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ABSTRACT

Incremental pattern matching is a key challenge for many tool inte-
gration, model synchronization and (discrete-event) model simula-
tion tasks. An incremental pattern matching engine explicitly stores
existing matches, while these matches are maintained incremen-
tally with respect to the changes of the underlying model. In the
current paper, we present an adaptation of RETE networks [6] in or-
der to provide incremental support for the transformation language
of the VIATRA2 framework. We evaluate the performance of the
incremental engine on a benchmark problem assessing the speed-
up of incremental processing in the case of as-long-as-possible type
of rule applications.

Categories and Subject Descriptors

D.2 [Software]: Software Engineering; D.2.2 [Software Engi-
neering]: Design Tools and Techniques—Petri nets; Object-orien-
ted design methods

General Terms

Algorithms, Languages, Performance

Keywords

domain-specific languages, incremental graph pattern matching, in-
cremental model transformation

1. INTRODUCTION

Nowadays, in a typical development scenario of safety-critical
(e.g. automotive and avionics) systems, tool integration has be-
come a major cost factor due to the large number of development
tools. The cost of integration between more than fifty tools from
different vendors and roles is frequently comparable to the costs of
the tools themselves. Model-driven tool intregration has a growing
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popularity since it provides a well-founded approach to bridge var-
ious modeling languages and tools. These bridges are frequently
specified as model transformations between these languages and
models. Graph transformation [5] provides a popular and frequently
used means to precisely capture such model transformations with a
wide range of available tools.

A key problem in model-based tool integration is the incremen-
tal synchronization of various models. In this scenario, if a de-
veloper changes one model, the effects of these changes should be
propagated to other tools, preferably without reexecuting the entire
model transformation from scratch. Incremental model synchro-
nization has also been identified by the QVT standard [13] as a
key model transformation problem for a successful model-driven
engineering process. Unfortunately, existing model transformation
tools only provide limited support for incrementality. In the typi-
cal case, the models themselves may evolve incrementally, but to
achieve such incrementality, complex computations are required.
In the case of graph transformation tools, negative application con-
ditions may forbid the application of a rule to source model ele-
ments which are already transformed to its target equivalent. How-
ever, when a model changes, graph patterns need to be reevalu-
ated from scratch, which includes the expensive evaluation of neg-
ative conditions as well. The situation is not very different in case
of QVT-based tools, where traceability links are created during a
transformation.

In the current paper, we argue that a better support of incremental
model transformations are obtained by storing the matches of pat-
terns, and then incrementally updating the existing matches when
the underlying models change. As a result, matches of a pattern
can be obtained very efficiently in constant time by sacrificing time
for the update phase, and space for book-keeping of matches. This
is exactly the case for providing efficient support for many model
synchronization as well as (discrete-event) model simulation prob-
lems.

In order to support incremental graph pattern matching, we im-
plemented and adapted the RETE-approach [6] to support the rich
transformation language of the VIATRA2 model transformation sys-
tem [16]. After a brief conceptual overview (Sec. 3), we demon-
strate how a RETE network can be constructed for the graph pat-
terns of the VIATRA?2 language (Sec. 4). Then, in Sec. 5, we assess
the performance of our RETE-based engine on a benchmark ex-
ample where we expect that such an incremental solution should
outperform traditional pattern matching solutions based on local
searches. Since our solution provides full support for the rich lan-
guage constructs of VIATRA2, we significantly supersede and ex-
tend the first (and relatively old) RETE-based graph transformation
approach [4].



2. DEMONSTRATING EXAMPLES

In the paper, we use Petri nets as a demonstrating example to
illustrate the technicalities of our approach.

Figure 1: A sample Petri net.

Petri nets (Fig. 1) are widely used to formally capture the dy-
namic semantics of concurrent systems due to their easy-to-under-
stand visual notation and the wide range of available analysis tools.
From a system modelling point of view, a Petri net model is fre-
quently used for correctness, dependability and performance anal-
ysis in early stages of design. Petri nets are bipartite graphs, with
two disjoint sets of nodes: Places and Transitions. Places may con-
tain an arbitrary number of Tokens. A token distribution defines the
state of the modelled system. The state of the net can be changed
by firing enabled transitions. A transition is enabled if each of its
input places contains at least one token and no place connected with
an inhibitor arc contains a token (if no arc weights are considered).
When firing a transition, we remove a token from all input places
(connected to the transition by Input Arcs) and add a token to all
output places (as defined by Output Arcs).

2.1 Metamodeling foundations

In order to understand how the concepts of RETE are adapted
to the VIATRA2 graph transformation environment, we give a brief
overview of the the metamodeling foundations of this framework.

The VIATRA2 framework uses the VPM (Visual and Precise
Metamodeling) [17] metamodeling approach, which can support
different metamodeling paradigms by supporting multi-level meta-
modeling with explicit and generalized instance-of relations.

The VPM language consists of two basic elements: the entity (a
generalization of MOF package, class, or object) and the relation
(a generalization of MOF association end, attribute, link end, slot).
Entities represent basic concepts of a (modeling) domain, while
relations represent the relationships between other model elements.
Furthermore, entities may also have an associated value which is a
string that contains application-specific data.

In traditional graph transformation terms, entities can be inter-
preted as nodes while relations are edges. Entities in a metamodel
define node types while entities in models are simply referred to as
nodes. In the paper, we use the VIATRA2 terminology for models
to avoid the overloading of terms “node” and “edge”, also used in
the context of RETE networks.

A simple Petri net metamodel, represented in VIATRAZ2, is shown
on Fig. 2.

InhibitorArc
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Place Transition
[Entity] [Entity]
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Figure 2: VIATRA Petri net metamodel.

2.2 Model transformations

The transformation language of VIATRA2 (Viatra Textual Com-
mand Language — VTCL) consists of several constructs that to-
gether form an expressive language for developing both model to
model transformations and code generators. Graph patterns (GP)
define constraints and conditions on models, graph transformation
(GT) [5] rules support the definition of elementary model manipu-
lations, while abstract state machine (ASM) [3] rules can be used
for the description of control structures.

Graph patterns are the atomic units of model transformations.
They represent conditions (or constraints) that have to be fulfilled
by a part of the model space in order to execute some manipulation
steps on the model. The basic pattern body contains model element
and relationship definitions.

In VTCL, patterns may call other patterns using the find key-
word. This feature enables the reuse of existing patterns as a part of
a new (more complex) one. The semantics of this reference is sim-
ilar to that of Prolog clauses: the caller pattern can be fulfilled only
if their local constructs can be matched, and if the called (or ref-
erenced) pattern is also fulfilled. A negative application condition
(NAC, defined by a negative subpattern following the neg keyword)
prescribes contextual conditions for the original pattern which are
forbidden in order to find a successful match. Negative conditions
can be embedded into each other in an arbitrary depth (e.g. nega-
tions of negations), where the expressiveness of such patterns con-
verges to first order logic [14].As an example, the firing enabled-
ness condition for a Petri net transition may be expressed using a
graph pattern as shown in Fig. 3. This pattern uses nested nega-
tive application conditions to express that a Transition is enabled
if every input Place instance connected to the Transition instance
has at least one Token instance associated and no inhibitor input
Place instance contains tokens. In this example, embedded NACs
are used to express universal quantification with double negation of
existence.

Graph transformation (GT) [5] provides a high-level rule and
pattern-based manipulation language for graph models. In VTCL,
graph transformation rules may be specified by using a precondi-
tion (or left-hand side — LHS) pattern determining the applicability
of the rule, and a postcondition pattern (or right-hand side — RHS)
which declaratively specifies the result model after rule applica-
tion. Elements that are present only in (the image of) the LHS are
deleted, elements that are present only in the RHS are created, and
other model elements remain unchanged. Further actions can be
initiated by calling any ASM instructions within the action part of
a GT rule, e.g. to report debug information or to generate code.

For instance, a GT rule may specify how to remove (or add) a
token from a place, as shown in Fig. 4.

Using these constructs, complex model transformations can be
constructed. In Sec.5, we make use of a simulation sequence to
benchmark the performance of the RETE-based pattern matcher
against VIATRA2’s built-in local search based implementation. This
sequence executes transformation rules which simulate the firing of
atransition, i.e. the removal of tokens from input places and the ad-
dition of tokens to output places. (see Listing 3).

3. INCREMENTAL PATTERN MATCHING

3.1 Coreidea

In case of incremental pattern matching, the occurrences of a
pattern are readily available at any time, and they are incremen-
tally updated whenever changes are made. As pattern occurrences



pattern isTransitionFireable(Transition) = {

transition(Transition);
neg pattern notFireable_flattened(Transition) = {
place (Place);

outArc (OutArc, Place, Transition);

neg pattern placeToken(Place) = {

token (Token);
tokens (X, Place, Token);

}

}
or ({

place (Place);

inhibitorArc(OutArc, Place, Transition);
token (Token);

tokens (X, Place, Token);

}

Listing 1: VIATRA source code for the isTransitionFireable
pattern

TransitionFireable (T)
NEG

: Place
NEG

: OutArc
: tokens

TTnhibitorArc

Figure 3: Petri-net firing condition

rule fireTransition(in T) = seq ({
/* perform a check to confirm that
the transition is fireable =%/
if (find isTransitionFireable(T)) seq {
/* remove tokens from all input places x/
forall Place with find inputPlace(T, Place)
do apply removeToken(T, Place); // GT rule invocation
/% add tokens to all output places #*/
forall Place with find outputPlace(T, Place)
do apply addToken(T, Place);
}
}

Listing 3: VIATRA source code for firing a transition

are stored, they can be retrieved in constant time!, making pattern
matching a very efficient process. Besides memory consumption,
the drawback is that these stored result sets have to be continuously
maintained, imposing an overhead on update operations.

In graph transformation frameworks, pattern matching is required
to find the occurrences of left-hand side (LHS) patterns. Since
pattern matching can be an important complexity factor in graph
transformations, an incremental approach may lead to better per-
formance, especially when transformations are matching-intensive
instead of being manipulation-intensive. In this paper, we intro-
duce an incremental pattern matcher component for the VIATRA2
framework; it is based on the RETE algorithm, which is a well-
known technique in the field of rule-based systems.

3.2 Workflow

Initialising an incremental pattern matching engine involves the

lexcluding the linear cost induced by the size of the result set itself

// Removes a token from the place ’‘Place’.

gtrule removeToken(in Place, in Transition) = ({

precondition find sourcePlaceWithToken
(Transition, Place, Token); // pattern call

postcondition find sourcePlaceWithoutToken
(Transition, Place, Token);

}

// Adds a token from the place ’Place’.

gtrule addToken(in Place, in Transition) = {

precondition find targetPlaceWithoutToken
(Transition, Place, Token);

postcondition find targetPlaceWithToken
(Transition, Place, Token);

Listing 2: VIATRA source code for graph transformation rules

Remove token

LHS - precondition RHS - postcondition

. : T: : OutArc T

: tokens

Add token

LHS - precondition RHS - postcondition

T: : InArc T:

: tokens.

Figure 4: Graph Transformation rules for firing a transition

following conceptional steps:
1. The transformation designer defines various patterns and trans-
formation rules.
2. Anincremental pattern matcher (in our case, a RETE network)
is constructed based on the pattern definitions.
3. The underlying model is loaded into the incremental pattern
matcher as the the initial set of matches.
Typically Step 2 and 3 are carried out in RETE networks a single,
interleaving process (as to be discussed in Sec. 4.8). Furthermore,
the initialization need not be complete; the pattern matcher RETE
network can be freely extended (on demand) with additional pat-
terns at a later phase. It is worth pointing out that a RETE-based
incremental pattern matcher can be integrated with any a graph
transformation engine or any other underlying model manipulation
library. For instance, a GT engine with a RETE-based incremen-
tal pattern matcher necessitates the the repeated execution of the
following steps (see Fig. 5 for illustration):
1. Match LHS and other patterns in constant time;
2. Calculate the difference of the RHS and LHS (and potentially
perform more actions);
3. Update the underlying model and notify the incremental pat-
tern matcher of the changes;
4. Propagate the updates within the RETE network to refresh the
set of matches.

3.3 Architecture

Since the VIATRA2 model transformation framework is designed
in a way such that it is extensible with alternative pattern matcher
modules, our prototype implementation of a RETE-based matcher
is based on this as illustrated on Fig. 6. The incremental pattern
matcher offers (implements) the standard pattern matcher interface,
and while the RETE network is being constructed, it loads the con-
tents of the initial model. The key architectural difference from the
standard local search-based pattern matcher is that the incremental
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Figure 5: Incremental pattern matching information flow

pattern matcher subscribes for change notifications from the model
management framework (called model space in VIATRA2 [17]);
this allows RETE to update the results sets automatically whenever
changes are made to the model.
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Figure 6: Incremental pattern matching in the VIATRA2 archi-
tecture

4. ADAPTING THE RETE ALGORITHM
FOR VIATRA TRANSFORMATIONS

The RETE algorithm, introduced in [6], has a wide range of in-
terpretations and implementations. This section describes how we
adapted the concepts of RETE networks to implement the rich lan-
guage features the VIATRA2 graph transformation framework.

In this section, we will gradually construct a RETE-based pattern
matcher capable of matching the pattern isTransitionFireable, which
is the LHS of the Petri net firing rule depicted in Fig. 3.

4.1 Tuples and Nodes

The main ideas behind the incremental pattern matcher are con-
ceptually similar to relational algebra. Information is represented
by a tuple consisting of model elements. Each node in the RETE
net is associated with a (partial) pattern and stores the set of tuples
that conform to the pattern. This set of tuples is in analogy with the
relation concept of relational algebra.

The input nodes are a special class of nodes that serve as the un-
derlying knowledge base representing a model. There is a separate
input node for each entity type (class), containing unary tuples rep-
resenting the instances that conform to the type. Similarly, there
is an input node for each relation type, containing ternary tuples
with source and target in addition to the identifier of the edge in-
stance. Miscellaneous input nodes represent containment, generic
type information, and other relationship between model elements.

Intermediate nodes store partial matches of patterns, or in other
terms, matches of partial patterns. Finally, production nodes rep-
resent the complete pattern itself. Production nodes also perform
supplementary tasks such as filtering those elements of the tuples

that do not correspond to symbolic parameters of the pattern (in
analogy with the projection operation of relational algebra) in or-
der to provide a more efficient storage of models.

4.2 Joining

The key component of a RETE is the join node, created as the
child of two parent nodes, that each have an outgoing RETE edge
leading to the join node.

The role of the join node can be best explained with the rela-
tional algebra analogy: it performs a natural join on the relations
represented by its parent nodes.

pattern sourcePlace(T, P) = {
transition(T);
place (P);
outArc (A, P, T);

}

Listing 4: VIATRA source code for the sourcePlace pattern

RN 7 INPUT
/ INPUT /]
=

%I

¥

PRODUCTION
sourcePlace

Figure 7: RETE matcher for the sourcePlace pattern

Figure 7 shows a simple pattern matcher built for the source-
Place pattern illustrating the use of join nodes. By joining three
input nodes (the top-most nodes on Fig. 7), this sample RETE net
enforces two entity type constraints ("Place’ and *Transition” entity
types on the left and right input nodes) and an edge (connectiv-
ity) constraint (corresponding to the relation connecting the *Place’
and ’Transition’ entity types), to find pairs of Places and Transi-
tions connected by an out-arc. A RETE node (depicted as white
rectangles) represents a collection of partial pattern matches (the
set of elements satisfying a constraint); the output node (on the
bottom) stands for the matching set of the entire pattern for which
the matcher network was built.

4.3 Updates after model changes

The primary goal of the RETE net is to provide incremental
pattern matching. To achieve this, input nodes receive notifica-
tions about changes on the model, regardless whether the model
was changed programmatically (i.e. by executing a transforma-
tion) or by user interface events — hence, our RETE-based concept
can be adapted to any kind of model management and transforma-
tion framework as long as the model container supports elementary
change notification.

Whenever a new entity or relation is created or deleted, the input
node of the appropriate type will release an update token on each
of its outgoing edges. Such an update token represents changes
in the partial matchings stored by the RETE node. To reflect type
hierarchy, input nodes also notify the input nodes corresponding to



the supertype(s). Positive update tokens reflect newly added tuples,
and negative updates refer to tuples being removed from the set.

Each RETE node is prepared to receive updates on incoming
edges, assess the new situation, determine whether and how the set
of stored tuples will change, and release update tokens of its own to
signal these changes to its child nodes. This way, the effects of an
update will propagate through the network, eventually influencing
the result sets stored in production nodes.
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(a) Phase L.

PRODUCTION
sourcePlace

(b) Phase II.
Figure 8: Update propagation

Figure 8(a) shows how the network in Fig. 7 reacts on a newly
inserted out-arc. The input node for the relation type representing
the arc releases an update token (depicted by a yellow ellipse). The
join node receives this token, and uses an effective index structure
to check whether matching tuples (in this case: places) from the
other parent node exist. If they do then a new token is propagated
on the outgoing edge for each of them, representing a new instance
of the partial pattern “place with outgoing arc”. Fig. 8(b) shows
the update reaching the second update node, which matches the
new tuple against those contained by the other parent (in this case:
transitions). If matches are found, they are propagated further to
the production node.

4.4 Pattern Call

An important feature of the RETE algorithm is that network parts
can be shared between patterns, thus reducing space and time com-
plexity. The currently implemented pattern matcher is not yet ca-
pable of identifying common subpatterns for this optimization, but
the transformation designer can help by decomposing patterns into
smaller, reusable parts calling each other (also called pattern com-
position).

When a pattern calls another pattern, it can simply use the ap-
propriate production node to obtain the set of tuples conforming to
the other pattern. Naturally, the production node may have children
attached like any other nodes. It is even possible to define recursive
patterns that call themselves; in such cases, the production node of
the pattern will have an edge leading back to one of the previous
nodes. It is the designer’s responsibility to ensure that the recur-
sion is well-founded and that there is always exactly one fixpoint
as result.

Figure 9(a) shows the matcher for pattern isInhibited provided
that the simple patterns placeNonEmpty and sourcePlacelnhibitor
already have their respective matchers constructed. The matcher
selects tuples where the corresponding transition is inhibited by the
place for whom the place inhibits the transition, and the place has
at least one token.

pattern isInhibited(T) = {
find sourcePlacelInhibitor(T,P);
find placeNonEmpty(P);
}
pattern notEnabled(T) =
find sourcePlace(T,P);
neg find placeNonEmpty(P);
}

{

Listing 5: VIATRA source code for the isInhibited and
notEnabled patterns

PRODUCTION PRODUCTION
sourcePlacelnhibitor placeNonEmpty

O+ ©

JOIN
PRODUCTION
isinhibited

(a) isInhibited

PRODUCTION PRODUCTION
sourcePlace placeNonEmpty

O— ©

:: )MINUS I
PRODUCTION
notEnabled

(b) notEnabled

Figure 9: Positive and negative pattern calls

4.5 Negative Application Conditions

A powerful feature of VIATRA2 is to embed patterns into each
other as negative application conditions, thus allowing negation at
arbitrary depth. To support such negative pattern calls, the existing
mechanism for pattern calls can be used, but the production node
has to be connected to a negative node instead of a join node. A
negative node (in the RETE network) has two distinct parents: pri-
mary and secondary inputs, respectively. The negative node con-
tains the set of tuples that are also contained by the primary input,
but do not match any tuple from the secondary input (which corre-
sponds to antijoins in relational databases, see a similar idea with
left outer joins e.g. in [18]).

Figure 9(b) shows the matcher for pattern notEnabled, provided
that the simple patterns placeNonEmpty and sourcePlace already
have their respective matchers constructed. The matcher selects
the transitions with source places that do not have any tokens.

4.6 Disjunction

OR-Patterns (containing the ’or’ keyword) are treated as a dis-
junction of independent pattern bodies. A separate matcher can be
constructed for each body, sharing the production node, which will
perform a true union operation on the sets of tuples conforming to
each pattern body.

Figure 10 shows the matcher for pattern isTransitionFireable (see
Listing 6), containing an inline negative pattern with two bodies.
In this case, each body is a simple reference to a previously con-
structed pattern, connected to a single production node for the in-
line pattern.

4.7 Term Evaluation

In addition to simple graph-based structural constraints, the VIA-
TRA2 framework supports the use of attribute conditions to restrict
the names and values of model elements. Various arithmetical and
logical functions, or even user-provided arbitrary Java code can be
applied to model elements to check the validity of a pattern.

The term evaluator node propagates only those tuples that pass a
given test. Furthermore, it registers the affected elements of incom-



pattern isTransitionFireable(T) = {
transition(T);
neg pattern notFireable(T) = {
find notEnabled(T);
} or {
find isInhibited(T);
}
}

Listing 6: Source code for isTransitionFireable pattern

INPUT PRODUCTION PRODUCTION
notEnabled isinhibited

®—

\ 4

PRODUCTION
isTransitionFireable

Figure 10: RETE matcher for the isTransitionFireable pattern

ing tuples (regardless whether they had passed the filter or not), so
that whenever one of these elements experience change, the tuples
containing it can be re-evaluated. If the result changes, the appro-
priate update tokens will be propagated. The node will monitor
changes influencing a tuple until that tuple is finally removed by a
negative update received from the parent node.

4.8 Construction

Given the definition of a pattern, the method to construct a RETE
net for finding the matches of a pattern with good efficiency is a
non-trivial task. The heuristics employed by VIATRA2 is a straight-
forward, but not necessarily optimal approach.

The key is perceiving a pattern as a collection of constraints im-
posed on subsets of the group of pattern variables. The construction
algorithm processes these constraints one by one, and continues a
connected sequence of nodes (“the line”’) to match larger and larger
partial patterns, eventually using up all constraints and connecting
the last node to the production node.

For simple entity and type constraints, pattern calls and miscel-
laneous cases (e.g. containment), (1) the appropriate input node
or production node is accessed; (2) a join node will be attached
as a child to it and also to the end of the line; (3) the join node
will be prepared to match against variables that are involved in the
constraint and are already introduced in the line. For negative ap-
plication conditions, a negative node is used instead of the join
node in an otherwise similar setup. A different setup is required
for check conditions (and some miscellaneous cases including in-
jectivity constraints), where a single filtering node (in this case, a
term evaluator node) is attached at the end of the line.

When a child node is connected, it automatically receives all the
tuples stored by the parent node as positive update tokens (and
becomes subscribed for further updates); this way the construc-
tion and loading of the RETE net happens simultaneously, even
though they are conceptionally separate. Input nodes and produc-
tion nodes of called patterns are created upon first access; for pro-
duction nodes, the matcher of the called pattern is also built at this
time. This on-demand behaviour ensures that no unnecessary net-

work parts are built and no unnecessary update notifications are de-
livered. The systems also supports extending an already built and
used RETE network with new matchers if the need for new patterns
arises.

S. PERFORMANCE

In this section, we analyze the runtime performance of our incre-
mental pattern matcher implementation, comparing it to the built-in
pattern matcher of the VIATRA2 framework [1]. As a benchmark,
we make use of the Petri net firing example used in this paper.

5.1 Benchmarking considerations

Benchmarking a particular graph pattern matching algorithm can
be performed by selecting a suitable set of test graphs and patterns
and measuring the execution time. In this case, however, the tar-
get is to emphasize the effect of a conceptionally different pattern
matching strategy (i.e. incremental matching) on the execution of a
complete model transformation, in various usecases such as incre-
mental synchronization and batch-like processing. Our benchmark
transformation (Petri net simulation) suits the incremental pattern
matching concept well.

As laid out in [19], benchmarking the execution of a complete
transformation is difficult due to a number of reasons: (i) prati-
cal transformations, such as the Petri net firing example, involve
non-determinism, and (ii) external overhead which arises from the
underlying platform (such as plugin management processing in the
case of Eclipse-based tools like VIATRA2).

Non-determinism was eliminated by temporarily modifying the
VIATRA2 execution environment so that non-deterministic constructs
always return a pre-determined pick of possible matchings, thereby
guaranteeing identical execution paths for all test runs.

To account for overhead, and to gain some insight into how the
processing time is split up between the various phases of the execu-
tion (match computation, model manipulation, and code interpre-
tation), we have employed a sophisticated Java profiler [23] which
yielded precise (function-level) analysis results.

From a practical viewpoint, we were interested in two use cases:
(1) the cost of firing the first/next simulation step, which is the most
important use-case for incremental model transformations; (ii) a
sequence of consecutive steps in a batch execution scheme, which
shows how the RETE matcher performs in a more traditional model
transformation application.

Thus, benchmark transformation was executed in two ways: (a)
As-Long-As-Possible (ALAP) style execution where at each itera-
tion, a new match is calculated (a fireable transition is picked) and
the model manipulation (firing) is performed - matching the charac-
teristics of the first use case; (b) forAll style execution where at each
iteration, all matches (all fireable transitions) are calculated, and
manipulation is performed in a pseudo-parallel fashion? - match-
ing the characteristics of the second use case.

5.2 Results

The benchmark was performed on a live and bounded Petri net
graph, consisting of 63 places, 69 transitions, and 302 arcs (includ-
ing inhibitor arcs). The test runs consisted of firing 1000 transi-
tions.

The aggregate results are shown on Fig. 11. Since our goal was to
reveal the potential of the RETE-based approach, absolute execu-
tion times have been omitted; a more thorough benchmark evalua-
tion is planned for future work. Relative execution times (the right-

2Conflicting transitions were accounted for by using an additional
check before the actual execution of the firing rule.
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Figure 11: Benchmark results

most column of Fig. 11) confirmed that the RETE-based pattern
matching approach is approximately an order of magnitude faster
for the ALAP scheme, than VIATRA?2’s default, local search-based
pattern matcher. (The 100% relative execution time corresponds to
the mean time measured for normal execution - RETE runs scale at
approximately 9%.)

This is supported by the CPU usage distribution data, which re-
veals that incremental updates can drastically reduce the overall
execution time for transformations which require iterative pattern
matching — in fact, the pattern matching phase is reduced so that it
becomes comparable to the model manipulation phase, which is a
significant advantage>.

In the second scenario, which mimics the characteristics of com-
mon model transformations, the advantage is reduced to a factor of
3 (RETE runs scaled at approximately 33%). This is explained by
the different execution path: in every iteration, all matchings for
multiple transformation steps are determined (as described by the
forAll scheme), and manipulation steps can proceed without further
expensive match calculations. While this does not significantly im-
pact the RETE matcher (absolute execution times were nearly iden-
tical), it clearly makes a large reduction for the local search-based
approach.

5.3 Conclusion of measurements

In this section, we provided a preliminary overview about the
possible performance gains with incremental pattern matching. It
is important to stress that these gains can vary largely depending on
factors such as:

e how model manipulation intensive a transformation is, and how
the matching sets of patterns are affected (this manifests itself
in the RETE network update overhead);

e transformation execution characteristics (ratio of forAll and
ALAP style execution paths);

e memory constraints — speed gains can be reduced by memory
management issues (such as garbage collection) arising due to
the increased memory requirement of RETE networks.

Consequently, while the RETE matcher (and the incremental ap-
proach in general) may be a straightforward choice in certain cases,
for general transformations the optimal solution can be attained by
mixing pattern matching strategies appropriately. Thus, the im-
plementation presented in this paper has been integrated into the
newest version of the VIATRA2 framework in such a way that the
transformation designer can specify on a per-pattern basis which
matching strategy should be used.

6. RELATED WORK

Incremental updating techniques have been widely used in dif-
ferent fields of computer science. Now we give a brief overview on

3RETE update costs are included in the “model management” cat-
egory and the “pattern matching” category includes the RETE net-
work construction phase.

incremental techniques that are used in the context of graph trans-
formation.

Attribute updates. The PROGRES [15] graph transformation
tool supports an incremental technique called attribute updates [9].
At compile-time, an evaluation order of pattern variables is fixed
by a dependency graph. At run-time, a bit vector is maintained for
each model node expressing whether it can be bound to the nodes
of the LHS. When model nodes are deleted, some validity bits are
set to false, which might invalidate partial matchings immediately.
On the other hand, new partial matchings are only lazily computed.

Incremental pattern manipulation. The transformation engine
of TefKat [10] performs an SLD resolution based interpretation
during which a search space tree is constructed to represent the
trace of transformation execution. This tree is maintained incre-
mentally in consecutive steps of transformations as described in
[8]. The uniform, incremental handling of model elements and pat-
terns can be considered a unique, advanced feature of the approach.

View updates. In relational databases, materialized views, which
explicitly store their content on the disk, can be updated by in-
cremental techniques like Counting and DRed algorithms [7]. As
reported in [20], these incremental techniques are also applicable
for views that have been defined for graph pattern matching by the
database queries of [18]. However, [20] suffered from the inad-
equate support of incremental algorithms by the used underlying
database and the strong restrictions being posed on the structures
of the select query that defined the view.

Notification arrays. [21] proposes a graph pattern matching
technique, which constructs and stores a tree for partial matchings
of a pattern, and incrementally updates it, when the model changes.
As a novelty, notification arrays are introduced for speeding up the
identification of such partial matchings that should be incremen-
tally modified. The main advantage of this solution is that only
matchings, which appear as leaves of the tree, have to be physi-
cally stored, which possibly saves a significant amount of memory.
The memory saving technique of [21] is orthogonal to the struc-
ture of the underlying RETE network, and, thus, it can expectedly
be used for our approach as well, but the exact integration requires
further research and implementation tasks.

RETE networks used for graph transformation. RETE net-
works [6], which stem from rule-based expert systems, have al-
ready been used as an incremental graph pattern matching tech-
nique in several application scenarios including the recognition of
structures in images [4], and the co-operative guidance of multi-
ple uninhabited aerial vehicles in assistant systems as suggested by
[11]. Our contribution extends this approach by supporting a more
expressive and complex pattern language.

Other rule-based production systems. Improvements and al-
ternatives of the RETE algorithm are now shortly surveyed. In the
first two cases, the main goal is to reduce the high memory con-
sumption of the RETE network.

TREAT [12] aims at minimizing memory usage while retaining
the incremental property of pattern matching and instant accessi-
bility of conflict sets. Only the input model elements and the (com-
plete) matchings are stored, but no memories are used for partial
patterns. TREAT is considered faster in certain conditions but less
flexible than RETE.

RETE* [22] is a generalization of RETE that attempts to strike
a balance between memory size and performance by keeping beta
memories stored for frequently used nodes and generating them on-
the-fly for the rest. The two extreme cases for the memory retention
policy correspond to TREAT and RETE, respectively.

The LEAPS algorithm [2] is claimed to be substantially better
than RETE or TREAT at both time and space complexity. The ap-



proach can be characterized by lazy evaluation to avoid manifesting
tuples unnecessarily, by depth-first firing, and by the introduction
of timestamps to set up temporal constraints, which can be used for
handling deletion efficiently.

7. CONCLUSION

In this paper, we presented an incremental graph pattern match-
ing approach by adapting the well-known RETE networks to the
rich pattern language of the VIATRA model transformation frame-
work. In addition to the core RETE technique, we introduced new
composite nodes for negative and disjunctive patterns or pattern
composition.

We evaluated the performance of the incremental engine on a
benchmark problem assessing the speed-up of incremental process-
ing in case of as-long-as-possible rule applications using (extracts
from) a Petri net simulator as a demonstrating example. Our mea-
surements have also showed an incremental engine can outperform
traditional (local search based) graph pattern matching techniques
in the case of as-long-as-possible rule application. This speed up
was not detected in previous benchmarking [19] due to the unavail-
ability of supporting tools.

The incremental graph pattern engine is available in the current
(new) VIATRA release, which allows the designers to select the
most appropriate (incremental or non-incremental) pattern match-
ing strategy for each pattern.

In the future, we plan to implement additional heuristics for op-
timizing the size of the RETE network, e.g. to automatically detect
common subpatterns appearing in different graph transformation
rules. Moreover, we also plan to carry out a more detailed exper-
imental evaluation of the incremental matching strategy to iden-
tify those situations and problems when an incremental approach is
beneficial.
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