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ABSTRACT 

The outputs obtained from satellite image processing generally presents various information based on the interpretation 

technique, selected objects for object based processing, precision of processing, the number and time of images used for 

this process. This issue should be managed well during a disaster management process based on satellite images. Very 

high resolution (VHR) optical satellite data are potential sources to provide detailed information on damage and geological 

changes for a large area in a short time. In this paper, we studied tsunami triggered area, which was caused on 11 March 

2011 by Tohoku earthquake, using VHR data from GeoEye-1satellite images. A set of pre and post-earthquake images 

were used to perform visual change analysis through comparison of these data. These images include the data of the same 

area before the disaster in normal condition and after the disaster which caused changes and also some modification 

imposed to that area. Upon occurrence of a disaster, the images are used to estimate the extent of the damage. Then based 

on disaster management criteria and the needs for recovery and reconstruction, the priorities for object based classification 

indexes are defined. In post-disaster management, they are used for reconstruction and sustainable development activities. 

Finally a classified characteristic definition has been proposed which can be used as sample indexes prioritization criteria 

for disaster management based on satellite image processing. This prioritization criteria are based on an object based 

processing technique and can be further developed for other image processing methods. 
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1. INTRODUCTION 

An earthquake of magnitude 9.0 occurred off the Pacific coast of Tohoku, Japan, on March 11, 2011, at 14:46:23 Japan 

Standard Time (5:46:23 UTC). The rupture area, assumed to be approximately 450 km × 200 km, generated a tsunami 130 

km off the coast of Miyagi Prefecture, northeast Japan. This tsunami was the third mega earthquake generated tsunami in 

this decade; the other two were the Sumatra tsunami and the Chile tsunami1. Its epicentre was approximately 70 km east 

of Japan’s Oshika Penisula, while its hypocenter was 35 km underwater. With a magnitude of Mw 9.0, this was the 

strongest earthquake ever to hit Japan and one of the five most powerful earthquakes measured in the world since modern 

record keeping began in 1900. 

Such was the earthquake’s force that it moved the island of Honshu – Japan’s mainland, or largest island – 2.4 m east, and 

is also believed to have shifted the earth on its axis by between 10 cm and 25 cm. The earthquake triggered a massive 

tsunami which reached Japan’s east coast in less than one hour. Like the earthquake, the tsunami’s severity was 

unprecedented, both in height and reach. A number of coastal cities were completely inundated. In the northern city of 

Miyako, the flooding from the tsunami reached a height of 40.5 m. In some of the rivers in Sendai plane, the tsunami 

impacts could be felt up to 10 km upstream. However, the most heavily impacted areas were in the three prefectures of 

Miyagi, Fukushima and Iwate, which lay closest to the earthquake’s epicenter. 
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Japan is considered one of the best disaster-prepared countries in the world. Yet the triple disaster left close to 20,000 

people dead or missing (in total 15,854 dead and 3,155 missing as at March 2012, according to official Japanese 

Government figures). Hundreds of thousands of houses and other buildings were damaged and more than 400,000 people 

were displaced. With damage estimated at more than USD 210 billion (¥21,000 billion), this event is not only tragic in 

terms of its human toll; it is the most economically devastating disaster in history. Ishinomaki is a medium-sized 

municipality located 95 km west of the earthquake’s epicentre. Predominantly a fishing centre, it had a population of 

162,822 at the time of the event. The first tsunami wave arrived in Ishinomaki at 15:26. The tsunami left the city and its 

residents completely devastated. As of March 2012, there were 3,280 people confirmed dead and 595 missing. An 

estimated 6.16 million tons of debris was generated with some 53,742 buildings damaged. 

While all of the urban areas along the Tohoku coast were overwhelmed by the amount of tsunami debris, the situation was 

most grave in the city of Ishinomaki, which suffered the most casualties, the greatest destruction of houses and the highest 

volume of debris of all the municipalities. The debris management effort in Ishinomaki is being handled jointly by the 

municipality and the Miyagi prefecture. To the credit of local officials, in just 12 months almost all loose debris from the 

impacted area has been collected and moved to interim storage locations. The material has been segregated into categories 

such as wood, automobiles, housing appliances, traditional beds (tatami) and building debris. There is a large storage yard 

containing fresh timber collected from a protection forest which was overrun by the tsunami. Ishinomaki officials are 

considering all possible avenues for disaster debris management to overcome the huge challenge posed. The sheer volume 

of debris remains a significant hurdle for local officials. Spontaneous fires had occurred in some of the mixed waste piles. 

While passive venting systems have been put in place, fire hazard remains a threat which will become acute in the summer.  

An incineration facility, the biggest in Japan (with a processing capacity of 1,500 t/day) consisting of multiple incinerator 

modules, is being set up and is expected to be operational by August 2012. The municipality has received agreement from 

the national government to use part of the disaster debris and the incinerator ash for land reclamation within the Ishinomaki 

port. Once the local paper mill damaged in the earthquake is operating again, it is likely that large quantities of the raw 

wood will be sent there for use after salt levels in the wood have dropped to acceptable levels. 

At the incineration facility visited, there were good health and safety arrangements in place, including fencing, visitor 

registration, personal protective equipment arrangements for the staff and visitors2. For disaster response and relief 

activities, the actual devastated extent should be indicated as soon as possible. In addition, the recovery and reconstruction 

activities require determining the structural vulnerabilities in the affected area. To meet this requirement, it is very effective 

to use remote sensing technology such as image processing or visual inspection of very high spatial resolution (VHR) 

satellite.3 The Geoeye-1 satellite images were captured, which include significant information to comprehend the impact 

of this event. The primary objective of this research is inspecting building damage to identify the extent of affected area 

and the structural vulnerabilities. In this research, we focus on the coastal districts in Ishinomaki City Miyagi Prefecture, 

Japan, shown in Fig. 1 and conduct a visual inspection of satellite image for identifying the local vulnerability with 

particular regard to structural damage. Furthermore, a proportion of the devastated buildings in inundation zone is 

estimated in the city. Then object-based classification will discuss to the local vulnerabilities in the tsunami affected area.  

 

2. STUDY AREA AND DATA ACQUISITION 

The study area is located in Ishinomaki city. The data which used in this study is a very high spatial resolution (VHR) 

Geoeye-1 satellite imagery data taken from Geoeye-1 sensor on the area in 25 June. 2010 (Before), 19 March. 2011 

(During) and 23 May. 2013 (After) the event. The images of Ishinomaki City were obtained 8 months and 15 days before 

(25 June 2010), 8 days during (19 Mar. 2011) and 26 months after the event. Figure 1 shows the study area and Figure 2.a, 

b and c show GeoEye-1 satellite images, False color composite (FCC) for the city, before, during and after the event. 

Ishinomaki is the second biggest city in Miyagi Prefecture, with Sendai being the biggest. Ishinomaki was a fishing town 

with a population of approximately 160,000 before the earthquake. Following the quake, the number of dead and missing 

was 4,043.The city has a fishery port as well as an industrial port, both of which were seriously damaged by the tsunami. 

Ishinomaki, a municipality of Miyagi prefecture, suffered the greatest damage of all the disaster-struck areas in Japan4. 

Base on the reports, the water receded from the areas surrounding the facilities and making access possible on 16 March 

20115. 
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 Figure 1. Case study site in Ishinomaki, Japan, 2014 Google map 

 

 

             

 

 

 

 

 

 

 

 

 

         

 

 

                                                  
Figure 2. GeoEye-1 Satellite Image, False Color Composite (FCC) of the images, Ishinomaki City 

a. Before (25 June. 2010), b. During (19 Mar. 2011) and c. After (23 May. 2013) 

 

3. METHODOLOGY 

The methodology in this study includes data processing, using object-based image classification by using a SVM classifier 

which the defined set of classes can be separated automatically, post classification and accuracy assessment. Finally, the 

damaged area mapping using the image classification was tried based on land cover classification map and change 

detection. Figure 3 shows the methodology implemented in this study.  

There were four steps in this study. Firstly visual detection of disaster from pre, during and post-event images was 

performed, preliminarily. Secondly, damage areas were extracted using an object-based method. Then, based on the visual 

detection result and supervised image classification the accuracies of the automated detection methodology were evaluated, 

which is mentioned in the next section. Finally by comparing the three images and damage area classified maps it will 

possible to find statistical change detection and the qualification for the disaster management after the event in the study 

area. 

   
a b c 
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3.1 Processing Techniques 

The processing techniques applied to the images were object-based image classification and change detection statistics in 

order to compare the results. 

3.2 Supervised Image Classification by SVM 

In this study, supervised classification algorithms are applied in object-based image classification and Support Vector 

Machine (SVM) is employed. Recently, particular attention has been dedicated to SVM as a classification method. SVMs 

have often been found to provide better classification results that those of other widely used pattern recognition methods, 

such as the maximum likelihood and neural network classifiers. Thus, SVMs are very attractive for the classification of 

remotely sensed data. 

 

Figure 3. Flowchart of the operations 

 

The SVM approach seeks to find the optimal separating hyper-plane between classes by focusing on the training data that 

are placed at the boundary of the class descriptors. These training data are called support vectors. Training data other than 

support vectors are discarded. This way, not only is an optimal hyper plane fitted, but also less training samples are 

effectively used; thus high classification accuracy is achieved with small training sets. This feature is very advantageous, 

especially for remote sensing datasets and more specifically for object-based image analysis, where object samples tend to 

be less in number than in pixel-based approaches (Angelos Tzotsos, 2006)6. 

To summarize, given a set of training data from each class, the objective is to establish the decision boundaries in the 

feature space which separate data belonging to different classes. 

- In the statistical approach, the decision boundaries are determined by the probability distributions of the data belonging 

to each class, which must either be specified or learned. 

- In the discriminant-based approach, the decision boundary is constructed explicitly (i.e., knowledge of the form of the 

probability distribution is not required): 

(1) First a parametric form of the decision boundary (e.g., linear or quadratic) is specified. 

(2) The "best" decision boundary of the specified form is found based on the classification of the training patterns7. 

3.3 Object-based image classification 

Applying the object-based paradigm to image analysis refers to analyzing the image in object space rather than in pixel 

space, and objects can be used as the primitives for image classification rather than pixels8. Segmentation is the process 
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of dividing an image into segments that have similar spectral, spatial, and/or texture characteristics. The segments in the 

image ideally correspond to real-world features. Effective segmentation ensures that the classification results are more 

accurate9. 

Image segmentation is the primary technique that is used to convert an image into multiple objects. An object has, as 

compared to a pixel, in addition to spectral values, numerous other attributes, including shape, texture, and morphology 

that can be used in image analysis. Image segmentation is the process of parting an image into segments by grouping 

neighboring pixels with similar feature values (brightness, texture, color, etc.). These segments ideally correspond to real-

world objects. By suppressing weak edges at different levels, the algorithm can yield multi-scale segmentation results from 

finer to coarser segmentation8. This parameter scale level can ensure that a feature on the image is not divided into too 

many small segments. Figure 4 shows how pixels group together to form one object through segmentation e.g the roads 

have become one object. 

 

Figure 4. Image segmentation result9 

 

3.3.1 Merging Segments  

Some features on the image are larger, textured areas such as trees and fields. Merging Segments is employed to aggregate 

small segments within these areas where over-segmentation may be a problem. In this study we understand if the parameter 

scale level for merging is 30 and merge level is 85, they will be a useful option for improving the delineation of buildings, 

roof tops, streets, green field and water boundaries as it is clearly shown in Figure 5. 

 

Figure 5. Merging segments9 
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3.3.2 Supervised Classification 

The classification procedure starts with an image segmentation based on the single intensity band. After segmentation a 

supervised classification is performed, using samples for each images in different classes which is shown in Table 1 for 

supervised classification in Before-event (6 Classes), During (7 Classes) and After-event (8 Classes). Using a SVM 

classifier the defined set of classes can be separated automatically. 

Since in reality most problems are not linearly separable, the data is often transformed into a higher-dimensional space, 

where a hyper plane can be computed. The drawback of this approach is the high computational load of the transformation. 

This load can be reduced by using the so called kernel-trick: All inner products are defined as convenient kernel-functions 

which allow classifying in the higher-dimensional space without having to do any actual computing in it10. 

 

Table 1.  Classes performed in object-based for Before, During and After event by SVM Classifier 

Satellite Image Classification 

Before- Event Roof, Asphalt, Green field, Artificial grass, Water and Soil 

During-Event Survived Roof, Washed away, Debris, Asphalt, Green Field, Water and Soil & Mud 

After-Event 
Survived Roof, Reconstruction, Debris Classified, Asphalt, Green Field, Water, Soil 

and Artificial Grass 

 

4. ANALYSIS RESULTS 

4.1 Accuracy Assessment  

Object-based image analysis approaches have been performed by classifying the remote sensing image. Accuracy 

assessment of the classification result using the approach has also been done by creating the error matrix. The most 

common method of accuracy assessment is the Confusion Error Matrix which shows the accuracy of a classification result 

by comparing with ground truth information. In this study, we used to calculate a confusion matrix using ground truth for 

regions of interest (ROIs). 

In order to compare the accuracy of the classification results created by object-based, the same set of ground truth was 

used. Then confusion matrixes were produced. Tables 2, 3 and 4 below illustrate user's accuracy, producer's accuracy and 

overall accuracy for object-based classification method.   

 

Table 2. Accuracy assessment of object-based image classification (Before-Disaster) - Overall Accuracy: 74.5% 

Pixels 

Number 
Roof Asphalt  Green Field 

Artificial 

Grass 
Water Soil & Sand Total 

User. 

Accuracy 

(%) 

Roof 

 
733514 183432 18626 441 0 2708 938721 78.14 

Asphalt 

 
203271 487136 11534 0 143 103 702187 69.37 

Green Field 

 
35880 17217 191016 55 236 166 244570 78.10 

Artificial 

Grass 
676 1077 0 15985 0 0 17738 90.12 

Water 

 
132 0 22 0 9552 0 9706 98.14 

Soil & Sand 

 
4590 5565 8499 0 0 7374 26028 28.33 

Total 

 
978063 694427 229697 16481 9931 10351 1938950 - 

Prod. 

Accuracy 

(%)  

75.00 70.15 83.16 96.99 96.18 71.24 - - 
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Table 3. Accuracy assessment of object-based image classification (During-Disaster) - Overall Accuracy: 70.48 % 

 

 

Table 4. Accuracy assessment of object-based image classification (After-Disaster) - Overall Accuracy: 73.24% 

 

 

 

  

Pixels 
Number 

Survived 

Roof 

Washed 

away 
Debris Asphalt 

Green 

Field 
Water 

Soil & 

Mud Total 

User. 

Accuracy 

(%) 

Survived 

Roof 
172099 31195 9217 7276 1524 16058 

 

8633 

 

246002 69.96 

Washed 

away 

 

45124 821449 123088 5558 1128 4534 108031 1108912   74.08        

Debris 

 
3870 22189 136678 246 269 1948 1001 166201   82.53 

Asphalt 

 
17606 7159 1017 30036 0 2166 26693 84677   35.47          

Green Field 

 
16939 13009 3889 26 38373 1091 1034 74361   51.60          

Water 

 
1006 297 19 254 0 19921 0 21497   92.67          

Soil & Mud 

 
7081 77963 1738 1778 0 807 147933 237300   62.34        

Total 

 
263725 973261 275646 45174 41294 46525 293325 1938950   - 

Prod. 

Accuracy 

(%) 

65.26 84.40         49.58         66.49         92.93         42.82         50.43         - - 

Pixels 

Number 
Survived 

R. 

Under 

Recon.   
Debris  

Asphal

t 

Green 

Field 
Water 

 

Soil 

 

Artificial 

Grass 

Total 

User. 

Accuracy 

(%) 

Survived 

Roof 

 

105541 31640 1900 16773 298 1186 8558 381 166277 63.47 

Under 

Recon.  

  

1326 726968 531 17258 17157 0 60866 4 824110 88.21 

Debris 

Classified 

 

2440 1957 18157 338 16 13 0 4 22925 79.20 

Asphalt 

 
2641 18553 8 255215 1259 53 32113 0 309842 82.37 

Green Field 

 
3748 28766 79 1400 75917 0 3261 34 113205 67.06 

Water 

 
0 347 9 0 0 3094 0 67 3517 87.97 

Soil 

 
46663 130080 31811 38172 32 4569 222024 1438 474789 46.76 

Artificial 

Grass 

 

2651 3222 241 4749 121 52 0 13249 24285 54.56 

Total 

 
165010 941533 52736 333905 94800 8967 326822 15177 1938950 - 

Prod. 

Accuracy 

(%) 

63.96 77.21 34.43 76.43 80.08 34.50 67.93 87.30 - - 
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4.2 Result of object-based image classification 

The classified image of object-based image classification shows more clear boundaries between objects. Washed away 

buildings are selected as objects in the image. All the features are illustrated with almost exact shape as it is in the ground 

truth. The classes of asphalt, green field and water all can be seen without mix classification as can be shown in Figure 6. 

below. 

 

 
Figure 6. The result of object-based image classification  

a. Before, b. During and c. After 

 

5. DISCUSSION 

In this study object-based method used in the satellite images. The accuracy depends on the software operator to define 

classes. When the classes are not clear, the operation is repeated by defining another geometrical shape around the class 

that was misclassified in the earlier stage of classification. It is shown that in before disaster, F. measure attain more 

accuracy (77.71%) than during (65.71%) and after (68.09%) disaster. Tables 5 show the accuracy assessment and error 

results of the object-based image classification analysis for each stage. 

 

Table 5. Errors and accuracies of automated damage detection 

Accuracy 

Images 

Errors (%) Accuracy (%) F. measure 

% 
Commission   Omission Producer User 

Before 26.25 17.88 82.12 73.75 77.71 

During 33.09 35.44 64.56 66.91 65.71 

After  28.80 34.77 65.23 71.20 68.09 

 

 

Next step is to detect changes. Change detection involves the use of multi temporal data sets to discriminate areas of land 

cover change between dates of imaging. The types of changes that might be of interest can range from short and term 

phenomena such as vegetation cover or urban fringe development. Ideally, change detection procedures should involve 

a b c 
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Before (Initial State)

Roof

Pixels %

Asphalt

Pixels %

Green Field

pixels %

Water

Pixels %

Soil

Pixels %

Artificial Grass

Pixels %

140427 14.96 81314 11.58 20944 8.56 294 3.03 2777 10.67 246 1.39
Survived Roof

597933 63.70 369421 52.61 116266 47.54 730 7.52 14717 56.54 9845 55.50
Washed away

101521 10.82 36776 5.24 18926 7.74 16 0.17 1373 5.28 7589 42.78
Debris

Asphalt
18455 1.97 61527 8.76 4534 1.85 0 0.00 161 0.62 0 0.00

25961 2.77 8863 1.26 38457 15.72 0 0.00 1022 3.93 58 0.33
Green Field

1814 0.19 7195 1.03 3975 1.63 8513 87.71 0 0.00 0 0.00
Water

Soil & Mud
52610 5.60 137091 19.52 41468 16.96 153 1.58 5978 22.97 0 0.00

938721 100.CC 702187 100.00 244570 100.00 9706 100.00 26028 100.00 17738 100.00
Class Total

Class Changes
798294 85.04 640660 91.23 206113 84.28 1193 12.29 20050 77.03 7893 57.22

Image Difference -692719 -73.79 -617510 -37.94 -170209 -69.60 11791 121.48 211272 811.71 1091174 836.98

data acquired by the same or similar sensor and be reorder using the same spatial resolution, viewing geometry, spectral 

bands, radiometric resolution and time of day. In this study GeoEye-1 image has a pixel resolution of 0.4 meters. One way 

to discriminate changes between two dates of images is to employ post classification comparison. In this approach, three 

dates of imagery are independently classified and registered. Then an algorithm can be employed to determine those pixels 

with changes in classification between dates. 

A variance can be chosen and tested to determine, if it represents a reasonable threshold. The threshold can also be varied 

interactively in most image analysis system so the analyst can obtain immediate visual feedback on the suitability of a 

given threshold11. The procedures for change detection are based on post classification to compare the Pre-disaster image 
as initial state image and During disaster as final state image, then to compare During disaster as initial state image and 

After disaster as final state image which are compared to each other and then it is possible to have change detection 

statistics based on the pixels number and area (m2) to find the disaster management progressive in the region. Table 6. and 

Table 7. show the change detection statistics in both comparative and Fig. 7 and Fig. 8 show the change detection statistics 

based on m2. 

 

 
Table 6. Change detection statistics (Before and During the disaster) 
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During (Initial State)

Survived Roof

Pixel %

Washed away

Pixel %

Debris

Pixel %

Green Field

Pixel %

Water

Pixel %

Asphalt

Pixel %

Soil & Mud

Pixel %

Survived Roof 51985 25.26 55764 50.29 13811 8.31 7734 10.40 1194 5.55 11661 13.77 12942 5.45

Under Reconstruction
50952 26.72 586649 52.90 84848 51.05 18580 24.99 1071 4.98 9853 11.67 51910 21.88

Debris Classified 3108 1.63 10191 0.92 1385 0.83 742 1.00 45 0.21 :298 1.53 5601 236

Green Field 7542 3.95 48641 4.39 8056 4.85 34655 46.60 78 0.36 :540 1.82 11486 4.84

Artificial Grass 2249 1.18 11804 1.06 7084 4.26 240 032 233 1.08 704 0.83 1378 0.58

Water 281 0.15 231 0.02 9 0.01 0 0.00 2816 13.10 180 0.21 0 0.00

Asphalt 32097 16.83 164521 14.84 16033 9.65 3027 4.07 1719 8.00 38625 45.62 44097 18.58

Soil 42510 22.29 231111 20.84 34975 21.04 9383 12.62 14341 66.71 20786 24.55 109886 46.31

Class Total
190724 100.00 1108912 100.00 166201 100.00 74361 100.00 21497 100.00 84677 100.00 237300 100.00

Class Changes
138739 72.74 522263 47.10 164816 99.17 39706 53.40 18681 86.90 46052 5439 127414 53.69

Image Difference
-24447 -12.82 -284802 -25.68 -143276 -86.21 38844 52.24 -17980 -83.64 225165 265.91 237489 100.00

 

 

Fig 7. Change detection area (Before and During the disaster) 

 

Table 7. Change detection statistics (During and After the disaster) 
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Fig 8. Change detection area (During and After the disaster) 

 

6. CONCLUSION 

Based on the classification results obtained from object based method, each selected item give some information which 

can be used for disaster management. The effectiveness of the classification results depends on the correlation of the results 

with disaster management objectives and also the accuracy of the results obtained. The main activities for disaster 

management for waste management are: 

To estimate the amount of debris is important for decision makers quickly by using very high resolution satellite imagery. 

One of the best condition is to keep the amount of transporting of disaster debris and number of times the debris is handled 

to a minimum. Landfilling and land reclamation are waste management options which have the potential to rapidly reduce 

the total volume of debris. After the tsunami when the seawater receded, a large volume of soil on the land deposited. To 

recover, move and dispose of the deposited soil should be based on the physical and chemical properties of the sediments 

and an analysis of how the residual soil may adversely impact the future land use. 

Other main issues are related to emergency actions for life saving and mitigating activities, restoration of facilities such as 

power, water or gas and other lifelines and reconstruction planning. 

However as an example for waste management, the classification item such as debris can be the most suitable factor for 

management planning. Other related items to this issue are green field and soil for depots, asphalt for transportation routes 

and survived roofs as a complementary data for debris to identify the concentrated areas for waste and debris 

transportations. Thus this field of disaster management is necessary to provide the above data with the highest possible 

accuracy.  

The prioritization of the items and criteria can be extracted for each field of disaster management as stated above and by 

the methods described in the paper. Further study is required to find the correlation of different fields of disaster 

management to optimize the time and effort for classification.        

Area (m²)
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