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Abstract: Peer-to-Peer (P2P) streaming systems provide a large number of channels to users. The streaming capacity for 

a channel is defined as the maximum streaming rate that can be received by every user in the channel. In the this paper, we 

study the streaming capacity problem in both tree-based and mesh-based P2P live streaming systems. In tree-based 

multi-channel P2P live streaming systems, we propose a cross-channel resource sharing approach to improve the streaming 

capacity. We employ cross-channel helpers to establish the cross-channel overlay links, with which the unused upload 

bandwidths in a channel can be utilized to help the bandwidth-deficient peers in another channel, thus improving the 

streaming capacity. In meshed-based P2P live streaming systems, we formulate the streaming capacity problem into a 

resource optimization problem. By solving the resource optimization problem, we can optimally allocate the link rates for 

each peer to improve the streaming capacity. Through simulations, we demonstrate that the proposed resource sharing 

approaches can significantly improve the streaming capacity compared to the scheme without resource sharing. 
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1. Introduction 

In recent years, video streaming services have become 

very popular. Video streaming services originally worked in 

the client/server architecture. However, this centralized 

architecture cannot provide streaming to a large number of 

users due to the limited and expensive upload bandwidth 

from the server. Peer-to-Peer (P2P) technology has recently 

become a capable approach to provide live and on-demand 

video streaming services over the Internet at a low cost. 

Commercial P2P live streaming and Video-On-Demand 

(VoD) systems, such as PPLive [1], PPStream [2], UUSee 

[3], have been successfully supporting tens of thousands of 

users. Apart from the large number of users, these systems 

have a common feature of providing a large number of 

channels for users to watch, and hence are referred to as 

multi-channel P2P streaming systems. P2P streaming 

systems can be categorized into P2P live streaming systems, 

in which the users in the same channel watch almost the 

same position of the video, and P2P VoD systems, in which 

the users in the same channel may watch different positions 

of the video at any time. Based on the overlay structure, 

P2P live streaming systems can be classified into tree-based 

P2P live streaming systems and mesh-based P2P live 

streaming systems. In a tree-Based P2P live streaming 

systems, a single application-layer tree or multiple 

application-layer trees are constructed to deliver the video 

streams. In mesh-based P2P live streaming systems, each 

peer exchanges the data with a set of neighbors. 

The maximum streaming rate that can be received by 

every user in a channel is defined as the streaming capacity 

of the channel in a multi-channel P2P live streaming system 

[4]. The streaming capacity can be served as the indicator 

of video quality for a channel. A higher streaming capacity 

for a channel means that the users in the channel can 

receive a higher video quality. Therefore, the objective of 

the paper is to achieve a high streaming capacity for a 

channel in P2P live streaming systems. 

It is challenging to achieve a high streaming capacity in 

multi-channel P2P live streaming systems. The streaming 

capacity for a channel is dependent on the bandwidth 

capacity of each peer in the channel and the overlay 

structure of the channel. A higher streaming capacity can be 

achieved by optimizing the resources among the peers 

within the same channel, which is, however, a challenging 

task. Peers have heterogeneous bandwidths. Some peers 

may have deficient upload bandwidths, which limit the 

streaming capacity, while some other peers may have 
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abundant upload bandwidths which have not been fully 

utilized. Resource sharing in a multi-channel P2P live 

streaming system is expected to improve the streaming 

capacity. However, resource sharing in multi-channel P2P 

live streaming systems is difficult due to the following 

reasons. 1) In a P2P live streaming system, each peer has 

different upload and download capacity, and each peer may 

join or leave the channel at any time. The heterogeneous 

characteristics and dynamic behaviors of the peers cause 

dynamic resource distribution among peers and among 

channels. 2) It is difficult to shift the unused resources in a 

channel to improve the streaming capacity for another 

channel, since there is originally no overlay connection 

between the two channels.  

In this paper, we propose resource sharing approach to 

improve the streaming capacity in P2P live streaming 

systems. The contributions of the paper is two-fold:  

1) We propose a cross-channel resource sharing approach 

in tree-based multi-channel P2P live streaming systems to 

improve the streaming capacity. The proposed approach 

employs cross-channel helpers to establish cross-channel 

overlay links, via which the unused resources in a channel 

can be utilized to help the bandwidth-deficient peers in 

another channel. The proposed scheme can significantly 

improve the streaming capacity compared to the case 

without cross-channel resource sharing.  

2) We formulate the streaming capacity in mesh-based 

P2P streaming systems into a resource optimization 

problem. By solving the optimization problem, we can 

optimally allocate the link rates for each peer to improve 

the streaming capacity. 

The rest of the paper is organized as follows. Section 2 

discusses the related work. Section 3 presents the proposed 

cross-channel resource sharing approach to improve the 

streaming capacity in tree-based multi-channel P2P live 

streaming systems. Section 4 presents the proposed 

resource allocation scheme to improve the streaming 

capacity in mesh-based P2P streaming systems. Finally, the 

conclusion is drawn in Section 5. 

2. Related Work 

Streaming capacity in P2P live systems has been 

observed in the recent literature [4-7]. Most recent work 

was done to improve the efficiency and performance of P2P 

streaming systems. Lui et al. [8] presented algorithms that 

find near-optimal streaming rates when nodes can only 

support a bounded number of children. Picconi et al. [9] 

demonstrated that P2P live streaming systems can 

incorporate locality-awareness and thus be ISP-friendly. 

Other work [10] uses network coding for improving 

download speeds and reducing the insufficiency of data. 

Sengupta et al. [4] provided a taxonomy of sixteen 

problem formulations on streaming capacity, depending on 

whether there is a single P2P session or there are multiple 

simultaneous sessions, whether the given topology is a full 

mesh graph or an arbitrary graph, whether the number of 

peers a node can have is bounded or not, and whether there 

are non-receiver relay nodes or not. Liu et al. investigated 

the performance bounds for minimum server load, 

maximum streaming rate, and minimum tree depth in 

tree-based P2P live systems [6]. The streaming capacity 

under node degree bound is inspected in [7].  

Resource allocations in multi-channel P2P live streaming 

systems have been investigated in the literature. A 

View-Upload Decoupling (VUD) scheme was proposed in 

[11] to decouple what a peer uploads from what it views, 

bringing stability to multi-channel P2P streaming systems 

and enabling cross-channel resource sharing. In other 

papers [12, 13], the performance and the efficiency of 

multi-channel P2P live or VoD streaming systems were 

investigated using a verity of techniques. 

In order to maintain the smooth streaming, peers must 

download enough chunks before they can start playback. 

Such delay before the playback is called startup delay or 

initial buffering delay. In [13-15], this startup delay was 

investigated and various solutions were proposed to 

overcome this issue. It was argued in [14, 16] that it is 

worth scaling the system to support more peers. When the 

average streaming rate exceeds the inherent playback rate 

of a movie, the extra bandwidth of the system can be used 

to support additional peers to make the system scalable.  

Sustainable streaming rate is a key factor for a P2P 

streaming system. It is defined as the rate that video can be 

played without skips or pauses. Zhou et al. [13] and Zhao 

et al. [17] developed probabilistic models to characterize 

the playback continuity. A promising technique that may 

facilitate P2P video streaming is network coding [18]. 

Network coding was proposed to improve the throughput 

by making the optimal use of bandwidth resources in a 

network for content distribution [19]. Its effects have been 

studied in [20, 21], which demonstrate that random linear 

network coding is feasible for both P2P live streaming and 

P2P VoD systems. 

3. Improving Streaming Capacity in 

Tree-Based Multi-Channel P2P Live 

Streaming Systems  

In this section, we will present a cross-channel resource 

sharing approach to improve the streaming capacity in 

tree-based multi-channel P2P live streaming systems. 

3.1. Overview of Tree-Based P2P Live Streaming System 

In a tree-based multi-channel P2P live streaming system, 

the peers in the same channel are organized into a tree for 

delivering media streaming, with the media source (e.g., the 

streaming server) as the root of the tree. P2P streaming has 

become an increasingly popular approach for one-to-many 

multimedia streaming applications, mostly as it does not 

involve any particular support (e.g. IP multicast or any 

content distribution infrastructure) from the network. P2P 

live streaming is a typical media streaming service 
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designed for all peers receiving stream at the same time. A 

common idea in P2P streaming systems is that participating 

peers form an overlay where each peer receives content 

from the parent node in a session.  

Any P2P streaming system consists of two diverse but 

correlated components that are overlay construction and 

content delivery. Overlay construction is a method that 

organizes participating peers into an overlay, and content 

delivery is another method that delivers the multimedia 

content to each participating peer through the overlay. In a 

tree-based multi-channel P2P live streaming system, the 

peers watching the same channel form a tree-based overlay, 

and share the resources based on parent-child relationship. 

Figure 1 illustrates a tree-based multi-channel P2P live 

streaming system with two channels. The peers watching 

the same channel form a tree-based overlay, respectively, 

with the common root, the streaming server. The outgoing 

degree of the tree is 3, which means that each peer can have 

at most three child nodes. The video content is delivered 

from the root to each peer along the tree. 

 

Figure 1. Illustration of a tree-based multi-channel P2P live streaming 

system. 

3.2. The Proposed Cross-Channel Resource Sharing 

Approach 

The streaming capacity for a channel in the tree-based 

P2P live streaming system is dependent on the upload 

bandwidths of the peers. For example, suppose that peer a4 

in Figure 1 has an upload bandwidth of 900 Kbps and it 

supplies the stream to three child nodes. In this case, each 

child node of peer a4 can receive a streaming rate of 300 

Kbps. In other words, the streaming capacity for a channel 

is limited by the internal peer (e.g., the peer who has child 

node) who has a low upload bandwidth. On the other hand, 

many other peers have unused upload bandwidth. The leaf 

nodes (e.g., the peer who has no child) do not use their 

upload bandwidth. Moreover, some internal nodes may 

have large remaining upload bandwidths which have not 

been used. 

The streaming capacity for a channel is expected to be 

improved if the resources in each channel can be 

re-organized. Therefore, we propose a cross-channel 

resource sharing approach to improve the streaming 

capacity in the tree-based multi-channel P2P live streaming 

system. The principle idea of the proposed approach is to 

utilize the unused upload bandwidths of the peers in a 

channel to help the bandwidth-deficient peers in another 

channel.  

The proposed approach is illustrated in Figure 2. 

Channels A and B are a pair of channels which help with 

each other. Suppose peer a4 is a bandwidth-deficient peer 

in channel A, peer b14 is bandwidth-abundant peer in 

channel B. We define a cross-channel helper as the peer 

who will contribute its remaining upload bandwidth to help 

the bandwidth-deficient peer in the partner channel. For 

example, peer b14 is a cross-channel helper, who 

downloads a segment of the stream from the server and 

then serves the segment to the child nodes of peer a4 in 

channel A. The advantage of cross-channel helper is the 

amplification of upload bandwidth. For example, peer b14 

can download a segment of channel-A video at a rate of 50 

Kbps, and serve the video to peers a11, a12, and a13 at a 

rate of 50 Kbps, respectively. In the same way, the 

bandwidth-abundant peer in channel A (e.g., peer a16) can 

help the bandwidth-deficient peer (e.g., peer b3) in channel 

B. The streaming capacity of channels A and B can both be 

improved by such cross-channel resource sharing. 

 

Figure 2. Illustration of proposed cross-channel resource sharing 

approach 

The proposed cross-channel resource sharing approach 

consists of five steps as follows.    

1) Determine channel pair: Each channel selects a 

partner channel to help with each other. We first order the 

channels based on the system upload bandwidth. We then 

group the channel pair based on a resource-balancing 

criterion, with which the channel with a larger system 

upload bandwidth is assigned to help the one with a smaller 

system upload bandwidth.     

2) Determine cross-channel helpers in each channel: The 

peers with an unused upload bandwidth larger than a 

pre-set threshold are chosen as cross-channel helpers.     

3) Determine bandwidth-deficient peers in each channel: 

The average upload bandwidth per child is defined as the 

ratio between the upload bandwidth of the internal peer and 

the number of its child nodes. The internal peers with an 

average upload bandwidth per child smaller than a pre-set 

threshold are chosen as bandwidth-deficient peers. 

4) Establish cross-channel overlay links: The 

cross-channel overlay links are established by enabling the 
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cross-channel helper to download a segment of the stream 

from the server or other peer and forward the segment to 

the child nodes of the bandwidth-deficient peer in the 

partner channel.   

5) Determine the streaming capacity for each channel: 

We can find the streaming capacity for each channel with 

cross-channel resource sharing.  

Peer dynamics have an impact on the streaming capacity 

in tree-based multi-channel P2P live streaming systems. 

First, the peers may leave or join a channel dynamically. 

Second, the cross-channel helpers may leave the channel, 

which causes the disconnection of the cross-channel 

overlay links. To handle the dynamic conditions, the 

proposed cross-channel resource sharing approach needs to 

be performed in a discrete-time manner, considering the 

time-varying status of the peers. 

3.3. Simulation Results for Tree-Based Live Streaming 

We perform simulations for a tree-based multi-channel 

P2P live streaming system with two channels (channel A 

and channel B). The numbers of peers in channels A and B 

are 100 and 80, respectively. The peers have heterogeneous 

bandwidths. The download bandwidths of the peers are 

uniformly distributed between 2.5 Mbps and 4.0 Mbps, and 

the upload bandwidths of the peers are uniformly 

distributed between 1.5 Mbps and 3.0 Mbps. The tree 

overlay for each channel is based on the order of the arrival 

time of the peer. The newly coming peer chooses an 

existing peer as the parent and connects itself with the 

parent node. The outgoing degree is defined as the 

maximum number of the child nodes that an internal peer 

can have. The outgoing degree is set to 5 in the default 

setting. 

Figure 3 compares the streaming capacity between the 

case without any resource sharing and the case with the 

proposed cross-channel resource sharing. The proposed 

cross-channel resource sharing better utilizes the upload 

bandwidths, thus significantly improving the streaming 

capacity compared to the case without any resource sharing. 

The average improvements of streaming capacity are 135% 

for channel A and 143% for channel B, respectively.   

 

Figure 3. Comparison of streaming capacity with different outgoing 

degrees: (a) channel A, and (b) channel B. 

Figure 4 compares the streaming capacity with different 

total helping rate, which is defined as the sum of the 

outgoing rates of all cross-channel helpers. We can see in 

Figure 4 that the streaming capacity is almost linearly 

increased when the total helping rate is increased from 13.7 

Mbps to 137.2 Mbps for channel A and from 11.3 Mbps to 

113.4 Mbps for channel B.  

 

Figure 4. Comparison of streaming capacity with different total helping 

rate: (a) channel A, and (b) channel B. 

 

Figure 5. Comparison of streaming capacity with different standard 

deviation of peer upload bandwidths: (a) channel A, and (b) channel B. 

Figure 5 evaluates the impact of the heterogeneity of 

peer upload bandwidths to the streaming capacity. The 

heterogeneity of peer upload bandwidths can be measure by 

the standard deviation of peer upload bandwidths. A higher 

standard deviation indicates a higher heterogeneity of peer 

upload bandwidths. From Figure 5, we can see that a higher 

heterogeneity of peer upload bandwidths leads to a lower 

streaming capacity. As shown in Figure 5, the proposed 

cross-channel resource sharing approach obtains a 

significantly improved streaming capacity compared to the 

case without resource sharing. 
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4. Improving Streaming Capacity in 

Mesh-Based P2P Live Streaming 

Systems  

In this section, we will first formulate the streaming 

capacity problem in mesh-based P2P live streaming 

systems, and then propose an optimal resource allocation 

approach to increase the streaming capacity. 

4.1. Overview of Mesh-Based P2P Live Streaming System 

Due to bandwidth constraint, most of the current P2P live 

systems provide the video at a low bit rate. For example, 

the source video rate in PPLive system is usually between 

381 to 450 Kbps [22]. How to obtain the maximum 

streaming rate becomes an attractive topic. Streaming 

capacity is defined as the maximum supported streaming 

rate that can be received by every receiver [4]. This section 

focuses on the following problems: 1) What is the 

streaming capacity in the mesh-based P2P live streaming 

systems? and 2) How to improve such streaming capacity? 

In a mesh-based P2P live system, each peer obtains a set 

of neighbors from the server. The peer periodically 

exchanges data availability information with the neighbors, 

and then retrieves unavailable data from its neighbors, and 

supplies available data to its neighbors. Figure 6 illustrates 

a mesh-based P2P live system, in which Peer 2 gets the 

unavailable video blocks from the server (e.g., peer 1) and 

its neighbors (e.g., Peers 4 and 6). 

 

Figure 6. Illustration of block request at a peer in the mesh-based P2P live 

streaming system 

4.2. Streaming Capacity Problem 

The overlay of the mesh-based P2P live streaming 

system can be modeled as a directed graph G = (N, L), 

where N is the set of nodes and L is the set of directed 

overlay links. Peer 1 is defined as the server. The neighbor 

set of peer i is denoted by B�. Each peer can reach the 

server and request any block from it. The streaming rate 

that can be received by every peer is denoted by r.  

The relationship between a node and its outgoing links is 

represented with a matrix A�, whose elements are given by 

���� � �1, if link � is an outgoing link from node �,
0, otherwise. !   (1) 

The relationship between a node and its incoming links 

is represented with a matrix A", whose elements are given 

by 

���" = �1,   if link � is an incoming link into node �,
0,   otherwise.                                                     !   (2) 

In order to distinguish the server from the other peers, 

we define a server-filtering element $� as follows. 

$� = � 0, if � � 1,     
 1, otherwise. !                 (3) 

A video with a length of Lv is evenly divided into a set of 

blocks, denoted by M. Each block has the equal duration, 

denoted by d. Each block is labeled with a playback time 

stamp %& for j ' M. Users in P2P live applications watch 

almost the same position of the video. We ignore the 

variation of the playback times of the users, and assume 

that each user has the same playback time ()
*
 at time t 

where 0+ ( + Lv. Each peer maintains a buffer, called the 

sliding window, which contains the emergent blocks after 

and close to the playback time. The start time of the sliding 

window at time t is the playback point of the video, denoted 

by ()
*
. The length of the sliding window is denoted by ,-.. 

The end time of the sliding window is given by ()
*
+ ,-.. 

The sliding window moves forward at the same speed of 

the playback progress. The blocks following within the 

current sliding window are denoted by a set S) at time t. 

Each peer maintains a block-availability matrix H whose 

elements are given by 

0�&= � 1, if block 2 in S)  is available at peer �,
0, otherwise.                                            !     (4) 

The block request is performed in a discrete-time manner 

with an increment of 5 (0 < 5 < ,-.). At time t, peer i 

requests the unavailable block from the neighbors who are 

owning it by checking the block-availability matrix H. The 

block request at a peer is illustrated in Figure 6.  

Each unavailable block is requested in a prioritized way. 

For a requesting peer (peer i), block j ( j ' S6) is assigned 

with a priority weight 7�& , which is determined by the 

scheduling policy. For example, the scheduling algorithm 

that places a higher priority to the dissemination of the 

blocks in the P2P network will request the rarest block in 

the neighborhood first, while the scheduling algorithm that 

cares more about the playback continuity of the requesting 

peer will request the block closest to the playback position 

first.  

The status of the peers in the P2P live streaming system 

is time varying. At the current time t, peer i performs the 

following steps to request an unavailable block.  

1) Peer i exchanges the information of block availability 

in the sliding window with the peers in the neighbor set B�;  

2) Peer i requests the unavailable block j ( j ' S6) , 

which has the highest priority weight 7�&  in the current 

sliding window, from the neighbor peers;  

3) Peer i establishes an incoming link from peer k (k ' 
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B�8 to peer i if peer k owns the requested block in its 

current sliding window;  

4) If all neighbor peers of peer i do not own the 

requested block, peer i establishes an incoming link from 

the server and requests the block from it. 

The streaming capacity at the current time t in the 

mesh-based P2P live system can be described as to 

maximize the streaming rate r by optimizing the streaming 

rate r and the link rate 9�  :;� ' L8, subject to the equality 

constraint that each receiving peer has to receive the same 

streaming rate, the upload bandwidth constraint and the 

download bandwidth constraint. Mathematically, the 

streaming capacity problem can be formulated 

mathematically as follows.  

maximize ?
subject to Σ�'B ���" 9� � $�?,    ;� ' N,

Σ�'B ����9� + D� ,      ;� ' N,
0 + ? + min�'E FG�H,
9� I 0,                      ;� ' L.

           (5) 

In the optimization problem (5), the objective function is 

the streaming rate, the first constrain, J�'K ���" 9�  = $�r, 

represents that each receiving peer has to receive the same 

streaming rate r, the second constraint, J�'K ����9� + D� , 

represents that the outgoing rate from each peer needs to be 

no larger than the upload capacity D�  of the peer, and the 

third constraint, 0 + ? + min�'E FG�H, represents that the 

received streaming rate at each peer needs to be 

nonnegative and no larger than the download capacity G�  
of the peer. 

The optimization problem (5) is a Linear Programming 

(LP) problem, which can be solved efficiently using the 

simplex method or the interior point method [23]. The 

optimal solution for the optimization problem (5) provides 

the maximal streaming capacity supported by the 

mesh-based P2P live streaming system. 

4.3. Simulation Results for Mesh-Based P2P Live 

Streaming 

In the numerical simulations, there are two classes of 

peers: cable/DSL peers and Ethernet peers. Cable/DSL 

peers take 85% of the total population with download 

capacity uniformly distributed between 0.6 Mbps and 1.0 

Mbps and upload capacity uniformly distributed between 

0.2 Mbps and 0.4 Mbps. Ethernet peers take the remaining 

15% of the total population with both upload and download 

capacities uniformly distributed between 1Mbps and 2 

Mbps. The length of the video is 120 minutes, which is 

evenly divided into 120 blocks. 

 

Figure 7. Comparison of streaming capacity with different number of 

neighbors per peer. 

In Figure 7, we compare the streaming capacity between 

the two schemes: 1) optimal allocation scheme (the 

proposed scheme), in which the link rates are optimized by 

solving the streaming capacity problem (5); and 2) the 

equal allocation scheme, in which the link rates from each 

peer are equally allocated. As shown in Figure 7, when the 

number of neighbors per peer is increased, each peer can 

download the unavailable block from more neighbors, thus 

increasing the streaming capacity. By optimally utilizing 

the peer upload bandwidths, the proposed optimal 

allocation scheme improves the streaming capacity by 24.7% 

in average, compared to the equal allocation scheme. 

 

Figure 8. Comparison of utilization ratio with different number of 

neighbors per peer. 
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Figure 9. Comparison of streaming capacity with different server upload 

bandwidth. 

 

Figure 10. Comparison of streaming capacity with different number of 

peers. 

In Figure 8, we compare the utilization ratio of peer 

upload bandwidth, which is defined as: utilization ratio = 

streaming capacity/(total system upload bandwidth/number 

of peers). As shown in Figure 8, the utilization ratio is 

increased as the number of neighbors is increased. The 

proposed optimal allocation scheme achieves a much 

higher utilization ratio than the equal allocation scheme. 

In Figure 9, we compare the streaming capacity with 

different server upload bandwidth. When the server upload 

bandwidth is increased from 5 Mbps to 15 Mbps, the 

streaming capacity in the proposed optimal allocation 

scheme is increased from 0.331 Mbps to 0.503 Mbps. The 

proposed optimal allocation scheme improves the 

streaming capacity by 29.1% in average, compared to the 

equal allocation scheme. 

In Figure 10, we compare the streaming capacity with 

different number of the peers. We vary the number of peers 

from 50 to 200. The server upload bandwidth is set to 0.1* 

(number of peers) Mbps. The proposed optimal allocation 

scheme improves the streaming capacity by 26.5% in 

average, compared to the equal allocation scheme.   

5. Conclusion  

In this paper, we proposed resource sharing approaches 

to improve the streaming capacity in P2P live streaming 

systems. In tree-based P2P live streaming systems, we 

propose a cross-channel resource sharing approach to 

improve the streaming capacity. The proposed approach 

employs cross-channel helpers to establish the 

cross-channel overlay links, which enable the unused 

upload bandwidth in a channel to be utilized in the partner 

channel, thus improving the streaming capacity of the 

partner channel. In mesh-based P2P live streaming systems, 

we formulate the streaming capacity problem into a LP 

problem. By solving the optimization problem, we can 

obtain the streaming capacity supported by the P2P live 

streaming system. The simulation results demonstrate that 

the proposed resource sharing approaches can significantly 

improve the streaming capacity for P2P live streaming 

systems. 
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