
Quadratic Programming-Based Inverse Dynamics Control for Legged
Robots with Sticking and Slipping Frictional Contacts

Samuel Zapolsky1 and Evan Drumwright2

Abstract— Inverse dynamics control is an extremely effective
nonlinear control strategy if the inverse dynamics computation
can be performed with sufficient speed. We describe our method
for inverse dynamics control of legged robots that can deal
with both sticking and slipping frictional contacts and mitigates
the problems introduced by indeterminate rigid body contact.
We improve this work, which previously used quadratically
constrained quadratic programs (QCQPs), to use faster-to-solve
quadratic programs via linear algebraic simplifications and a
nullspace. We also show that Lemke’s Algorithm is significantly
faster than alternatives and permits multi-stage optimizations
within control loops running as fast as 125Hz on commodity
hardware.

I. INTRODUCTION

The control scheme with the potential to track a trajectory
most accurately is inverse dynamics control. The only caveats
are that the model must be sufficiently faithful to reality
and that the inverse dynamics control is fast enough to run
in high frequency control loops. This paper focuses on ()
inverse dynamics control for legged robots interacting with
rigid environments using predicted contact forces (contact
forces cannot currently be sensed with sufficient accuracy
and without considerable lag for inverse dynamics), () the
susceptibility of the underlying rigid body contact models to
indeterminate configurations and the effects of this problem,
and () the development of fast methods to compute inverse
dynamics under such constraints. We verify our method
using a simulated quadruped that demonstrates a robotic
morphology which readily exhibits indeterminate contact
with its environment.

II. NOTATION

Our notation below will assume that all quantities (unless
otherwise specified) are given in independent coordinates
(velocities, accelerations, inertias, and forces), i.e., the min-
imum coordinates necessary to fully describe the state of a
multi-rigid-body system.
cN , cS , cT the (to be determined) magnitudes of the im-

pulsive forces applied at points of contact in
the normal, first tangent, and second tangent
direction of each contact; cS and cT each have
two components—corresponding to positive and
negative magntidues along the first and second
tangent directions
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M the independent inertia matrix (combined robot
and contacting rigid body independent inertias)

v the current independent velocity (concatentated
velocity of the robot and bodies in contact)

v∗ the independent velocity (concatentated velocity
of the robot and the bodies in contact) of the
system after the contact model and external
forces/torques have been applied

q̇ the current robot joint velocity
q̈ the desired robot joint acceleration
τ the (to be determined) vector of torques to be

applied to the robot’s joints
fext the vector of independent external forces/torques

(combined robot and contacting rigid body in-
dependent forces/torques)

N,S,T the Jacobian relating contact forces to indepen-
dent forces along the contact normals and first
and second tangent directions, respectively

Q,KS ,KT the Jacobian relating contact forces to inde-
pendent forces along the direction of relative
velocity (sliding contacts only) and first and sec-
ond tangent directions (sticking contacts only),
respectively

µ n Coulomb friction coefficients

III. RELATED WORK

A. Inverse dynamics control for bipeds

Idealized bipeds (i.e., with point contacts as the feet)
do not experience indeterminate contact configurations at
the feet, as more than two contact points are required for
indeterminacy. Contact forces that yield a desired trajectory
using inverse dynamics control is computable (as shown in
[12]) given a trajectory consistent with no-slip constraints
at the feet (or with inconsistent accelerations using least-
squares minimization). Bipedal walking systems can utilize
our methodology but would not need to implement our
approach for mitigating inconsistent configurations.

B. Inverse dynamics control for quadrupeds

The work of Righetti et al. [11] also focused on inverse
dynamics control while in contact with rigid environments.
That work sought a linear system solution to the cou-
pled problems of determining contact forces and motor
torques. Additionally, [11] developed a framework that per-
mits quickly optimizing any mixed linear/quadratic function
of motor torques and contact forces using fast numerical
linear algebra algorithms. Their work does not incorporate
unilateral contact constraints; nor do they use any knowledge



of surface friction to better model the contact forces (which
permits tracking desired trajectories more closely).

In contrast to that research, our previous work [17] has
used a “true” (i.e., unilaterally constrained) contact model
for developing an inverse dynamics-based controller for
quadruped robots. Our contact model is able to predict
bodies separating, does not apply tensile contact forces, is
guaranteed to be feasible (a set of contact forces always
exists), does not suffer from Painlevé-type paradoxes [10] in
the presence of slipping friction, guarantees frictional forces
are dissipative (forces cannot be predicted that would add
energy to the system), and does not require considering
an exponential (in the number of contact points) tree of
possible solutions. Our previous work used a quadratically
constrained quadratic programming (QCQP)-based second
phase. Our current work converts that model into a convex,
linearly constrained quadratic program (QP) that can be
solved with multiple, fast, and free software libraries.

IV. BACKGROUND: RIGID CONTACT MODELS

Theory of rigid contact assumes that bodies cannot be
interpenetrating, and thus are either in contact at a point, an
edge, or one or more surfaces. Figure 1 shows two bodies
A and B in contact at a single point p. We define a contact
frame F at p with one axis (n̂) pointing along the contact
normal toward A and the other two axes, ŝ and t̂ aligned
arbitrarily. If we define the relative velocity between the two
bodies projected along the contact normal as φ̇n̂, the bodies
are separating at p if φ̇n̂ > 0 and impacting if φ̇n̂ < 0. If
the bodies are separating, no contact forces need be applied;
if the bodies are impacting, an impact law must be used. If
the bodies are neither impacting nor separating but φ̈n̂ < 0,
contact forces must be applied to prevent interpenetration.
The following section describes such a model.

A

B

Fig. 1. Two rigid bodies A and B in contact at a single point p with
contact normal n̂.

A. Models for resting contact without impulsive forces

Rigid body contact under Coulomb friction can be mod-
eled using the following mixed linear complementarity prob-

lem (MLCP):
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where W , ΩLQ
T −NT, (ΩL is a n × rL dimensional

matrix, where rL is the number of sliding contacts, for which
entry (i, j) = µi if the ith contact is the jth sliding contact
and zero otherwise), a is the (to be determined) independent
acceleration of the system, XS and XT are block diagonal:

XS =

XS1

. . .
XSn


XT =

XT1

. . .
XTn



(the blocks are defined immediately below) and ΩK is a
n× rK-dimensional (rK is the number of sticking contacts)
matrix; entry (i, j) = µi if the ith contact is sticking and is
set to zero otherwise.

We linearize the friction cone using a circumscribing k-
edge polygon (see Figure 4), which we define using 2× k+4

4
dimensional matrices XSi

and XTi
to correspond to the ith

contact as follows:

XSi =

[
cos 0 cos θ cos 2θ . . . cos π2
cos 0 cos θ cos 2θ . . . cos π2

]
XTi

=

[
sin 0 sin θ sin 2θ . . . sin π

2
sin 0 sin θ sin 2θ . . . sin π

2

]
where θ = π

k
2+1

. In the special case that k = 4, we can
further reduce the matrices to the 2×1 dimensional matrices:

XSi
= XTi

=

[
cos 0
cos 0

]
=

[
sin π

2
sin π

2

]
=

[
1
1

]
When there is no sliding friction, the MLCP model is
solvable and copositive-plus (using a nearly identical proof
to that described in [15]), which means it can be solved in
expected polynomial time using Lemke’s Algorithm [5], [2].
When sliding friction is present the MLCP may not possess
a solution due to the existence of inconsistent configura-
tions [14]. This issue led to the movement to the impulsive
force/velocity domain [7] and time stepping methods [15],
which can provably avoid inconsistent configurations. As a
side benefit, sustained (φ̇n̂ = 0, φ̈n̂ < 0) and impacting
(φ̇n̂ < 0) contacts can be treated under a single regime,
meaning—as a practical matter—one need not classify small
floating point values into sustained vs. impacting contacts.



Another issue with rigid body contact that remains even
when time stepping methods are used is that of indeter-
minacy: as Figure 2 illustrates, multiple, even infinite, sets
of contact forces might satisfy the model. This scenario is
identical to that of a quadruped standing on all four legs,
though indeterminacy can occur with the robot supported by
three legs as well. Thus, this particular issue can arise under
both standing and creeping gaits.

Fig. 2. An illustration (taken from [6]) of indeterminacy in rigid body
contact models. Infinite variations of force magnitudes yield solutions to
this problem.

For copositive-plus MLCP-based models, even if one can
devise a deterministic rule to select a solution (e.g., pick
the solution with the lowest `2-norm), it is not clear that
computing such a solution can be performed in polynomial
time (even in the expected case). The status quo is that the
linear complementarity problem (LCP) solver converges to
an arbitrary solution (which is a function of the pivoting rule
and the initial basis for Lemke’s Algorithm).

When we incorporate a rigid body contact model into an
inverse dynamics controller, the implication of indeterminacy
is potentially rapidly switching, and thus mechanically dele-
terious, torque values. This is not just a theoretical issue:
we have observed contact force predictions switching rapidly
between two opposing sets of legs (front left/hind right and
front right/hind left), leading to highly discontinuous motor
torques; this problem is illustrated by the extreme values
of the time derivative of motor torques when our simulated
quadruped is standing on all four feet (see Figure 3).

Fig. 3. The norm of the time derivative of the motor torques (over all joints)
computed by inverse dynamics using an indeterminate contact model

B. Convex contact model

Our previous work [3] introduced a convex contact model
(also used by Todorov [16] for model predictive control with

contact) that exhibits worst-case polynomial time complexity.
Our model, which yields a convex QP, is reproduced below:

minimize
cN ,cS ,cT

1

2
v∗TMv∗ (1)

such that v∗ = r + M−1(NTcN + STcS + TTcT ) (2)
Nv∗ ≥ 0 (3)
µicNi ≥ XSicSi + XTicTi (for i = 1 . . . n) (4)
cN ≥ 0 (5)

1TcN ≤ κ (6)

where r , v + hM−1fext, for h > 0 effectively yields a
time stepping method that avoids the issue of inconsistent
configurations. This model uses the principle of maximum
dissipation [13] to determine contact forces that minimize the
post-contact kinetic energy of the system (Equation 1). Equa-
tion 2 provides the relationship between the contact forces
and the change in velocity. Equation 3 specifies that the post
contact velocities should not lead to interpenetration. Equa-
tion 4 describes the Coulomb friction constraint. Equation 5
specifies that the forces applied along the contact normal
should be compressive. Finally, Equation 6—where κ is the
sum of force magnitudes applied along the contact normals
for the frictionless instance of the contact problem—ensures
contact forces are conservative for frictionless contact.

Fig. 4. A linearized friction cone, which enables the quadratic inequality
Coulomb friction constraints to be approximated using a variable number
of linear inequality constraints. Figure taken from [15].

Finally, we note that this problem was transformed from a
QCQP in [3] into a standard QP using the linearized friction
cone. The advantage of QPs over QCQPs is that the latter
currently require either interior-point or SQP [9] solvers;
both currently exhibit variable running times poorly suited
to real-time control loops, in our experience. QPs, in contrast,
can be solved by algorithms that run fairly deterministically,
including active set methods [9] and splitting methods [8].

V. METHOD: INVERSE DYNAMICS MODEL

The inverse dynamics model follows from adding the
inverse dynamics constraint (Equation 7) to the existing



contact model (reproduced below):

minimize
x,cN ,cS ,cT

1

2
v∗TMv∗

such that NTv∗ ≥ 0

cN ≥ 0

µicNi
≥ XSi

cSi
+ XTi

cTi
(for i = 1 . . . n)

cN
T1 ≤ κ

v∗robot.q = q̇ + h q̈ (inverse dynamics) (7)

where

M(v∗ − v) = NcN + ScS + TcT + h(fext +

[
0
x

]
) (8)

v∗ ,
[
v∗Trobot.fbv

∗T
robot.qv

∗T
cb

]T
(9)

fext ,
[
ffb

TτT
extfcb

T
]T

(10)

For the recurrent forces vector (fext), acting on the robot and
the objects in its environment, the abbreviation “fb” refers to
a six-dimensional vector of the robot’s floating base; “ext”
refers to forces not determined by the robot’s actuation; “cb”
refers to a m × 6-dimensional vector of the m rigid bodies
contacting the robot.

We have shown in [3] that the underlying convex contact
model always possess a solution and that the model does
only negative work. The addition of the inverse dynamics
constraint (Equation 7) does not change this result. As in the
original contact model, the first order approximation of next
velocity avoids inconsistent configurations that can occur in
rigid body dynamics contact with Coulomb friction.

The worst-case time complexity of solving this particular
model is O(n3.5)—assuming that the binary length of the
input grows linearly with n—where n in the number of
contact points using interior-point methods [1]. Practically
faster active-set methods (e.g., Lemke’s Algorithm [5]) run
in expected O(n3) time (Cottle claims that the expected
iterations for Lemke’s Algorithm is O(n) [2]), but exhibit
worst-case 2O(n) time complexity. High frequency control
loops limit n to approximately four for present optimization
techniques and computational hardware.

Simplifying the computation (previous work)

Our previous work [17] showed how to simplify and
reduce the size of the optimization problem, as well as re-
move linear equality constraints (which eliminates significant
variables if transforming the QP to a LCP via optimization
duality theory), using the following definitions:

R ,
[
N S T

]
z ,

[
cTN cTS cTT

]T
M ,

[
A B
BT C

]

M−1 ,

[
D E
ET F

]
j , vb +

[
D E

]
(hfext +

[
0

hfID)

]
)

k , vq +
[
ET F

]
(hfext +

[
0

hfID)

]
)

The components of v∗ are then defined as follows:

v∗b = j +
[
D E

]
(Rz +

[
0
hx

]
) (11)

v∗q = k +
[
ET F

]
(Rz +

[
0
hx

]
) = vq + haq (12)

Our previous work also showed that—using the latter
equation—we can solve a linear equation for the unknown
actuator forces (x) by first solving for the contact forces:

x =
F−1(v∗q − k −

[
ET F

]
Rz)

h
(13)

Substituting this solution for x from Equation 12 into Equa-
tion 11, we arrive at:

v∗b = j +
[
D E

]
Rz + EF−1(v∗q − k −

[
ET F

]
Rz)

To move further toward simplifying our second phase opti-
mization, we will define a new matrix and a new vector:

Z ,
([

D E
]
− EF−1

[
ET F

])
R

p , j + EF−1(v∗q − k)
Now, v∗b can be defined simply, and solely in terms of z, as:

v∗b = Zz + p

We now represent the objective function (Equation 1) in
block form as:

f(.) ,
1

2

[
v∗b
v∗q

]T [
A B
BT C

] [
v∗b
v∗q

]
which, when expanded, yields:

f(.) ,
1

2
v∗b

TAv∗b + v
∗
bB

Tv∗q +
1

2
v∗q

TCv∗q

We can ignore the last term of the above equation, as v∗q
is independent of z. Expanding the remaining terms using
Equation 11, we arrive at the new objective function:

f(.) ,
1

2
zTZTAZz + zTZTAp+ zTZTBv∗q

,
1

2
zTZTAZz + zT(ZTAp+ ZTBv∗q )

subject to the following constraints:

NT

[
Zz + p
v∗q

]
≥ 0

zi ≥ 0 (for i = 1 . . . n)

µizi ≥ XSizSi + XTizTi (for i = 1 . . . n)

Symmetry and positive semi-definiteness of the quadratic
programming problem follows from symmetry and positive
definiteness of A. Once the solution to this QP is determined,
x can be recovered via Equation 13. The actuator forces
determined via inverse dynamics are then fID + x.



Mitigating rigid body indeterminacy (through a second
phase):

In the case that the matrix ZTAZ is singular, the contact
model is only convex rather than strictly convex [1]; concep-
tually, contact forces that predict that two legs, three legs, or
four legs support the robot are all equally valid. This section
describes a method to optimize within the contact model’s
solution space while favoring solutions that predict contact
forces at all contacting feet (and thus preventing the rapid
torque cycling observed in Section IV-A). This phase must
be run sequentially, incorporating the solution computed in
Section V (hereby denoted as Phase I) into a second phase.

Our previous work [17] used exactly this approach to
eliminate the inconsistency in the rigid contact model (al-
beit arbitrarily) by using a second optimization phase to
make the model strictly convex. However, that work used a
quadratic inequality constraint, yielding a QCQP that may be
insufficiently fast for high frequency control loops. We now
demonstrate how to use the nullspace of ZTAZ to perform
this second optimization without explicitly considering the
quadratic inequality constraint; thus, QP-based modeling is
retained. Assume that the matrix P gives the nullspace of
ZTAZ. The vector of contact forces will now be given as
z + Pw, where w will be the optimization vector.

The kinetic energy from applying the contact impulses is:

ε2 =
1

2
(z + Pw)

T
ZTAZ(z + Pw)

+ (z + Pw)
T
(ZTAp+ ZTBv∗q )

=
1

2
zTZTAZz + zT(ZTAp+ ZTBv∗q )

+wTPT(ZTAp+ ZTBv∗q )

Note that the terms 1
2w

TPTZTAZPw and zZTAZPw
are not included above. Both are zero because P is in the
nullspace of ZTAZ. We wish for the energy dissipated in
the second phase, ε2, to be equal to the energy dissipated
in the first phase, ε1. Thus, we want ε2 − ε1 = 0. Algebra
yields:

wTPT(ZTAp+ ZTBv∗q ) = 0 (14)

First defining y as:

y ,
F−1

(
v∗q − k −

[
ET F

]
R(z + Pw)

)
h

(15)

the following optimization problem arises:

minimize
w

1

2
yTy (16)

subject to (pTAT + v∗q
TBT)ZPw = 0 (17)

NT

[
Z(z + Pw) + p

v∗q

]
≥ 0 (18)

(z + Pw)i ≥ 0 (for i = 1 . . . 5n) (19)
µi(z + Pw)i ≥ XSi

(z + Pw)Si
+ . . .

XTi
(z + Pw)Ti

(for i = 1 . . . n) (20)

However, we use a proof that Z · ker(ZTAZ) = 0 (see
Appendix) to render n + 1 of 7n + 1 linear constraints
(Equations 17 and 18) moot.

Feasibility and time complexity

It should be clear that a feasible point (w = 0) always
exists for the optimization problem. The dimensionality
(n× n in the number of contact points) of ZTAZ yields
a nullspace computation of O(n3) and represents one third
of the Phase II costs. For quadrupeds with single point
contacts, the dimensionality of w) is typically at most two,
and thus the total number of optimization variables is at
most 6n+2 (each linear constraint introduces six KKT dual
variables for the simplest friction cone approximation). The
optimization—which, as noted in Section V, runs in expected
O(n3) time—is responsible for two thirds of the second-
phase costs.

VI. EXPERIMENTS

We simulated a quadrupedal robot supported by four feet,
modeled as point contacts, on a rigid planar surface using
our simulation software, Moby. Torque output was collected
given the convex and strictly convex systems for Phase I and
Phase II, respectively. The change of torque output over time
for each model is shown in Figure 5, which illustrates that
Phase II generates smooth motor torques in indeterminate
rigid body contacting configurations. We used MATLAB’s
fmincon optimization tool to compare the performance of
different classes of optimizers on our controller, and we also
compared these optimizers against a MATLAB implementa-
tion of Lemke’s Algorithm (i.e., the LEMKE library [4]).
Timing results can be found in Table I. Accuracy results from
this system are published in [17]; here we present results on
achieving rapid running time. When compared to work on
non-redundant systems such as a bipedal walker (e.g. [12]),
our system will only utilize Phase I without indeterminacy
resolution; in such cases, our system can solve the inverse
dynamics QP with sub-millisecond runtimes, allowing for
control rates of greater than 1000Hz.

The strictly convex system used in the smoothing opti-
mization (Phase II) that we present in this paper requires
us to either constrain for—or optimize within the nullspace,
as we described in Section V—the quadratic objective of
the convex, indeterminate contact model (Phase I). Tim-
ings for Phase I and II optimizations, on indeterminate
and determinate contact models, respectively, are given in
Table I. The last row of the table uses Lemke’s Algorithm
with the method presented in this paper and is performed
within the nullspace of ZTAZ. We find a large increase
in optimization speed due to the removal of the quadratic
inequality constraint (and facilitation of Lemke’s Algorithm).
The nullspace does necessitate an additional singular value
decomposition (the nullspace is less susceptible to numerical
error when computed in this way compared to using a QR
factorization), requiring 0.2277ms of time on average and a



Phase Optimizer min [ms] mean [ms] max [ms]
Phase I: Indeterminate interior-point 6.7443 89.1671 169.4384
contact model active-set 4.8382 7.3098 253.9801

trust region reflexive 7.9662 93.4645 478.2784
LEMKE 0.5441 1.0073 10.6818

Phase II: Determinate interior-point 12.9814 172.2423 706.4246
contact model sequential quadratic programming 147.1 855.4 8973.6

LEMKE 0.5390 1.9070 10.2718

TABLE I
TIMINGS IN MILLISECONDS FOR DIFFERENT SOLVERS FOR THE QUADRUPED STANDING EXPERIMENT. SIMULATION RUNNING WITH FIXED STEP SIZE

OF 0.001 FOR 0.3 SECONDS (300 ITERATIONS). THE METHOD WE ADVOCATE IN THIS PAPER IS TYPESET IN BOLDFACE.

maximum time of 0.3694ms over 300 trials; thus, the SVD
operation accounts for roughly a third the cost of Phase II.

Fig. 5. We observe a 5 order of magnitude reduction in the maximum of the
time derivative of torque when using the optimization with our determinate
contact model, as opposed to a “standard” indeterminate contact model.

VII. CONCLUSIONS
We have presented a method of transforming a convex

but indeterminate contact model for legged robot inverse
dynamics to a strictly convex optimization, and described
how to pose both as readily solvable QPs using a nullspace,
which is rapidly computable. Using QPs in place of QCQP’s
improves performance by over a magnitude compared to
MATLAB’s well regarded optimization tools. Performance in
C++ is even faster: we are able to solve Phase I and Phase
II optimizations in fewer than 8ms on commodity hardware,
permitting control loops of 125Hz or faster for legged robots
with redundant supports. Thus our results also show that we
can perform multi-stage, quadratic optimization at real-time
control speeds.

APPENDIX

Theorem: Z · ker(ZTAZ) = 0 for arbitrary matrix A.
Proof: Assume the singular value decomposition of Z

is UΣVT. Σ has the form
[
Σ∗ 0

]
, where Σ∗ is a diagonal

matrix of non-zero singular values, because Z has fewer rows
than columns. We can then write the product as follows:

ZTAZ = (UΣVT)
T
AUΣVT (21)

= VΣTUTAUΣVT (22)

The product in the middle has the form:

ΣTUTAUΣ =

[
B 0
0 0

]
(23)

where B is an irrelevant matrix block. V is orthonormal (a
basic result of the SVD). If we partition V into left columns
and right columns (V =

[
VL VR

]
, the non-singular sub-

block of the product ZTAZ is VLBVT
L. The nullspace must

then be VR, which is also a basis of the nullspace of Z.

REFERENCES

[1] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[2] R. W. Cottle, J.-S. Pang, and R. Stone. The Linear Complementarity
Problem. Academic Press, Boston, 1992.

[3] E. Drumwright and D. A. Shell. Modeling contact friction and joint
friction in dynamic robotic simulation using the principle of maximum
dissipation. In Proc. of Workshop on the Algorithmic Foundations of
Robotics (WAFR), 2010.

[4] P. L. Fackler and M. J. Miranda. LEMKE.
http://people.sc.fsu.edu/ burkardt/m src/lemke/lemke.m.

[5] C. E. Lemke. Bimatrix equilibrium points and mathematical program-
ming. Management Science, 11:681–689, 1965.

[6] B. Mirtich. Impulse-based Dynamic Simulation of Rigid Body Systems.
PhD thesis, University of California, Berkeley, 1996.

[7] J. J. Moreau. Standard inelastic shocks and the dynamics of unilateral
constraints, pages 173–221. Springer-Verlag, New York, 1983.

[8] K. G. Murty. Linear Complementarity, Linear and Nonlinear Pro-
gramming. Heldermann Verlag, Berlin, 1988.

[9] J. Nocedal and S. J. Wright. Numerical Optimization, 2nd ed.
Springer-Verlag, 2006.
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