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Abstract—The popularity of GPS-enabled smartphones enables
a wide variety of new location-based or location-aware services
and applications. However, the GPS module in a smartphone
produces inaccurate position estimates and incurs high energy
consumption, which inhibits the wide use of location-aware ap-
plications. To address this, we propose a social-aided cooperative
location optimization (Coloc) scheme, which is capable of improv-
ing positioning accuracy and achieving low energy consumption.
Specifically, our scheme enhances positioning accuracy by fusing
the GPS positions of multiple co-located smartphones in a
social network, or by neighborhood-based weighted least-squares
estimation when relative distances between smartphones are
available. The energy efficiency is achieved by sharing location
information among co-located users and lower the update rate
of the GPS module without sacrificing the accuracy. To validate
our proposed approach, we conduct experiments in stationary
and moving scenarios. Experimental results show that our
proposed cooperative localization scheme can achieve sufficient
performance gains in both indoor and outdoor environments.

I. INTRODUCTION

Most new models of smartphones have built-in Global
Positioning System (GPS) receivers. The GPS onboard enables
a host of location-aware applications. According to a study
published by the Pew Internet and American Life Project [1],
more than 55% of smartphone owners use their phones to
find directions, recommendations, or other information related
to their present locations. In addition, geo-social “check in”
services such as Foursquare or Gowalla are very popular
among young adults [1]. New digital cameras or smartphones
are equipped with geo-tagging features [2], making it easy to
group photos by location or track the user’s footprint.

Obtaining the GPS position information incurs a high cost;
the whole process includes many complex calculations, e.g.,
correlation, demodulation, tracking, ranging and positioning.
Moreover, satellite signals are hard to access especially in
indoor and harsh environments due to the strong attenuation
of the radio caused by building materials. The process of
constantly searching and capturing the very weak beacon
signal consumes a lot of power, and the estimated position
is often inaccurate or even unavailable.

The rapid growth in people-centric mobile computing ap-
plications and location-based services has called for improved
localization techniques. Energy-efficiency and accuracy are the
two main objectives of such improvements. Authors in [3]
[4] [5] have paid attention to tradeoff between energy and
location accuracy. They try to use low power WiFi/GSM based
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schemes to lower the frequency of GPS startups, but at the
expense of lower accuracy and update rates. Other approaches
utilize dedicated devices for localization when GPS signal is
unavailable. However, a lot of anchor nodes need to be placed
at a very high density with known coordinates.

One compelling technique for improving the performance
of localization is cooperative localization [6]. Cooperation
among peer nodes at the physical layer can improve the com-
munication capacity and coverage of wireless networks [7].
Recently, such a cooperation paradigm has been introduced
for localization and navigation to improve the accuracy and
reliability of positioning and circumvent the need for high-
power infrastructure [8]. In this paradigm, it is assumed that
devices can take intra- and inter-node ranging measurements
in addition to measurements with respect to anchor nodes,
since measurements with respect to anchor nodes only are
insufficient for (accurate) positioning in harsh indoor/outdoor
environments [9]. By exchanging the anchor node information
and performing relative ranging between nodes, the position
estimation for each node becomes possible and more accurate
[10], [11].

However, existing cooperative localization techniques [7],
[10], [11] require access to raw GPS ranging measurements.
The GPS/WiFi position is the only information accessible by
a user/application in a commercial smartpone. Therefore, the
existing cooperative localization techniques [7], [10], [11] are
not directly applicable to GPS-enabled smartphones. To deal
with this inconvenience, authors [12], [13] propose practical
approaches for optimizing the smartphone location results by
leveraging the inter-node distance estimation. H. Liu et al.
[12] maps users’ locations jointly against WiFi signature map
subjecting to ranging constraints, but show significant delay
(> 7s) caused by ranging and WiFi scanning. Nandakumar
et al. [13] utilizes the acoustic signal transmitted by desktop
to assist the WiFi localization, however, the unconsideration
of the mobile situation would limit their application in a
smartphone.

In this paper, we propose cooperative location optimiza-
tion (Coloc) scheme in a social network setting. Unlike
conventional cooperative localization that utilizes physical-
layer information fusion, our proposed social-aided location
optimization performs data fusion at the application layer
when coarse positions of smartphones are already known.
Application-layer fusion can achieve practical performance
improvement at a lower cost with minimum added com-
plexity. The rationale is that when a group of people in a
common location all carry smartphones with GPS capability,
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the accuracy of localization can be significantly improved by
fusing the GPS positions of the smartphones in this group.
Theoretically, this performance gain is ascribed to the law of
large numbers and location diversity. Adjacent samples of GPS
results have high correlation with limited new information,
while the location from peers contributes to diversity gains.
Thus, GPS update rate could be lowered as well as the power
consumption without sacrificing the accuracy if peer-assisted
information is available. For utilizing the ranging information,
we derived the necessary condition and eliminate unnecessary
ranging measurements. Two algorithms, i.e., sparse steepest
descent optimization and polar optimization, are proposed to
improve the overall location accuracy in a mobile environment.
We want to emphasize that the driving force of cooperative
localization is the fast-improving smartphone technology and
people-centric pervasive social computing.

The rest of this paper is organized as follows. Section II
summarizes our previous work on smartphone-based ranging,
and related work on cooperative localization. Section III dis-
cusses our system design. Section IV describes mathematical
models and the necessary condition for inter-node ranging.
Section V presents the Coloc scheme for the case that relative
distances between smartphones in a neighborhood are known.
Section VI and Section VII present numerical results and
experimental results, respectively. Section VIII concludes the
paper.

II. PRELIMINARY

A. Relative Ranging

In cooperative localization, the relative distances between
peers are the additional information input to optimize the over-
all location accuracy. Realize relative ranging on a smartphone
is crucial for Coloc scheme. Using acoustic time-of-arrival
(TOA) based ranging has been demonstrated to have better
accuracy than received-signal-strength (RSS) based ranging
using WiFi/GSM/Bluetooth signals [12]–[15].

Transmitting simple acoustic beep and measure its flight
delay is a practical way to implement the accurate ranging
on a smartphone [12], [13]. However, using simple acoustic
signal may cause the problem that there is no way to tell
which smartphone emitted which signal, i.e., cause ambiguity
due to using un-modulated signal. Resolving the problem
by performing time-division multiple access and using radio
signal for assistance would increase the overall delay, which
is especially serious for the acoustic signal (low transmission
speed), e.g., for N peers, total N(N − 1)/2 relative distances
need to be measured. For tracking users when they are walking
around, sufficient ranging rate is required.

Based on our prior work [14], [15], we perform 2-PAM
modulation for the acoustic signal and combine ranging and
information bit transmission at the same time. With the infor-
mation bits directly available in the ranging signal, we could
identify the smartphone after signal demodulation. When one
smartphone broadcasts its ranging beacon, other peers could
all identify this beacon. Instead of performing transmit and
reply for each ranging pair, we could achieve pair-wise ranging

through one transmit and multiple replies. Thus, significant
amount of time used in round-robin ranging could be reduced.
Moreover, we apply cluster-based ranging approach to only
estimate the user clusters with sufficient distance, i.e., the
necessary condition for ranging presented in Section IV.
Through this way, only several ranging measurements need
to be performed, and the ranging delay could be minimized
for tracking moving targets.

B. Related Work

Optimizing the GPS localization has a long way back to
more than one decade; from improving the RF component de-
sign, signal processing, ranging and localization algorithm, to
differential GPS system, and assisted-GPS [11], [16]. The re-
cent exploration of the GPS-enabled smartphone and location-
based services demonstrate the effectiveness and contribution
of these approaches.

When smartphone becomes an important personal com-
panions, researchers propose to use other auxiliary sensors
embedded in a smartphone to improve the accuracy of GPS.
Hybrid approaches have been proposed to balance the power
and accuracy of GPS, e.g., using WiFi fingerprinting, or
accelerometer [3], [5]. Authors in [17], [18] propose rate-
adaptive approaches to balance the energy consumption and
accuracy. Due to the inaccuracy of these auxiliary information,
the performance improvement is not significant.

Recent approaches that using the microphone sensor in
a smartphone for accurate ranging demonstrates a practical
way for achieving accurate auxiliary measurements [12], [13].
H. Liu et al. [12] improved the accuracy of WiFi-based
localization subjecting to ranging constraints. The problem
is that the error of WiFi is even larger than the maximum
ranging distance of the acoustic signal; the performance
gains contributed by peer-wise ranging would be limited. The
CDF results demonstrated in [12] only show improvement
in overall error (most contributed by reduced bias), but the
slope (determines the resolution) remains the same after their
peer-assisted localization approach. Nandakumar et al. [13]
utilized the acoustic signal transmitted by desktop to assist the
WiFi localization, however, they do not consider the mobile
situation, which would limit their application in real scenarios.
These two approaches also suffer slow update time for the
localization (> 7s) due to the time-divided multiple pair-wise
ranging and the inherent low transmission speed of the acous-
tic signal. For N peers, total N(N − 1)/2 ranging pairs need
to be measured, and resulting at least N(N−1) times acoustic
signal transmission for two-way ranging mode. Reducing the
ranging complexity and improve the performance gains of
location optimization algorithm are the two key challenges.

III. SYSTEM DESIGN

Fig. 1 illustrates the Coloc system architecture and major
functional components. In this section, we sketch an overview
of the design consideration, then elaborate on some important
components in the system.
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Fig. 1. System Architecture.

A. Design Consideration

In terms of accuracy, GPS is preferred over its alternatives,
e.g., GSM/WiFi based approaches. However, GPS is extremely
power hungry due to the inevitable complex computations.
One possible way to provide accurate position information
while spending minimal energy is to reduce the location update
rate when the location information is less demanded. As the
basic way to save energy, we also use reduced update rate
for the GPS module, but we focus on balancing the GPS
consumption to the network cost by applying the constraint
that sufficient update rate is needed for tracking a moving
target.

Using relative ranging information to improve the overall
localization accuracy is the basic idea of our proposed Coloc
scheme and [12], [13], the problem lies on how and when
to utilize the ranging information. If the localization error
surface of two peers is larger than their relative distance, the
performance improvement contributed by this ranging mea-
surement would be limited. Utilizing the ranging information
when needed is essential in designing cooperative scheme for
location optimization.

B. Overview of the Coloc Scheme

To realize Coloc scheme, we propose approaches for the
smartphone to collect GPS data, report to the server and use
the refined results calculated by the server. The Coloc scheme
consists of the following three key components:

1) Coloc Software Middleware in a Smartphone:
Each smartphone obtains position by its own GPS
receiver during the start-up period. Three basic mod-
ules in a smartphone are utilized: the GPS module
for coarse location estimation; the network module for
communicating with server; the acoustic module for peer
detection and ranging. These three functionalities are
realized by the software middleware in a smartphone.

The cooperative process with peers is controlled by the
pre-defined protocol. On top of the smartphone software
middleware, cooperative location-based application are
supported, e.g., recording or tagging GPS trajectories
when hangout with friends; obtaining optimized location
when multiple smartphones are in the same vehicle;
tracking multi-users with high accuracy and reliability
requirement.

2) Server Processing for Position Optimization:
The server receives all the GPS location information
from all the users that checked-in our services. Accord-
ing to their coarse locations, users could be divided into
groups, i.e., partition all the smartphones into groups.
Only the users in the same group could cooperate
with each other for location optimization, where the
size of the group is by constrained by the maximum
ranging distance. In each group we apply our Coloc
scheme with relative ranging. Users in one group could
also clustered into small clusters, where the size of
the clusters could be determined by the GPS accuracy.
Widely-used clustering algorithms include K-means, un-
normalized spectral clustering, the G-cut algorithm, and
the normalized cuts algorithm [19]. The reason that we
perform clustering is that peer-to-peer ranging could be
eliminated within one cluster to minimize the overall
ranging cost and delay.
The server will send ranging coordination beacon to
users for relative distance estimation. With all the in-
formation available, the server invokes the position op-
timization algorithm (i.e., neighborhood-based weighted
least-squares estimation algorithm) to refine the position
of each user by utilizing users’ (coarse) GPS position
information and the relative distances obtained in an
iterative mode.

3) Coloc Protocol: Coloc protocol controls the ranging
coordination in a round-robin manner for all the users
in the current cluster. Not all the pairs of peers are
need relative distance, only the peers meet the necessary
condition should perform ranging, which reduces the
overall cost and delay. The server also sends the refined
position back to each smartphone by following the Coloc
protocol; and each smartphone updates its position with
the received value and controls the individual GPS
update rate according to the desired accuracy.

IV. SYSTEM MODELING AND NECESSARY CONDITION

A. Geo-Coordinate

We consider a social network consisting of m collaborators
in Rd, where d is the coordinate dimension, i.e., d = 3 for
ellipsoidal space; d = 2 for the cartesian space. Let Ng =
1, 2, . . . ,m denote the set of collaborators.

Assume the ground truth position of each collaborator is pi,
i ∈ Ng . With ellipsoidal coordinates, pi can be written as a
form of Ecliptic latitudes (radians), longitudes (radians) and
heights (m), i.e., pi = (lati, loni, hi)

T . To simplify the pro-
cess, we can change the ellipsoidal coordinates to the cartesian
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coordinate under the standard of Geodetic Reference System
1980 (GRS80) by function pi(x, y, z) = fell(pi(lat, lon, h))
as

v = a/
√

(1− e(sin(lat))2) (1)
x = (v + h) cos(lat) cos(lon)

y = (v + h) cos(lat) sin(lon)

z = (v(1− e) + h) sin(lat)

where a and e are the reference of ellipsoid major semi-axis
and eccentricity squared parameters defined in GRS80.

For small-scale geographic space, we can focus on the 2D
cartesian coordinate without the heights (h) information. By
subtracting a pre-defined reference point pref = (xf , yf )T , a
local coordinate obtained by the GPS module in smartphone
is p̂i = p̂i − p̂ref = (x̂i, ŷi)

T , i ∈ Ng for plane-coordinate.
Without further justification, the locations of the smartphone
used in the following analysis are the plane-coordinate that
converted from the geo-coordinate.

B. Mathematical Modeling
The estimation error of the location can be written as ei =

|p̂i−pi|. Assuming that the position estimated is unbiased, ei
follows a zero-mean Gaussian distribution as ei ∼ N (0,Σi).
So, the probability density function of p̂i can be written as

f(p̂i) =
1√

2π det(Σi)
exp

(
−DTΣ−1i D

2

)
(2)

where D = (p̂i−pi), and det(Σi) calculates the determinant
of Σi. Σi is the error covariance matrix and is assumed to be
a diagonal matrix with diagonal entries of (σxi )2 and (σyi )2.
Then, the position matrix of each collaborator can be written
as P̂ = [p̂1 p̂2 . . . p̂m] ∈ Rd×m.

The problem of social-aided cooperative localization can be
modeled as to refine the estimated positions (p̂i) obtained by
GPS. The additional information that we utilize to optimize
the accuracy of GPS position are the co-location or relative
distances (D) between collaborators.

For a pair of collaborators pi and pj , their Euclidean
distance can be denoted as dij = ||pi − pj || =√

(xi − xj)2 + (yi − yj)2, where || · || is the 2-norm of
the vector. Considering the measurement error, the estimated
distance between collaborators is the noised version of dij as
d̂ij = dij + nij , where nij is a Gaussian noise component
with nij ∼ N (bij , σ

2
ij). The term of bij is a range bias

induced by non-line-of-sight (NLOS) propagation, and bij = 0
when the measurement is in line-of-sight (LOS) condition.
In real situations, the inter-node distance information is not
fully available, i.e., some of the measurements are missing or
unavailable. To deal with such condition, we define distance
measurement matrix as D = {dij : (i, j) ∈ Ng} with dij = 0
represents the unavailable measurements. The matrix D is a
sparse matrix with sparse rate γ defined as the number of
dij = 0 terms divided by the total number of m(m− 1)/2.

Fisher information J (the reciprocal of CRLB) is often
used as a metric to assess the accuracy of a particular po-
sition estimation. Hence, parameters to be estimated are the

collaborator’s refined position p̂k = (x̂k, ŷk)T , k ∈ Ng by
using their initial position and relative distance. For notational
convenience, we denote the unknown parameter as θ = [p̂k],
where 1 ≤ k ≤ Ng . Let θ̂ denotes an estimation of the param-
eter θ. The error covariance matrix of θ̂ satisfies Information
Inequality as

Er{(θ̂ − θ)(θ̂ − θ)T } ≥ J−1θ (3)

where Jθ is the Fisher information matrix (FIM) of non-
random parameter θ.

The joint likelihood ratio of the discrete random vector r
of the received signal and random parameter θ can be shown
as f(r, θ) = f(r|θ) · g(θ), where f(r|θ) is the conditional
pdf, g(θ) is the a priori probability density function of θ. The
generalized Fisher Information Matrix (FIM) for θ is given by

Jθ , Er,θ{[
∂

∂θ
lnf(r, θ)] · [ ∂

∂θ
lnf(r, θ)]T } (4)

(4) can be further decomposed,

Jθ = Jf(r,θ)|j=i︸ ︷︷ ︸
GPS position info

+ Jf(r,θ)|j 6=i︸ ︷︷ ︸
Info. from cooperation

+ Jg(θ)︸ ︷︷ ︸
Prior Infor.

(5)

where the first term indicates the position information from a
collaborator using GPS; the second term indicates the inter-
ranging information between collaborator i and j; and the third
term denotes a priori information on θ.

From (5), we know that the cooperative localization con-
tributes to the second term; the resulting FIM can be much
better than conventional localization methods that just use
a prior information and j = i term. By using the initial
GPS position result and inter-note information as prerequisite,
perform post-decision optimization can obtain a more accurate
position result p̂k = (x̂k, ŷk)T , k ∈ Ng .

C. Necessary Condition for Relative Ranging

Performing pair-wise ranging for large amount of peers may
cause substantial energy consumption and delay. In reality,
some of these ranging pairs are unnecessary or only contribute
to limited performance improvement. Selecting the ranging
pairs that are necessary could be an effective solution to
balance the performance improvement and ranging cost. In
this Subsection, we derive the necessary condition for ranging
based on the error probability distribution. The rational is that
we analyze the performance gains contributed by direct fusing
the location of co-location users, while this performance gains
would be decreasing for larger relative distance. By analyzing
the maximum allowable distance for performance gains of
location fusion without using distance information, we can set
this maximum allowable distance as the necessary condition
of ranging. If the pair-wise distance is within the maximum
allowable distance, direct fusing the co-located users could
also improve the location accuracy, and no need for costly
ranging process.

Consider the extreme case first, if all the collaborators are
co-located in the same place, this co-location information of
collaborators can be utilized to improve the overall localization
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accuracy due to the correlation between different estimated
positions. For the co-location clusters C1, . . . , CK , the mixture
of the position information of cluster Ck can be written as

p̂k =
1

Nk

∑
i∈Ck

γip̂i (6)

where γi is the weighting coefficient of initial location for
users in cluster Ck, and can be calculated by the historical
position variance of user i.

To illustrate the performance gains with regard to the
maximum allowable distance, we focus on the location fusion
of two users case with p̂i,j = γip̂i + γjp̂j . The probabil-
ity density function of the mixed random variable p̂i,j is
f(p̂i,j) = γif(p̂i) + γjf(p̂j). If equal weighting method is
used for information fusion, the coefficients are γi = γj = 1

2 .
The location estimation result p̂i,j still follows a Gaussian dis-
tribution as (p̂i+ p̂j)/2 ∼ N ((pi + pj)/2,Σi,j), where Σi,j

is a diagonal matrix with diagonal entries of ((σxi )2+(σxj )2)/4
and ((σyi )2 + (σyj )2)/4.

The mean square error (MSE) is often used as a character-
istic metric to illustrate the accuracy of the estimation result.
The MSE of the estimation of p̂i is MSEi = (σxi )2 + (σyi )2.
Define (σpi )2 = (σxi )2 + (σyi )2. The MSE of p̂i,j is given by

ˆMSEi = E[||pi − p̂i,j ||2] (7)

= E[||pi − (p̂i + p̂j)/2||2]

=
1

4
||pj − pi||2 +

1

4
(σpi )2 +

1

4
(σpj )2

where ||pj − pi||2 is the 2-norm of the distance difference,
i.e., the biased value of the estimator. The MSE for the initial
position estimation result is MSEi = (σpi )2. The p̂i,j can be
defined as the difference of the MSE value as

∆MSEi =
1

4
||pj − pi||2 +

1

4
(σpi )2 +

1

4
(σpj )2 − (σpi )2 (8)

=
1

4
||pj − pi||2 +

1

4
(σpj )2 − 3

4
(σpi )2

In order to achieve performance gains for user i when using
the position of user j for information fusion, the condition
∆MSEi < 0 should be satisfied. Define the performance
gain of user i using the position information from i and j
as Gi(i, j) = −∆MSEi. The maximum allowable distance
constraint can be shown as

||pj − pi||2 < 3(σpi )2 − (σpj )2 (9)

(9) means the condition that the performance gains can be
achieved by using co-location information fusion. Only if the
condition (9) is satisfied, two users can be called as “co-
location”. If the initial measurement variance of user i and
j are approximately the same, i.e., σpi = σpj = σp. Then (9)
can be simplified as dpij <

√
2σp, where dpij = ||pj − pi||

is the calculated relative distance by using the measured GPS
position. Since σp =

√
(σx)2 + (σy)2, if σx = σy = σ, then

dpij <
√

2
√

2σ2 = 2σ.
The relation between maximum allowable distance and

measurement variance is shown in Fig. 2a; the performance
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Fig. 2. (a) The relation between maximum allowable distance and mea-
surement variance and (b) the performance gains with regard to the relative
distance and variance.

gains with regard to the relative distance and variance is
shown in Fig. 2b. Note that dpij is different from the ranging
measurement d̂ij ; d

p
ij is obtained by fusing GPS positions

of smartphones, while d̂ij is obtained by inter-user ranging.
Using the initial measured coarse GPS location information,
dpij can be estimated. In addition, dij is the unknown true
distance between Node i and Node j.

If dpij does not meet the constraint of (9), then we can call
it necessary condition for ranging, since the pair-wise ranging
is needed for improving the location accuracy.

V. COOPERATIVE LOCATION OPTIMIZATION

If the estimated dpij violates (9), i.e., meets the necessary
condition for ranging, then pair-wise ranging should be con-
ducted. To improve the positioning accuracy in this condition,
we develop a cooperative localization scheme that leverages
relative distances among the smartphones.

A. Sparse Steepest Descent Optimization

With two independent measurements p̂i and d̂ij available,
the problem can be described as to refine the position p̂i by
utilizing the relative ranging information d̂ij . Typically, the
ranging accuracy of d̂ij is more accurate than the GPS posi-
tioning accuracy due to the short distance between users. We
use the following neighborhood-based weighted least-squares
estimation to improve the positioning accuracy of p̂i,∀i, i.e.,
minimizing the squared error between the calculated distance
and the measured distance:

P̂ := arg min
P̂

e(P̂) = arg min
P̂

∑
(i,j)∈Ng

µij(||p̂i − p̂j || − d̂ij)2

(10)

where e(P̂) is the total sum of distance errors between all the
users, and µij is a weight that is inversely proportional to the
variance σdij . P̂ is a matrix whose columns are p̂i, i ∈ Ng ,
where Ng is the set of all the collaborators in a neighborhood.

The objective function of (10) achieves the minimum value
when the total distance calculated by GPS position equals to
the measured distance, i.e., more accurate results of position
is achieved at the level of the ranging accuracy. To solve
the optimization problem of (10), we apply steepest descent
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method to reduce the error function and calculate the updated
version of user position.

Perform the gradient operation ∇ of the error function
e(P̂) =

∑
(i,j)∈Ng

µij(||p̂i − p̂j || − d̂ij)2 with respect to the
user i has

∇ie(P̂) = 2
∑

(i,j)∈Ng

µij(||p̂i − p̂j || − d̂ij)∇i(||p̂i − p̂j || − d̂ij)

(11)

where d̂ij is a measurement value, ∇id̂ij = 0. ||p̂i − p̂j ||
represents the distance from p̂i to p̂j , i.e., ||p̂i − p̂j || =√

(xi − xj)2 + (yi − yj)2. The gradient of such distance can
be written as ∇i||p̂i − p̂j || = (p̂i − p̂j)/||p̂i − p̂j ||. Then
(11) can be calculated as

∇ie(P̂) = 2
∑

(i,j)∈N+
g

µij(||p̂i − p̂j || − d̂ij)
p̂i − p̂j
||p̂i − p̂j ||

(12)

= 2
∑

(i,j)∈N+
g

µij(1− d̂nij)(p̂i − p̂j)

where d̂nij = d̂ij/||p̂i−p̂j || is the normalized relative distance;
it also characterizes the difference between measured distance
and calculated distance from position. After optimization, d̂nij
should approaching to 1. N+

g represents the sparse set that
d̂ij 6= 0. The relative ranging results between users are not
fully available that some measurements of d̂ij are missing,
i.e., d̂ij = 0. The sparse property of the distance matrix
D = {dij : (i, j) ∈ Ng} causes the performance gains
contributed by distance restraint not fully available especially
when the sparse rate γ is high. However, such sparse feature
can be utilized to speedup the processing by using sparse
matrix operation.

After obtaining the gradient function of the error function
e(P̂), the new position can be updated by using

P̂ := P̂ + α∇ie(P̂) (13)

where α is the iterative step size and α ∈ (0, 1]. Eq. (13)
should be interpreted column-wisely as p̂i := p̂i +
α∇ie(P̂),∀i with p̂i = (x̂i, ŷi)

T .
The steepest descent approach is a local optimization

method with strong requirement of the initial value selection.
However, for our application that GPS position results can be
used as the initial value, the overall performance of steepest
descent can be guaranteed to provide an optimized value
of the position under the restraint of the relative distance
measurement.

B. Weighting Center based Polar Optimization

In the previous subsection, the optimized position results
are achieved by minimizing the error between ||p̂i− p̂j || and
measured distance d̂ij . The optimization process is utilizing
the gradient iteration. Another feasible approach is assume
the measured distance accurate and replace the true relative
distance with d̂ij . The weighting center between two users’

position is more accurate than the individual results. Then up-
date p̂i := f(p̂i, d̂ij) with the relative distance and weighting
center.

The relation to the position of user i and j can be expressed
as d ≡ ||pi − pj ||. For the measured relative distance d̂ij , d
can be replaced by d , d̂ij . The initial position measurement
p̂i follows Gaussian distribution with mean value of pi. The
weighting center of position p̂i and p̂j is theoretically more
stable because random deviation can be canceled out with high
probability. Denote the weighting center pwij = (p̂i + p̂j)/2,
which can be viewed as more accurate than p̂i and p̂j , where
pwij = (x̂wij , ŷ

w
ij)

T , p̂i = (x̂i, ŷi)
T , p̂j = (x̂j , ŷj)

T . The angle
from the position of node i to node j is estimated as

θ̂ = arctan(yi − yj)/(xi − xj) (14)

With the weighting center and θ available, the node position
i and j can be re-estimated in the Polar-coordinate domain.
The position of user j can be calculated by transferring the
Polar-coordinate to Cartesian coordinate by

x̂i := x̂wij + axd/2 · cos(θ̂) (15)

ŷi := ŷwij + ayd/2 · sin(θ̂)

x̂j := x̂wij − axd/2 · cos(θ̂)

ŷj := ŷwij − ayd/2 · sin(θ̂)

where ax and ay are the unit vector from the direction of
node i to j, with equation as ax = (xi − xj)/|xi − xj | and
ay = (yi − yj)/|yi − yj |.

For every iteration process, we need to use the measured
position results of p̂i and p̂j to update the weighting centering
pw and θ. The coefficient of updating is chosen as (Wm +
n− 1)/(Wm + n), where Wm is the window length, n is the
iteration step. Then, substitute pwij and θ in (15) with new
estimated, the optimized position results for node i and j are
obtained.

Different from the calculation of (11) that performs over
all the available nodes of

∑
(i,j)∈N+

g
, (15) only process for

two users, i.e., user i and j. Through perform such pair-wise
optimization over the whole sparse set N+

g , the positions for
all the users can be optimized.

VI. NUMERICAL RESULTS

To illustrate the performance gains contributed by the Coloc
scheme, we conduct monte-carlo simulation to calculate the
error cumulative distribution funnction (CDF) by changing the
noise variance of initial position results. The (x, y) coordinates
of the positions of twelve users (smartphones) are shown as a
scatter figure in Fig. 3a; the positions of each user follow the
same two-dimensional Gaussian distribution and are shown by
different colors.

The mean CDF curves for twelve users of various ap-
proaches and different sparse rates are shown in Fig. 4a
with initial measurement variance of σ = 0.3. The “MA”
represents the conventional moving average method used for
the initial measurements, while “SSD” represents our proposed
Sparse Steepest Descent Optimization approach. Even when
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Fig. 3. Numerical results with 12 users under σ = 1 and R = 2: (a) initial positions, (b) refined positions obtained by SSD, and (c) refined positions
obtained by SSD+Polar.
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Fig. 4. The CDF of location accuracy under various processing types: 1.
Using SSD with different sparse rate of ranging; 2. Using joint optimization
approaches of SSD and Poloar.

the ranging sparse rate is very high (γ = 0.73), i.e., only sev-
eral ranging pair measurements are utilized, the performance
superiority over “MA” is still sufficient. Another interesting
point lies in the no apparent performance degradation when
sparse rate is lower than γ = 0.4. Such property can help
reduce the overall ranging costs and delay while maintaining
desired performance gains.

The performance of the Coloc scheme using ranging in-
formation can be even improved when combine our proposed
Sparse Steepest Descent Optimization and Weighting Center
based Polar Optimization together. Since Polar based opti-
mization is performed for two users, i.e., in a local way, we
execute the Polar method after the the global SSD approach.
The measurement results are shown in Fig. 3. “Initial” is
the initial position measurement; “SSD” case is using our
proposed Sparse Steepest Descent Optimization; “SSD+Polar”
is using the Polar optimization after the SSD processing.

The CDF figure is shown in Fig. 4b. We can know that
using Polar and SSD optimization, the performance gains are
larger than using the conventional moving average method.
When combine SSD and Polar together, the performance can
be even improved as shown in Fig. 4b.

VII. EXPERIMENTAL VALIDATION

A. Experiment Setup

We conducted experiments by using smartphones to collect
location data, and validate our proposed cooperative local-

ization technique by using these real measured results. The
data is collected by using Apple iOS smartphones (iPhone4,
iPhone4S and iPhone5 are used in the experiment). Two cases
of situations are tested: stationary situation for accuracy test;
moving situation for tracking and dynamic performance test.
To facilitate the data processing, we convert the longitude
and latitude value to the cartesian coordinate (x,y) under the
standard of GRS80.

B. Case Study I: Stationary Users

To evaluate the performance of our proposed cooperative
location optimization approach for multi-users in real environ-
ments, we conduct measurements for nine users with random
positions in a campus environment. The initial measurement
results are shown in Fig. 5a. From Fig. 5a, we know that
the initial GPS localization results are very noisy due to the
blockage and interference of the satellite signal. Different from
the simulation results, the obtained GPS results show strong
correlation among adjacent measurements. That’s also why
lower the GPS update rate is possible to save energy without
sacrificing the accuracy. To demonstrate the performance gains
contributed by Coloc scheme, we perform social-aided coop-
erative processing under the co-location and relative distance
constraint. For convenience, we denote “Init” as the initial
position results; “Col” is the result obtained by only utilizing
the co-location information without ranging; “Polar”, “SSD”
and “Polar+SSD” are our proposed schemes by using the
ranging-based information for collaboration. We follow the
same terms/notations used in Section VI.

We applied the normalized cuts algorithm [19] algorithm
to the affinity matrix corresponding to Fig. 5a, and obtained
the clustering results of four clusters as shown in Fig. 6a,
i.e., the positions with large similarity measures are grouped
together. By clustering nine users into four clusters with
co-location, we can perform location fusion without relative
ranging. This approach is labeled as “Col”. The CDF results of
using different algorithms are shown in Fig. 6b. We observe
that the conventional moving average “MA” approach does
not show performance improvement over the initial position
results due to the dependency between adjacent measurements.
By clustering nine users into four clusters with co-location, the
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Fig. 5. Experimental results with 9 users: (a) initial positions obtained by GPS, (b) refined positions obtained by SSD, and (c) refined positions obtained by
SSD+Polar.
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Fig. 6. 1. The clustering results for the 9 users; 2. The CDF of location
accuracy under various processing types.

location accuracy of “Col” is much better than “MA” as shown
in Fig. 6b.

If the relative distance information can be obtained, the
accuracy can be even improved by using “Polar” and “SSD”
approaches. The scatter figure of using “SSD” is shown in
Fig. 5b. After perform joint optimization of “SSD+Polar”, the
more accurate results are shown in Fig. 5c. By comparing the
results to the initial measurement results Fig. 5a, the perfor-
mance improvement of using “SSD+Polar” is significant.

From the statistical results of Fig. 6b, and using 80%
probability as an example, the initial GPS accuracy is around
5 m. After fusing the co-located users without ranging, the
achieved accuracy is about 4 m. When using our proposed
ranging-based optimization approach “SSD+Polar”, the posi-
tioning accuracy is approximately 1.2 m, which is a significant
improvement.

C. Case Study II: Moving Users

To evaluate the performance improvement of Coloc scheme
in moving scenarios, we conduct experiments for the second
case study with moving users. Users carry GPS-enabled smart-
phones and perform cooperative localization with peers when
walking in a campus parking lot. The GPS update time interval
is tG; we use lower tG when applying Coloc scheme to save
the energy.

Fig. 7a shows the initial measurement of GPS trajectory of 4
users when walking around a parking lot, where tG = 0.997s.
Using low update GPS data (tG = 1.994s), and after perform

our proposed “SSD” approach, the devision of the GPS
trajectory has been greatly suppressed as shown in Fig. 7b.
After apply the “Polar” approach in addition to “SSD”, the
trajectory is more smooth as shown in Fig. 7c, which is much
better than the initial high update rate data.

To test the effectiveness of Coloc scheme when users walk-
ing in two separate groups with certain amount of distance,
we conduct experiment by letting three users form a group
and walking in parallel with another user. The walking traces
of these four users are shown in Fig. 7a. After “SSD” and
joint “SSD” and “Polar” optimization, the accuracy of walking
traces improved significantly as shown in Fig. 7b and Fig. 7c.
These results demonstrate the energy efficiency (lower update
rate) and accuracy (better trajectory) of our proposed Coloc
scheme.

VIII. CONCLUSIONS

The GPS receiver of a smartphone does not produce ac-
curate position and does not work in harsh environments
such as indoor environment. In addition, the GPS receiver
onboard is inefficient in power consumption. To address
positioning inaccuracy and power inefficiency, in this paper,
we proposed social-aided Coloc scheme. Specifically, we use
neighborhood-based weighted least-squares estimation when
relative distances between smartphones are available. The
energy efficiency is achieved by sharing location information
among co-located users and lower the GPS update rate.
Numerical and experimental results conclusively demonstrate
that our proposed cooperative localization schemes can achieve
considerable performance gain in both indoor and outdoor
environments. For example, in the experiments of nine users
with random positions, when relative distances are available,
the positioning accuracy of our scheme is 1.2 m with a
confidence level of 80%. In contrast, a regular GPS receiver
has an accuracy of 4.7 meters with a confidence level of
80%. The optimized GPS trajectory also demonstrates the
effectiveness of Coloc scheme for tracking moving targets. Our
future work will further enhance the accuracy of Coloc scheme
and make our smartphone app available for more location-
based or location-aware services and applications.
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Fig. 7. Experiment results of 4 users GPS trajectory when walking around a parking lot.
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Fig. 8. Experiment results of 4 users GPS trajectory when walking along a line.
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