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ABSTRACT
Empirical divergence maximization is an estimation method similar
to empirical risk minimization whereby the Kullback-Leibler diver-
gence is maximized over a class of functions that induce probability
distributions. We use this method as a design strategy for quantiz-
ers whose output will ultimately be used to make a decision about
the quantizer’s input. We derive this estimator’s approximation er-
ror decay rate as a function of the resolution of a class of partitions
known as recursive dyadic partitions. This result, coupled with ear-
lier results, show that this estimator can converge to the theoretically
optimal solution as fast as n−1, where n is the number of training
samples. This estimator also is capable of producing estimates that
well-approximate optimal solutions that existing techniques cannot.

Index Terms— empirical quantizer design, empirical diver-
gence maximization, Kullback-Leibler divergence, recursive dyadic
partitions

1. INTRODUCTION

This paper extends the analysis of an empirical quantization design
methodology proposed in [1] that is based on empirical divergence
maximization. By leveraging recent results in statistical learning
theory, this approach shows that fast convergence rates for these
estimators are possible, in addition to explicitly showing the pa-
rameters on which these rates depend. Under the assumption that
the underlying probability distributions are unknown, commonly
used empirical risk estimators seek to find classifiers that mini-
mize the empirical risk (empirical probability of error) by searching
among a pre-specified class of candidate classifiers [2]. We adopt
this approach here, but seek to maximize an empirical form of the
Kullback-Leibler (KL) divergence over a given class of quantization
rules. The KL divergence is a well-known quantity related to op-
timal detector performance [3]. Hence, the presumption is that the
quantized samples will ultimately be used to make a decision about
the quantizer’s input signal.

Let P and Q be two probability measures defined on [0, 1]d and
let p and q denote their respective density functions, which we as-
sume to be uniformly bounded, i.e., c ≤ p(x), q(x) ≤ C for all x ∈
[0, 1]d, c > 0, C < ∞. Any quantization rule φ : R

d �→
{0, . . . , L − 1} that operates on a random vector X (distributed
according to P orQ) induces the probability mass functions (pmfs),
p(φ) = (p0(φ), . . . , pL−1(φ)) and q(φ) = (q0(φ), . . . , qL−1(φ)),
where pi(φ) = P (φ(X) = i) and similarly for qi(φ). In this
context, the KL divergence is defined as

DKL(p(φ), q(φ)) =

L−1∑
i=0

−pi(φ) log

(
qi(φ)

pi(φ)

)
.

Stein’s Lemma [3] states that the KL divergence equals an optimal
detector’s exponential error decay rate; thus, by constructing quanti-
zation rules φ̂n that induce maximally divergent pmfs, we, in some
sense, ensure the best possible performance of a follow-on detector.

To be clear, this problem concerns two types of rates, one which
we deal with explicitly, the other implicitly. The rate with which the
“best in class” estimate converges to the theoretically optimal quan-
tization rule is explicitly analyzed. The other error rate associated
with the KL divergence through Stein’s Lemma characterizes a de-
tector’s performance after a quantization rule is designed and is in
use.

We therefore analyze an estimator of the form

φ̂n = argmax
φ∈Φ

Dn(φ),

where Φ andDn(φ) represent an, as yet unspecified, candidate class
and empirical KL divergence estimate, respectively. In this paper,
we examine the decay rate of the so-called approximation error as-
sociated with φ̂n; the estimation error is examined in [1].

The empirical nature of the strategy makes it an attractive choice
for newly proposed continuous-time compressed sensing (CS) sam-
pling schemes [4, 5]. For signals that have a sparse representation,
that is for signals that can be represented, or well approximated, by
a small number of basis vectors, CS suggests that it is possible to
recover these signals with sampling rates far below Nyquist rates.
While the quantization strategy proposed here does not depend on
any notion of signal sparsity, these new schemes often process the
continuous-time waveforms prior to sampling. Consider, for exam-
ple, the random demodulator proposed in [4] that multiplies the sig-
nal by a random waveform taking values ±1. In this case, even if
an accurate probability model exists for the continuous-time random
process, it may be difficult to propagate the model through the sam-
pling process. Fast convergence is also advantageous for continuous-
time CS sampling schemes because a primary goal of these systems
is to sample at rates as slow as possible (sub-Nyquist). Thus, strate-
gies that quickly converge hold significant advantage over strategies
with slower convergence.

This paper also addresses a long-standing shortcoming in quan-
tization for classification problems. It is well-known that the the-
oretically optimal quantization rule (assuming p and q are known)
can always be constructed by thresholding the likelihood ratio [6].
Put differently, the quantization rule that maximizes the KL diver-
gence of the pmfs it induces, can always be chosen to be a piece-
wise constant function defined on a partition whose boundary sets
are level sets of the likelihood ratio q(x)/p(x). These optimal likeli-
hood ratio partitions can be very different from typical nearest neigh-
bor regions/partitions that are associated with quantizers designed
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Fig. 1. Plot of a log-likelihood ratio function formed by dividing a
bivariate Gaussian probability density function (pdf) by a bivariate
Laplace pdf. The elliptical contours indicate that, for any number of
quantization levels, the optimal likelihood ratio partition will consist
of concentric ellipses. Such partitions are not nearest-neighbor par-
titions, nor can they be, generally speaking, well-approximated by
nearest-neighbor partitions.

to minimize mean-squared error. Past related work by Gupta and
Hero [7] and Lazebnik and Raginsky [8] forced a small-cell prop-
erty in their design strategy. The resultant partitions thus resem-
bled nearest-neighbor partitions. Consequently, their design strate-
gies disallow close approximation to some optimal likelihood ratio
partitions and/or quantization rules, for instance, partitions resem-
bling those in Figure 1 or quantization rules with disjoint regions.
The approach taken here largely alleviates this shortcoming.

In [8], Lazebnik and Raginsky study a conceptually similar
quantization problem to the one considered here, but the differences
between the approaches are substantial. For example, their informa-
tion loss criterion is a difference of mutual informations, and while
related to the KL divergence, this criterion measures a different
quantity than the approximation loss studied here.

2. EMPIRICAL DIVERGENCE ESTIMATION

The form of Dn(φ) is taken from recent work by Nguyen et al. [9]
and relies on rewriting the convex function− log(·) appearing in the
definition of the KL divergence.

Convex conjugates. The notion of a convex conjugate is based on
the observation that a function can be described as either by its graph
or by an envelope of tangents curves [10]. Formally, one can rewrite
any (closed) convex function f such that for any point x ∈ R, f(x)
is a supremum over a set of affine functions,

f(x) = sup
x∗

{x∗x− f∗(x∗)}, (1)

where f∗(x∗) is the convex conjugate of f(x).
Now, suppose γ : [0, 1]d �→ {0, . . . , L − 1} is an arbitrary

quantization rule characterized by the partitioning sets {Ri}L−1
i=0 .

Using (1), we write the divergence between the pmfs induced by
γ as

DKL(p(γ), q(γ)) =

L−1∑
i=0

pi(γ)f

(
qi(γ)

pi(γ)

)
(2a)

=

L−1∑
i=0

pi(γ) · sup
x∗

{
x∗ qi(γ)

pi(γ)
− f∗(x∗)

}
, (2b)

where f(x) = − log(x), x > 0,+∞, otherwise. For this particular
convex function, f∗(x∗) equals

f∗(x∗) =

{
−1− log(−x∗) if x∗ < 0

+∞ if x∗ ≥ 0.

Substituting this expression into (2b), we have the following expres-
sions for the KL divergence

DKL(p(γ), q(γ))

=

L−1∑
i=0

pi(γ) sup
x∗

i
∈R−

{
x∗
i
qi(γ)

pi(γ)
+ 1 + log(−x∗

i )
}

=

L−1∑
i=0

pi(γ) sup
cRi

∈R+

{
log(cRi

)− cRi

qi(γ)

pi(γ)
+ 1

}

=1+

L−1∑
i=0

sup
cRi

∈R+

{
P (Ri) log(cRi

)− cRi
Q(Ri)

}
,

where in the second step we let cRi
= −x∗

i , and in the last step
used the fact that pi(γ) = P (Ri) with Ri = {x : γ(X) = i}.
The validity of last expression is easily verified by differentiating it
with respect to cRi

and solving for the maximizers. By defining the
piecewise constant function

φ(x) =

L−1∑
i=0

cRi
1Ri

(x), cRi
∈ R

+, (3)

we can writeDKL(p(γ), q(γ)) in integral form:

1 + sup
φ

{∫
[0,1]d

log(φ) dP −
∫
[0,1]d

φ dQ

}
, (4)

where 1 denotes the indicator function, and the supremum is taken
over all functions of the form (3).

Empirical estimator. Let {Ri}L−1
i=0 be a generic partition of [0, 1]

d.
Then for positive constants m > 0 and M < ∞, we define the
candidate function class

Φ(m,M,L,Ri) =

{
φ(x) =

L−1∑
i=0

cRi
1Ri

(x) : m ≤ cRi
≤ M

}
.

Φ is a set of piecewise constant functions with L levels that are
bounded and positive. In Section 3, we consider a specific class of
partitions that admits fast convergence rates.

Define the function Dn(φ) as the empirical counterpart of (4),

Dn(φ) = 1 +
1

n

n∑
i=1

log φ(Xp
i )−

1

n

n∑
i=1

φ(Xq
i ), (5)

and consider the following empirical estimator

φ̂n = argmax
φ∈Φ(m,M,L)

Dn(φ), (6)

where {Xp
i }ni=1 and {Xq

i }ni=1 in (5) are observations distributed ac-
cording to p and q respectively. φ̂n is an empirical divergence max-
imization estimator akin to the familiar empirical risk minimization
estimators [2]. Note Dn(φ) is not in general a KL divergence; it
can in fact be negative for some φ ∈ Φ. It is a consistent estimator,
however, converging to the “best in class” estimator as n → ∞ [9].
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The best in class estimate φ∗ is that element inΦ that maximizes
D(φ),

φ∗ = argmax
φ∈Φ(m,M,L)

D(φ), where (7)

D(φ) = 1 +

∫
[0,1]d

log(φ) dP −
∫
[0,1]d

φ dQ.

Note that D(φ), as opposed to Dn(φ), is not an empirical quantity,
but uses knowledge of the distributions P and Q.

We take the theoretically optimal quantization rule γ∗ to be the
rule that maximizes the divergence over a broad class of piecewise
constant functions whose only restriction, essentially, is an assumed
boundary regularity. To define this class, we need the following
concept: a function f : [0, 1]d �→ R is locally constant at a point
x ∈ [0, 1]d if there exists a ball about x with positive radius in which
f is constant.

Definition (PC class). A function f : [0, 1]d �→ {ci}L−1
i=0 , ci ∈ R

+

is a positive-valued piecewise constant function with L levels if it is
locally constant at any point x ∈ [0, 1, ]d \ B(f), where B(f) ⊂
[0, 1]d is a boundary set satisfying N(r) ≤ βr−(d−1) for all r > 0.
Here, β > 0 is a constant and N(r) is the minimal number of
balls of diameter r that covers B(f). Furthermore, let f be uni-
formly bounded on [0, 1]d, that is m ≤ f(x) ≤ M for all x ∈
[0, 1]d, where m > 0 and M < ∞. The set of all piecewise
constant functions f satisfying the above conditions is denoted by
PC(β,m,M,L).

We consider PC(β,m,M,L) to be a class of likelihood ratio
quantization rules that have well-behaved boundaries [11]. Alter-
nately, we say that we only consider densities p and q whose likeli-
hood ratio function has well-behaved level sets.

Define the theoretically optimal quantization rule as

γ∗ = argmax
γ∈PC(β,m,M,L)

D(γ). (8)

Let {A∗
i }L−1

i=0 denote the partition associated with γ∗, then the L
levels (constant values) of γ∗ equal P (A∗

i )/Q(A∗
i ), i = 0, . . . , L−

1, and γ∗ takes the form

γ∗(x) =
L−1∑
i=0

cA∗

i
1A∗

i
(x), cA∗

i
=

P (A∗
i )

Q(A∗
i )

. (9)

Estimation and Approximation Errors. We gauge the quality of
φ̂n by characterizing the decay rates of the so-called estimation and
approximation errors. Estimation error is defined as the difference
D(φ∗) − D(φ̂n) and quantifies the error caused by computing φ̂n

without knowledge of p and q. Approximation error is defined as
D(γ∗) − D(φ∗) and arises from differences in the partitions of γ∗

and φ∗.
Investigations of these errors typically begin with two ba-

sic inequalities that follow from the definitions of φ∗ and φ̂n:
D(φ∗)−D(φ̂n) ≥ 0 and Dn(φ

∗)−Dn(φ̂n) ≤ 0. They imply
that the estimation error is upper bounded by a difference of empiri-
cal processes

0 ≤ D(φ∗)−D(φ̂n)

≤ −[(Dn(φ
∗)−D(φ∗))− (Dn(φ̂n)−D(φ̂n))]

= −(νn(φ
∗)− νn(φ̂n))/

√
n,

Fig. 2. An example RDP adapted to a level set of the graph in
Fig. 1 (J = 3, d = 2). Here, all cells intersecting the level set have
maximal depth J = 3.

where the second inequality results from adding and subtracting
Dn(φ

∗) and Dn(φ̂n), and νn(γ) =
√
n(Dn(γ) − D(γ)). By

adding the approximation error to both sides of the above inequality,
we have that the total error is bounded by the two component errors.

0 ≤ D(γ∗)−D(φ̂n)︸ ︷︷ ︸
total error

≤ −(νn(φ
∗)− νn(φ̂n))/

√
n︸ ︷︷ ︸

upper bound on est. error

+D(γ∗)−D(φ∗)︸ ︷︷ ︸
approx. error

.
(10)

We analyze the decay rate of the approximation error below.

3. APPROXIMATION ERROR

Recursive Dyadic Partitions. To characterize the approximation
error, we consider a particular class of partitions {Ri}L−1

i=0 derived
from underlying Recursive Dyadic Partitions (RDPs). RDPs are par-
titions composed of quasi-disjoint sets (two sets are quasi-disjoint
if and only if their intersection has Lebesque measure zero) whose
union equals the entire space [0, 1]d. We use RDPs because of their
proven effectiveness in adapting to the boundaries of piecewise con-
stant functions [11]. A RDP is any partition that can be constructed
using only the following rules:
1. {[0, 1]d} is a RDP.
2. Let π = {S0, . . . , Sk−1} be a RDP, where Si = [ai1, bi1] ×

. . .×[aid, bid]. Then π′ = {S1, . . . , Si−1, S
(0)
i , . . . , S

(2d−1)
i ,

Si+1, . . . , Sk} is a RDP, where {S(0)
i , . . . , S

(2d−1)
i } is ob-

tained by dividing the hypercube Si into 2d quasi-disjoint
hypercubes of equal size. Formally, let q1q2 . . . qd be the
binary representation of q ∈ {0, . . . , 2d−1}. Then

S
(q)
i =

[
ai1 +

bi1 − ai1

2
q1, bi1 +

ai1 − bi1
2

(1− q1)

]
×

. . .×
[
aid +

bid − aid

2
qd, bid +

aid − bid
2

(1− qd)

]
.

Figure 2 illustrates an example RDP. We say a RDP has maximal
depth J if the side length of its smallest hypercube equals 2−J .

We now further specify Φ as the class of quantization rules
whose partitioning cells Ri are unions of RDP cells of a fixed
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maximal depth, i.e. for any φ ∈ Φ, we restrict Ri to have the form
Ri =

⋃
m∈Ii

Sm, where the cells Sm belong to a RDP of fixed max-
imal depth, {Ii} is a set of disjoint index sets and ∪iRi = [0, 1]d.

Main Result. Let φ∗ and γ∗ be as defined in (7) and (8) and let
the candidate class Φ(m,M,L,Ri) be based on RDPs of maximal
depth J . Suppose further that p and q are uniformly bounded, c ≤
p(x), q(x) ≤ C for all x ∈ [0, 1]d, c > 0, C < ∞. Then the
approximation error is bounded as

D(γ∗)−D(φ∗) ≤ const(β, c, C,m,M,L) 2−J . (11)

The significance of (11) is that this rate can now be balanced
with the estimation error rate found in [1] to obtain a convergence
rate for the total expected errorD(γ∗)−ED(φ̂n). This means that
for a given problem, an appropriate RDP depth can be calculated
that ensures an overall convergence rate equal to that reported in [1],
which in particular, can be as fast as n−1.

Proof Outline of Main Result. The proof proceeds by constructing
a quantization rule φ′ from a RDP whose behavior on the bound-
ary of the ideal partition {A∗

i } can be characterized. It can then
be shown that the approximation error is bounded above by the dif-
ferenceD(γ∗)−D(φ′) and that this quantity is in turn bounded by
‖γ∗−φ′‖L1

. The result then follows from showing that ‖γ∗−φ′‖L1

is bounded by a quantity that decays with the depth of the original
RDP. We provide some of the details below, beginning with the fol-
lowing lemma and the definition of φ′.

Lemma 1 ( [11], Lemma 5, p. 121). There is a RDP such that the
cells intersecting B(γ∗) are at depth J and all the other cells are
at depths no greater than J . Denote the smallest such RDP by π∗

J .
Then π∗

J has at most 2
2dβ2(d−1)J cells intersecting B(γ∗).

Let φ′ denote a L-level piecewise constant function defined on
π∗
J ,

φ′(x) =

L−1∑
i=0

cR′

i
1R′

i
(x), cR′

i
=

P (R′
i)

Q(R′
i)
, (12)

with the added condition that cells S ∈ π∗
J contained in R′

i/B(γ∗)
are also contained in A∗

i . More concisely, we assume

S ⊆ R′
i/B(γ∗) ⇒ S ⊆ A∗

i /B(γ∗).

This condition implies that each disjoint regionR′
i is a union of cells

from π∗
J and that the partitions {R′

i} and {A∗
i } coincide except pos-

sibly on the boundary B(γ∗).
Observe that D(γ∗) − D(φ∗) ≤ D(γ∗) −D(φ′) since the di-

vergence between the pmfs induced by φ′ must necessarily be less
than or equal to the that induced by the best in class quantization
rule φ∗. It then follows from the bounds on φ, p, and q and from the
inequality log x ≤ x− 1, for x > 0 that

D(γ∗)−D(φ′) ≤ C + cm

m
‖γ∗ − φ′‖L1

. (13)

This norm can be decomposed as a sum of the norms on each
cellR′

i and over the set of cells S ⊆ R′
i that do, and do not, intersect

the boundary B(γ∗).

‖γ∗ − φ′‖L1
=

L−1∑
i=0

[ ∑
S⊆R′

i
/B(γ∗)

∫
S

|γ∗(x)− φ′(x)| dx

+
∑

S⊆R′

i
(B(γ∗))

∫
S

|γ∗(x)− φ′(x)| dx
] (14)

Here, S ⊆ R′
i/B(γ∗)means all cells S that are a subset ofR′

i which
do not intersect the boundary B(γ∗). Similarly, S ⊆ R′

i(B(γ∗))
means all cells S that are subsets of R′

i which do intersect B(γ∗).
By the boundedness assumptions on γ∗ and φ′, the second in-

tegrand on the right hand side of (14) can be upper bounded byM .
Therefore,∑

S⊆R′

i
(B(γ∗))

∫
S

|γ∗(x)− φ′(x)| dx ≤ M
∑

S⊆R′

i
(B(γ∗))

Vol(S)

≤ M2−dJβ22d2(d−1)J ,
(15)

where the second inequality follows from Lemma 1.
Similarly, it can also be shown that the first term on the right

hand side of (14) can be bounded as

L−1∑
i=0

∑
S⊆R′

i
/B(γ∗)

∫
S

|γ∗(x)− φ′(x)| dx

≤ (C/c)2β′2L2−J

(16)

The result follows by combining (13), (14), (15), and (16). �

4. REFERENCES

[1] M.A. Lexa, “Empirical quantization for sparse sampling sys-
tems,” Proc. IEEE Inter. Conf. on Acoustics, Speech, and Sig-
nal Processing, pp. 3942–3945, Mar 2010.

[2] L. Devroye, L. Györfi, and G. Lugosi, A Probabilistic Theory
of Pattern Recognition, Springer, New York, 1996.

[3] T.M. Cover and J.A. Thomas, Elements of Information Theory,
Wiley, 1991.

[4] J. Tropp, J. Laska, M. Duarte, J. Romberg, and R. Baraniuk,
“Beyond Nyquist: Efficient sampling of sparse bandlimited
signals,” IEEE Trans. Info. Th., vol. 56, no. 1, pp. 520–544,
2010.

[5] M. Mishali and Y.C. Eldar, “From theory to practice: Sub-
Nyquist sampling of sparse wideband analog signals,” IEEE J.
Sel. Topics Sig. Process., vol. 4, no. 2, pp. 375 –391, 2010.

[6] J.N. Tsitsiklis, “Extremal properties of likelihood-ratio quan-
tizers,” IEEE Trans. Comm., vol. 41, no. 4, pp. 550–558, Apr
1993.

[7] R. Gupta and A. O. Hero, “High-rate vector quantization for
detection,” IEEE Trans. Info. Th., vol. 49, no. 8, pp. 1951–
1969, Aug 2003.

[8] S. Lazebnik and M. Raginsky, “Supervised learning of quan-
tizer codebooks by information loss minimization,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 31, no.
7, pp. 1294–1309, Jul 2009.

[9] XuanLong Nguyen, Martin J. Wainwright, and Michael I. Jor-
dan, “Estimating divergence functionals and the likelihood ra-
tio by convex risk minimization,” Technical report, Department
of Statistics, University of California, Berkeley, Sep 2008.

[10] R. Tyrrell Rockafellar, Convex Analysis, Princeton University
Press, Princeton, New Jersey, 1970.

[11] Rui Castro, Active Learning and Adaptive Sampling for Non-
parametric Inference, Ph.D., Rice University, Houston TX,
U.S.A., Aug 2007.

4223


