

Internet of Things and Cloud Computing
2013; 1(2): 15-22

Published online October 20, 2013 (http://www.sciencepublishinggroup.com/j/iotcc)

doi: 10.11648/j.iotcc.20130102.11

Improving streaming capacity in P2P live streaming
systems via resource sharing

Yifeng He
*
, Shujjat Ahmed Khan

Electrical and Computer Engineering, Ryerson University, Toronto, Canada

Email address:
yhe@ee.ryerson.ca (Yifeng He)

To cite this article:
Yifeng He, Shujjat Ahmed Khan. Improving Streaming Capacity in P2P Live Streaming Systems via Resource Sharing. Internet of

Things and Cloud Computing. Vol. 1, No. 2, 2013, pp. 15-22. doi: 10.11648/j.iotcc.20130102.11

Abstract: Peer-to-Peer (P2P) streaming systems provide a large number of channels to users. The streaming capacity for

a channel is defined as the maximum streaming rate that can be received by every user in the channel. In the this paper, we

study the streaming capacity problem in both tree-based and mesh-based P2P live streaming systems. In tree-based

multi-channel P2P live streaming systems, we propose a cross-channel resource sharing approach to improve the streaming

capacity. We employ cross-channel helpers to establish the cross-channel overlay links, with which the unused upload

bandwidths in a channel can be utilized to help the bandwidth-deficient peers in another channel, thus improving the

streaming capacity. In meshed-based P2P live streaming systems, we formulate the streaming capacity problem into a

resource optimization problem. By solving the resource optimization problem, we can optimally allocate the link rates for

each peer to improve the streaming capacity. Through simulations, we demonstrate that the proposed resource sharing

approaches can significantly improve the streaming capacity compared to the scheme without resource sharing.

Keywords: P2P Live Streaming, Streaming Capacity, Resource Sharing, Resource Optimization, Cross-Channel Helpers

1. Introduction

In recent years, video streaming services have become

very popular. Video streaming services originally worked in

the client/server architecture. However, this centralized

architecture cannot provide streaming to a large number of

users due to the limited and expensive upload bandwidth

from the server. Peer-to-Peer (P2P) technology has recently

become a capable approach to provide live and on-demand

video streaming services over the Internet at a low cost.

Commercial P2P live streaming and Video-On-Demand

(VoD) systems, such as PPLive [1], PPStream [2], UUSee

[3], have been successfully supporting tens of thousands of

users. Apart from the large number of users, these systems

have a common feature of providing a large number of

channels for users to watch, and hence are referred to as

multi-channel P2P streaming systems. P2P streaming

systems can be categorized into P2P live streaming systems,

in which the users in the same channel watch almost the

same position of the video, and P2P VoD systems, in which

the users in the same channel may watch different positions

of the video at any time. Based on the overlay structure,

P2P live streaming systems can be classified into tree-based

P2P live streaming systems and mesh-based P2P live

streaming systems. In a tree-Based P2P live streaming

systems, a single application-layer tree or multiple

application-layer trees are constructed to deliver the video

streams. In mesh-based P2P live streaming systems, each

peer exchanges the data with a set of neighbors.

The maximum streaming rate that can be received by

every user in a channel is defined as the streaming capacity

of the channel in a multi-channel P2P live streaming system

[4]. The streaming capacity can be served as the indicator

of video quality for a channel. A higher streaming capacity

for a channel means that the users in the channel can

receive a higher video quality. Therefore, the objective of

the paper is to achieve a high streaming capacity for a

channel in P2P live streaming systems.

It is challenging to achieve a high streaming capacity in

multi-channel P2P live streaming systems. The streaming

capacity for a channel is dependent on the bandwidth

capacity of each peer in the channel and the overlay

structure of the channel. A higher streaming capacity can be

achieved by optimizing the resources among the peers

within the same channel, which is, however, a challenging

task. Peers have heterogeneous bandwidths. Some peers

may have deficient upload bandwidths, which limit the

streaming capacity, while some other peers may have

16 Yifeng He et al.: Improving Streaming Capacity in P2P Live Streaming Systems Via Resource Sharing

abundant upload bandwidths which have not been fully

utilized. Resource sharing in a multi-channel P2P live

streaming system is expected to improve the streaming

capacity. However, resource sharing in multi-channel P2P

live streaming systems is difficult due to the following

reasons. 1) In a P2P live streaming system, each peer has

different upload and download capacity, and each peer may

join or leave the channel at any time. The heterogeneous

characteristics and dynamic behaviors of the peers cause

dynamic resource distribution among peers and among

channels. 2) It is difficult to shift the unused resources in a

channel to improve the streaming capacity for another

channel, since there is originally no overlay connection

between the two channels.

In this paper, we propose resource sharing approach to

improve the streaming capacity in P2P live streaming

systems. The contributions of the paper is two-fold:

1) We propose a cross-channel resource sharing approach

in tree-based multi-channel P2P live streaming systems to

improve the streaming capacity. The proposed approach

employs cross-channel helpers to establish cross-channel

overlay links, via which the unused resources in a channel

can be utilized to help the bandwidth-deficient peers in

another channel. The proposed scheme can significantly

improve the streaming capacity compared to the case

without cross-channel resource sharing.

2) We formulate the streaming capacity in mesh-based

P2P streaming systems into a resource optimization

problem. By solving the optimization problem, we can

optimally allocate the link rates for each peer to improve

the streaming capacity.

The rest of the paper is organized as follows. Section 2

discusses the related work. Section 3 presents the proposed

cross-channel resource sharing approach to improve the

streaming capacity in tree-based multi-channel P2P live

streaming systems. Section 4 presents the proposed

resource allocation scheme to improve the streaming

capacity in mesh-based P2P streaming systems. Finally, the

conclusion is drawn in Section 5.

2. Related Work

Streaming capacity in P2P live systems has been

observed in the recent literature [4-7]. Most recent work

was done to improve the efficiency and performance of P2P

streaming systems. Lui et al. [8] presented algorithms that

find near-optimal streaming rates when nodes can only

support a bounded number of children. Picconi et al. [9]

demonstrated that P2P live streaming systems can

incorporate locality-awareness and thus be ISP-friendly.

Other work [10] uses network coding for improving

download speeds and reducing the insufficiency of data.

Sengupta et al. [4] provided a taxonomy of sixteen

problem formulations on streaming capacity, depending on

whether there is a single P2P session or there are multiple

simultaneous sessions, whether the given topology is a full

mesh graph or an arbitrary graph, whether the number of

peers a node can have is bounded or not, and whether there

are non-receiver relay nodes or not. Liu et al. investigated

the performance bounds for minimum server load,

maximum streaming rate, and minimum tree depth in

tree-based P2P live systems [6]. The streaming capacity

under node degree bound is inspected in [7].

Resource allocations in multi-channel P2P live streaming

systems have been investigated in the literature. A

View-Upload Decoupling (VUD) scheme was proposed in

[11] to decouple what a peer uploads from what it views,

bringing stability to multi-channel P2P streaming systems

and enabling cross-channel resource sharing. In other

papers [12, 13], the performance and the efficiency of

multi-channel P2P live or VoD streaming systems were

investigated using a verity of techniques.

In order to maintain the smooth streaming, peers must

download enough chunks before they can start playback.

Such delay before the playback is called startup delay or

initial buffering delay. In [13-15], this startup delay was

investigated and various solutions were proposed to

overcome this issue. It was argued in [14, 16] that it is

worth scaling the system to support more peers. When the

average streaming rate exceeds the inherent playback rate

of a movie, the extra bandwidth of the system can be used

to support additional peers to make the system scalable.

Sustainable streaming rate is a key factor for a P2P

streaming system. It is defined as the rate that video can be

played without skips or pauses. Zhou et al. [13] and Zhao

et al. [17] developed probabilistic models to characterize

the playback continuity. A promising technique that may

facilitate P2P video streaming is network coding [18].

Network coding was proposed to improve the throughput

by making the optimal use of bandwidth resources in a

network for content distribution [19]. Its effects have been

studied in [20, 21], which demonstrate that random linear

network coding is feasible for both P2P live streaming and

P2P VoD systems.

3. Improving Streaming Capacity in

Tree-Based Multi-Channel P2P Live

Streaming Systems

In this section, we will present a cross-channel resource

sharing approach to improve the streaming capacity in

tree-based multi-channel P2P live streaming systems.

3.1. Overview of Tree-Based P2P Live Streaming System

In a tree-based multi-channel P2P live streaming system,

the peers in the same channel are organized into a tree for

delivering media streaming, with the media source (e.g., the

streaming server) as the root of the tree. P2P streaming has

become an increasingly popular approach for one-to-many

multimedia streaming applications, mostly as it does not

involve any particular support (e.g. IP multicast or any

content distribution infrastructure) from the network. P2P

live streaming is a typical media streaming service

Internet of Things and Cloud Computing 2013; 1(2): 15-22 17

designed for all peers receiving stream at the same time. A

common idea in P2P streaming systems is that participating

peers form an overlay where each peer receives content

from the parent node in a session.

Any P2P streaming system consists of two diverse but

correlated components that are overlay construction and

content delivery. Overlay construction is a method that

organizes participating peers into an overlay, and content

delivery is another method that delivers the multimedia

content to each participating peer through the overlay. In a

tree-based multi-channel P2P live streaming system, the

peers watching the same channel form a tree-based overlay,

and share the resources based on parent-child relationship.

Figure 1 illustrates a tree-based multi-channel P2P live

streaming system with two channels. The peers watching

the same channel form a tree-based overlay, respectively,

with the common root, the streaming server. The outgoing

degree of the tree is 3, which means that each peer can have

at most three child nodes. The video content is delivered

from the root to each peer along the tree.

Figure 1. Illustration of a tree-based multi-channel P2P live streaming

system.

3.2. The Proposed Cross-Channel Resource Sharing

Approach

The streaming capacity for a channel in the tree-based

P2P live streaming system is dependent on the upload

bandwidths of the peers. For example, suppose that peer a4

in Figure 1 has an upload bandwidth of 900 Kbps and it

supplies the stream to three child nodes. In this case, each

child node of peer a4 can receive a streaming rate of 300

Kbps. In other words, the streaming capacity for a channel

is limited by the internal peer (e.g., the peer who has child

node) who has a low upload bandwidth. On the other hand,

many other peers have unused upload bandwidth. The leaf

nodes (e.g., the peer who has no child) do not use their

upload bandwidth. Moreover, some internal nodes may

have large remaining upload bandwidths which have not

been used.

The streaming capacity for a channel is expected to be

improved if the resources in each channel can be

re-organized. Therefore, we propose a cross-channel

resource sharing approach to improve the streaming

capacity in the tree-based multi-channel P2P live streaming

system. The principle idea of the proposed approach is to

utilize the unused upload bandwidths of the peers in a

channel to help the bandwidth-deficient peers in another

channel.

The proposed approach is illustrated in Figure 2.

Channels A and B are a pair of channels which help with

each other. Suppose peer a4 is a bandwidth-deficient peer

in channel A, peer b14 is bandwidth-abundant peer in

channel B. We define a cross-channel helper as the peer

who will contribute its remaining upload bandwidth to help

the bandwidth-deficient peer in the partner channel. For

example, peer b14 is a cross-channel helper, who

downloads a segment of the stream from the server and

then serves the segment to the child nodes of peer a4 in

channel A. The advantage of cross-channel helper is the

amplification of upload bandwidth. For example, peer b14

can download a segment of channel-A video at a rate of 50

Kbps, and serve the video to peers a11, a12, and a13 at a

rate of 50 Kbps, respectively. In the same way, the

bandwidth-abundant peer in channel A (e.g., peer a16) can

help the bandwidth-deficient peer (e.g., peer b3) in channel

B. The streaming capacity of channels A and B can both be

improved by such cross-channel resource sharing.

Figure 2. Illustration of proposed cross-channel resource sharing

approach

The proposed cross-channel resource sharing approach

consists of five steps as follows.

1) Determine channel pair: Each channel selects a

partner channel to help with each other. We first order the

channels based on the system upload bandwidth. We then

group the channel pair based on a resource-balancing

criterion, with which the channel with a larger system

upload bandwidth is assigned to help the one with a smaller

system upload bandwidth.

2) Determine cross-channel helpers in each channel: The

peers with an unused upload bandwidth larger than a

pre-set threshold are chosen as cross-channel helpers.

3) Determine bandwidth-deficient peers in each channel:

The average upload bandwidth per child is defined as the

ratio between the upload bandwidth of the internal peer and

the number of its child nodes. The internal peers with an

average upload bandwidth per child smaller than a pre-set

threshold are chosen as bandwidth-deficient peers.

4) Establish cross-channel overlay links: The

cross-channel overlay links are established by enabling the

Server

Channel A

a1

a2 a3 a4

a5

a6 a7

a8 a9 a10

a11 a12 a13

a14 a15 a16

Channel B

b1

b2
b3

b4

b5

b6 b7

b8 b9 b10

b11 b12 b13

b14 b15 b16

Server

Channel A

a1

a2 a3 a4

a5

a6 a7

a8 a9 a10

a11 a12

a13

a14 a15

a16

Channel B

b1

b2
b3

b4

b5

b6 b7

b8 b9 b10

b11 b12 b13

b14 b15 b16

18 Yifeng He et al.: Improving Streaming Capacity in P2P Live Streaming Systems Via Resource Sharing

cross-channel helper to download a segment of the stream

from the server or other peer and forward the segment to

the child nodes of the bandwidth-deficient peer in the

partner channel.

5) Determine the streaming capacity for each channel:

We can find the streaming capacity for each channel with

cross-channel resource sharing.

Peer dynamics have an impact on the streaming capacity

in tree-based multi-channel P2P live streaming systems.

First, the peers may leave or join a channel dynamically.

Second, the cross-channel helpers may leave the channel,

which causes the disconnection of the cross-channel

overlay links. To handle the dynamic conditions, the

proposed cross-channel resource sharing approach needs to

be performed in a discrete-time manner, considering the

time-varying status of the peers.

3.3. Simulation Results for Tree-Based Live Streaming

We perform simulations for a tree-based multi-channel

P2P live streaming system with two channels (channel A

and channel B). The numbers of peers in channels A and B

are 100 and 80, respectively. The peers have heterogeneous

bandwidths. The download bandwidths of the peers are

uniformly distributed between 2.5 Mbps and 4.0 Mbps, and

the upload bandwidths of the peers are uniformly

distributed between 1.5 Mbps and 3.0 Mbps. The tree

overlay for each channel is based on the order of the arrival

time of the peer. The newly coming peer chooses an

existing peer as the parent and connects itself with the

parent node. The outgoing degree is defined as the

maximum number of the child nodes that an internal peer

can have. The outgoing degree is set to 5 in the default

setting.

Figure 3 compares the streaming capacity between the

case without any resource sharing and the case with the

proposed cross-channel resource sharing. The proposed

cross-channel resource sharing better utilizes the upload

bandwidths, thus significantly improving the streaming

capacity compared to the case without any resource sharing.

The average improvements of streaming capacity are 135%

for channel A and 143% for channel B, respectively.

Figure 3. Comparison of streaming capacity with different outgoing

degrees: (a) channel A, and (b) channel B.

Figure 4 compares the streaming capacity with different

total helping rate, which is defined as the sum of the

outgoing rates of all cross-channel helpers. We can see in

Figure 4 that the streaming capacity is almost linearly

increased when the total helping rate is increased from 13.7

Mbps to 137.2 Mbps for channel A and from 11.3 Mbps to

113.4 Mbps for channel B.

Figure 4. Comparison of streaming capacity with different total helping

rate: (a) channel A, and (b) channel B.

Figure 5. Comparison of streaming capacity with different standard

deviation of peer upload bandwidths: (a) channel A, and (b) channel B.

Figure 5 evaluates the impact of the heterogeneity of

peer upload bandwidths to the streaming capacity. The

heterogeneity of peer upload bandwidths can be measure by

the standard deviation of peer upload bandwidths. A higher

standard deviation indicates a higher heterogeneity of peer

upload bandwidths. From Figure 5, we can see that a higher

heterogeneity of peer upload bandwidths leads to a lower

streaming capacity. As shown in Figure 5, the proposed

cross-channel resource sharing approach obtains a

significantly improved streaming capacity compared to the

case without resource sharing.

3 5 7 9
0

500

1000

1500

Outgoing degree of channel A

S
tr

e
a
m

in
g
 c

a
p
a
c
it
y
 [

K
b
p
s
]

Without resource sharing

With cross-channel resource sharing (proposed)

3 5 7 9
0

500

1000

1500

Outgoing degree of channel B

S
tr

e
a
m

in
g
 c

a
p
a
c
it
y
 [

K
b
p
s
]

Without resource sharing

With cross-channel resource sharing (proposed)

(a)

(b)

0 20 40 60 80 100 120 140
600

800

1000

1200

Total helping rate [Mbps]

S
tr

e
a

m
in

g
 c

a
p

a
c

it
y

 [
K

b
p

s
]

0 20 40 60 80 100 120
600

800

1000

1200

1400

Total helping rate [Mbps]

S
tr

e
a

m
in

g
 c

a
p

a
c

it
y

 [
K

b
p

s
] (a)

(b)

100 200 300 400 500 600 700 800 900 1000 1100
0

500

1000

1500

Standard deviation of peer upload bandwidths

S
tr

e
a

m
in

g
 c

a
p

a
c

it
y

 [
K

b
p

s
]

Without resource sharing

With cross-channel resource sharing (proposed)

100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

Standard deviation of peer upload bandwidths

S
tr

e
a

m
in

g
 c

a
p

a
c

it
y

 [
K

b
p

s
]

Without resource sharing

With cross-channel resource sharing (proposed)

(a)

(b)

Internet of Things and Cloud Computing 2013; 1(2): 15-22 19

4. Improving Streaming Capacity in

Mesh-Based P2P Live Streaming

Systems

In this section, we will first formulate the streaming

capacity problem in mesh-based P2P live streaming

systems, and then propose an optimal resource allocation

approach to increase the streaming capacity.

4.1. Overview of Mesh-Based P2P Live Streaming System

Due to bandwidth constraint, most of the current P2P live

systems provide the video at a low bit rate. For example,

the source video rate in PPLive system is usually between

381 to 450 Kbps [22]. How to obtain the maximum

streaming rate becomes an attractive topic. Streaming

capacity is defined as the maximum supported streaming

rate that can be received by every receiver [4]. This section

focuses on the following problems: 1) What is the

streaming capacity in the mesh-based P2P live streaming

systems? and 2) How to improve such streaming capacity?

In a mesh-based P2P live system, each peer obtains a set

of neighbors from the server. The peer periodically

exchanges data availability information with the neighbors,

and then retrieves unavailable data from its neighbors, and

supplies available data to its neighbors. Figure 6 illustrates

a mesh-based P2P live system, in which Peer 2 gets the

unavailable video blocks from the server (e.g., peer 1) and

its neighbors (e.g., Peers 4 and 6).

Figure 6. Illustration of block request at a peer in the mesh-based P2P live

streaming system

4.2. Streaming Capacity Problem

The overlay of the mesh-based P2P live streaming

system can be modeled as a directed graph G = (N, L),

where N is the set of nodes and L is the set of directed

overlay links. Peer 1 is defined as the server. The neighbor

set of peer i is denoted by B�. Each peer can reach the

server and request any block from it. The streaming rate

that can be received by every peer is denoted by r.

The relationship between a node and its outgoing links is

represented with a matrix A�, whose elements are given by

���� � �1, if link � is an outgoing link from node �,
0, otherwise. ! (1)

The relationship between a node and its incoming links

is represented with a matrix A", whose elements are given

by

���" = �1, if link � is an incoming link into node �,
0, otherwise. ! (2)

In order to distinguish the server from the other peers,

we define a server-filtering element $� as follows.

$� = � 0, if � � 1,
 1, otherwise. ! (3)

A video with a length of Lv is evenly divided into a set of

blocks, denoted by M. Each block has the equal duration,

denoted by d. Each block is labeled with a playback time

stamp %& for j ' M. Users in P2P live applications watch

almost the same position of the video. We ignore the

variation of the playback times of the users, and assume

that each user has the same playback time ()
*
 at time t

where 0+ (+ Lv. Each peer maintains a buffer, called the

sliding window, which contains the emergent blocks after

and close to the playback time. The start time of the sliding

window at time t is the playback point of the video, denoted

by ()
*
. The length of the sliding window is denoted by ,-..

The end time of the sliding window is given by ()
*
+ ,-..

The sliding window moves forward at the same speed of

the playback progress. The blocks following within the

current sliding window are denoted by a set S) at time t.

Each peer maintains a block-availability matrix H whose

elements are given by

0�&= � 1, if block 2 in S) is available at peer �,
0, otherwise. ! (4)

The block request is performed in a discrete-time manner

with an increment of 5 (0 < 5 < ,-.). At time t, peer i

requests the unavailable block from the neighbors who are

owning it by checking the block-availability matrix H. The

block request at a peer is illustrated in Figure 6.

Each unavailable block is requested in a prioritized way.

For a requesting peer (peer i), block j (j ' S6) is assigned

with a priority weight 7�& , which is determined by the

scheduling policy. For example, the scheduling algorithm

that places a higher priority to the dissemination of the

blocks in the P2P network will request the rarest block in

the neighborhood first, while the scheduling algorithm that

cares more about the playback continuity of the requesting

peer will request the block closest to the playback position

first.

The status of the peers in the P2P live streaming system

is time varying. At the current time t, peer i performs the

following steps to request an unavailable block.

1) Peer i exchanges the information of block availability

in the sliding window with the peers in the neighbor set B�;

2) Peer i requests the unavailable block j (j ' S6) ,

which has the highest priority weight 7�& in the current

sliding window, from the neighbor peers;

3) Peer i establishes an incoming link from peer k (k '

Peer 4

1 2 3 4 5 6 7

Peer 1

Server
Peer 6

1 2 3 4 5 6 7

Peer 2

1 2 3 4 5 6 71 2 3 4 5 6 7

wi Peer i

j Block j (available)

k Block k (unavailable)

20 Yifeng He et al.: Improving Streaming Capacity in P2P Live Streaming Systems Via Resource Sharing

B�8 to peer i if peer k owns the requested block in its

current sliding window;

4) If all neighbor peers of peer i do not own the

requested block, peer i establishes an incoming link from

the server and requests the block from it.

The streaming capacity at the current time t in the

mesh-based P2P live system can be described as to

maximize the streaming rate r by optimizing the streaming

rate r and the link rate 9� :;� ' L8, subject to the equality

constraint that each receiving peer has to receive the same

streaming rate, the upload bandwidth constraint and the

download bandwidth constraint. Mathematically, the

streaming capacity problem can be formulated

mathematically as follows.

maximize ?
subject to Σ�'B ���" 9� � $�?, ;� ' N,

Σ�'B ����9� + D� , ;� ' N,
0 + ? + min�'E FG�H,
9� I 0, ;� ' L.

 (5)

In the optimization problem (5), the objective function is

the streaming rate, the first constrain, J�'K ���" 9� = $�r,

represents that each receiving peer has to receive the same

streaming rate r, the second constraint, J�'K ����9� + D� ,

represents that the outgoing rate from each peer needs to be

no larger than the upload capacity D� of the peer, and the

third constraint, 0 + ? + min�'E FG�H, represents that the

received streaming rate at each peer needs to be

nonnegative and no larger than the download capacity G�
of the peer.

The optimization problem (5) is a Linear Programming

(LP) problem, which can be solved efficiently using the

simplex method or the interior point method [23]. The

optimal solution for the optimization problem (5) provides

the maximal streaming capacity supported by the

mesh-based P2P live streaming system.

4.3. Simulation Results for Mesh-Based P2P Live

Streaming

In the numerical simulations, there are two classes of

peers: cable/DSL peers and Ethernet peers. Cable/DSL

peers take 85% of the total population with download

capacity uniformly distributed between 0.6 Mbps and 1.0

Mbps and upload capacity uniformly distributed between

0.2 Mbps and 0.4 Mbps. Ethernet peers take the remaining

15% of the total population with both upload and download

capacities uniformly distributed between 1Mbps and 2

Mbps. The length of the video is 120 minutes, which is

evenly divided into 120 blocks.

Figure 7. Comparison of streaming capacity with different number of

neighbors per peer.

In Figure 7, we compare the streaming capacity between

the two schemes: 1) optimal allocation scheme (the

proposed scheme), in which the link rates are optimized by

solving the streaming capacity problem (5); and 2) the

equal allocation scheme, in which the link rates from each

peer are equally allocated. As shown in Figure 7, when the

number of neighbors per peer is increased, each peer can

download the unavailable block from more neighbors, thus

increasing the streaming capacity. By optimally utilizing

the peer upload bandwidths, the proposed optimal

allocation scheme improves the streaming capacity by 24.7%

in average, compared to the equal allocation scheme.

Figure 8. Comparison of utilization ratio with different number of

neighbors per peer.

Internet of Things and Cloud Computing 2013; 1(2): 15-22 21

Figure 9. Comparison of streaming capacity with different server upload

bandwidth.

Figure 10. Comparison of streaming capacity with different number of

peers.

In Figure 8, we compare the utilization ratio of peer

upload bandwidth, which is defined as: utilization ratio =

streaming capacity/(total system upload bandwidth/number

of peers). As shown in Figure 8, the utilization ratio is

increased as the number of neighbors is increased. The

proposed optimal allocation scheme achieves a much

higher utilization ratio than the equal allocation scheme.

In Figure 9, we compare the streaming capacity with

different server upload bandwidth. When the server upload

bandwidth is increased from 5 Mbps to 15 Mbps, the

streaming capacity in the proposed optimal allocation

scheme is increased from 0.331 Mbps to 0.503 Mbps. The

proposed optimal allocation scheme improves the

streaming capacity by 29.1% in average, compared to the

equal allocation scheme.

In Figure 10, we compare the streaming capacity with

different number of the peers. We vary the number of peers

from 50 to 200. The server upload bandwidth is set to 0.1*

(number of peers) Mbps. The proposed optimal allocation

scheme improves the streaming capacity by 26.5% in

average, compared to the equal allocation scheme.

5. Conclusion

In this paper, we proposed resource sharing approaches

to improve the streaming capacity in P2P live streaming

systems. In tree-based P2P live streaming systems, we

propose a cross-channel resource sharing approach to

improve the streaming capacity. The proposed approach

employs cross-channel helpers to establish the

cross-channel overlay links, which enable the unused

upload bandwidth in a channel to be utilized in the partner

channel, thus improving the streaming capacity of the

partner channel. In mesh-based P2P live streaming systems,

we formulate the streaming capacity problem into a LP

problem. By solving the optimization problem, we can

obtain the streaming capacity supported by the P2P live

streaming system. The simulation results demonstrate that

the proposed resource sharing approaches can significantly

improve the streaming capacity for P2P live streaming

systems.

References

[1] PPLive, http://www.pplive.com

[2] PPStream, http://www.pps.tv

[3] UUSee, http://www.uusee.com

[4] S. Sengupta, S. Liu, M. Chen, M. Chiang, J. Li, and P. A.
Chou, “Streaming Capacity in Peer-to-Peer Networks with
Topology Constraints,” Microsoft Research Technical Report,
2008.

[5] S. Liu, R. Shen, W. Jiang, J. Rexford, and M. Chiang,
“Performance bounds for peer-assisted live streaming,” in
Proc. of ACM SIGMETRICS, pp. 313–324. 2008.

[6] S. Sengupta, S. Liu, M. Chen, M. Chiang, J. Li, and P. A.
Chou, “Peer-to-Peer Streaming Capacity,” IEEE
Transactions on Information Theory, vol. 57, no. 8, pp.
5072–5087, Aug. 2011.

[7] S. Liu, M. Chen, S. Sengupta, M. Chiang, J. Li, and P. A.
Chou, “P2P Streaming Capacity under Node Degree Bound,”
in Proc. of IEEE ICDCS, pp. 587–598, 2011.

[8] T. Bonald, L. Massoulié, F. Mathieu, D. Perino, and A. Twigg,
“Epidemic live streaming: optimal performance trade-offs,”
in Proc. of ACM SIGMETRICS, pp. 325–336, 2008.

[9] X. Zhang, J. Liu, B. Li, and T. S. P. Yum,
“DONet/CoolStreaming: A data-driven overlay network for
live media streaming,” in Proc. of IEEE INFOCOM, 2005.

[10] L. Massoulie, A. Twigg, C. Gkantsidis, and P. Rodriguez,
“Randomized decentralized broadcasting algorithms,” in
Proc. of IEEE INFOCOM, 2007.

[11] D. Wu, C. Liang, Y. Liu and K. W. Ross, “View-upload
decoupling: a redesign of multi-channel P2P video systems,”
in Proc. of IEEE INFOCOM, pp. 2726–2730, 2009.

[12] R. Kumar, Y. Liu, and K.W. Ross, “Stochastic fluid theory for
P2P streaming systems,” in Proc. of IEEE INFOCOM, 2007.

[13] Y. Zhou, D.M. Chiu, and J.C.S. Lui, “A simple model for
analyzing P2P streaming protocols,” in Proc. of IEEE ICNP,
2007.

[14] C. Feng and B. Li, “On large-scale peer-to-peer streaming
systems with network coding,” in Proc. of ACM MM, pp.
269–278, 2008.

22 Yifeng He et al.: Improving Streaming Capacity in P2P Live Streaming Systems Via Resource Sharing

[15] C. Feng, B. Li, and B. Li, “Understanding the Performance
Gap between Pull-based Mesh Streaming Protocols and
Fundamental Limits,” in Proc. of IEEE INFOCOM, 2009.

[16] F. Liu, B. Li, L. Zhong, B. Li, and D. Niu, “How P2P
Streaming Systems Scale Over Time Under a Flash Crowd? ”
in Proc. of IPTPS, 2009.

[17] B.Q. Zhao, J. Lui, and D. M. Chiu, “Exploring the Optimal
Chunk Selection Policy for Data-Driven P2P Streaming
Systems,” in Proc. of IEEE International Conference on
Peer-to-Peer Computing, pp. 271–280, 2009.

[18] R. Ahlswede, N. Cai, S. Li, and R. W. Yeung, “Network
information flow,” IEEE Transactions on Information Theory,
vol. 46, no. 4, pp. 1204–1216, 2000.

[19] C. Gkantsidis and PR Rodriguez, “Network coding for large
scale content distribution,” in Proc. of IEEE INFOCOM,
2005.

[20] S. Annapureddy, S. Guha, C. Gkantsidis, D. Gunawardena,
and P.R. Rodriguez, “Is high-quality VoD feasible using P2P
swarming?” in Proc. of ACM international conference on
World Wide Web, pp. 903–912, 2007.

[21] M. Wang and B. Li, “R2: Random Push with Random
Network Coding in Live Peer-to-Peer Streaming,” IEEE
Journal on Selected Areas in Communications, vol. 25, no. 9,
pp. 1655–1666, 2007.

[22] Y. Huang, T. Fu, D. Chiu, J. Lui, and C. Huang, “Challenges,
design and analysis of a large-scale p2p-vod system,” in Proc.
of ACM SIGCOMM, vol. 38, no. 4, pp. 375–388, 2008.

[23] R. J. Vanderbei, Linear programming: foundations and
extensions, 2nd Edition, Springer Press, 2001.

