysis [13].
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