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Abstract

Daily time-step normalized difference vegetation index (NDVI) time series from satellite-derived (NOAA/AVHRR, SPOT/
VEGETATION, TERRA/MODIS) and ground-based micrometeorological sensors were evaluated for a coniferous pine forest (Pinus
sylvestris L.) located in Hyyti7l7, Finland. Micrometeorology-based broadband NDVI was calculated from observed upward and downward

photosynthetically activity radiation (PAR) and global radiation measurements. The composite satellite-derived NDVI time series were
smoothed with a best index slope extraction method (BISE) and adjusted Fourier transform (AFT) in order to downscale from the
compositing period to daily scale.

The broadband and satellite-derived NDVIs were highly correlated during the main growth period (Julian days 90–270), but poorly

correlated when the entire year was considered, i.e., large differences occurred during winter. High correlations were also found between the
seasonal courses for broadband NDVI and daily air temperature. The analysis revealed that the onset of greenness in spring was consistently
determined from broadband NDVI time series in different years, but that fluctuations in NDVI during the late season transition to winter

dormancy prevented reliable prediction of the termination in physiological activity. Efforts to retrieve the same relationships during spring
from satellite-derived NDVI failed.

After comparing the smoothed time series from different NDVI determinations, we examined the relationship between NDVI, gross

primary production (GPP) and FAPAR. An obvious exponential relationship is found between broadband NDVI and GPP (R2=0.72 for clear
weather conditions; also detectable from the satellite sensors), while a linear relationship occurs between broadband NDVI and FAPAR
(R2=0.79). FAPAR in relation to satellite-derived NDVI is best described with a logistic curve under clear weather conditions, but the level of
correspondence is low (R2=0.53). Overall, broadband NDVI is a good index to describe physiological activity of the pine forest during

certain periods, i.e. provides a means for obtaining other physiological parameters that are required by ecosystem models. However, during
the late season, broadband NDVI estimated over the pine stand is influenced by more than vegetation physiological activity. Though satellite-
derived NDVI is more difficult to link to GPP, it may still provide useful information under clear weather conditions. Satellite-derived NDVI

remains our only choice for generalization in large-scale investigations. Thus, intensified examination of the influences of smoothing and
downscaling of satellite-derived NDVI is inevitable.
D 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The normalized difference vegetation index (NDVI) is
one of most commonly used vegetation indices for land
cover classification (Brown et al., 1993; Evans et al., 1993;
Loveland et al., 1991; Townshend et al., 1994), derivation of
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vegetation biophysical properties (Asrar et al., 1992;
Goward & Huemmrich, 1992; Sellers et al., 1994),
estimation of net primary production (Prince, 1991; Run-
ning and Nemani, 1988; Tucker & Sellers, 1986), and
monitoring of environmental impacts (cf. Wang et al.,
2003). A wide variety of analytical methods have been
developed from NDVI time series data to (1) establish
seasonal and interannual trends in vegetation properties such
as phenological change (e.g., Duchemin et al., 1999; Hill &
Donald, 2003; Moody & Johnson, 2001; Reed et al., 1994)
and (2) derive biophysical parameter values for physically
based models of climate, hydrology, net primary production,
and biogeochemical cycling (Goward et al., 1987, 1985; Liu
et al., 1999; Prince & Tucker, 1986; Running & Hunt, 1993;
Sellers et al., 1994; Spanner et al., 1990; Tucker & Sellers,
1986). Temporal sequence data from satellite observations
have been used to characterize the timing, dynamics, and
distribution of phytophenological events (Azzali & Menenti,
1999), observations that are critical for quantification of
ecosystem carbon balances and carbon sequestration by the
biosphere.

NDVI time series are commonly obtained from the
advanced very high resolution radiometer (AVHRR) GAC
data source (James & Kalluri, 1994) and 1-km data source
(Eidenshink & Faundeen, 1994), from the SPOT4-VEGE-
TATION data source (Duchemin & Maisongrande, 2002),
and the MODIS data source (Van Leeuwen et al., 1999).
Compositing methods have been developed to remove
environmental influences, such as cloud cover, and to
improve the stability of NDVI time series data (e.g.,
Holben, 1986; Van Leeuwen et al., 1999; Duchemin et al.,
2002). By compositing, temporal resolution is lost, making
it difficult to compare directly with land surface observa-
tions (Huemmrich et al., 1999). One way to again increase
temporal resolution to a daily time-step is to interpolate
from a function fit to a smoothed NDVI time series.
However, the interpolation can introduce large biases. To
our knowledge, few studies have reported on the accuracy
of smoothed NDVI time series, seemingly due to the lack of
appropriate ground-based NDVI data.

As an alternative to satellite or ground-based spectror-
adiometer derived NDVI, Huemmrich et al. (1999) calcu-
lated broadband NDVI time series from tower-mounted
photosynthetically active radiation (PAR) and global radi-
ation (both incoming and reflected above the canopies)
sensors at four Boreal Ecosystem–Atmosphere Study
(BOREAS) sites. The comparisons between broadband
and narrow-band nadir-viewed NDVI indicated good agree-
ment. The advantage of broadband NDVI over satellite-
derived NDVI time series is that temporal resolution at a
daily time-step or higher is achieved, without the influences
of angular geometry and essentially without atmospheric
disturbances. We report here 5 years of daily broadband
NDVI observations (according to the method of Huemmrich
et al., 1999) obtained over a Scots pine forest in Hyyti7l7,
Finland. Since for large-scale applications, satellite-derived

NDVI time series data remain essential, understanding of
smoothed and interpolated information from composited
NDVI observations is critical for the construction of models.
The definition of appropriate smoothing methods may
directly decide the success of applications, if composited
data may be used at all. Thus, an objective of the paper is to
compare the satellite-derived NDVI time series after
smoothing with the broadband NDVI time series at the
Hyyti7l7 tower site. Both broadband and satellite-borne
NDVI time series are tested for their usefulness in
describing phenological changes in the pine forest as
captured by seasonal courses in radiation absorption of the
canopy (FAPAR) and estimated gross primary production
(GPP).

2. Materials and methods

2.1. Hyytiälä pine forest site and radiation observations

Ground-based measurements were carried out at the
Station for Measuring Forest Ecosystems–Atmosphere
Relation (SMEAR II) in Hyyti7l7 forestry field station
located in Finland (61851VN, 24817VE). It is one of 15 sites
within the network of the EUROFLUX (dlong-term carbon
dioxide and water vapor fluxes of European forests and
interactions with the climate systemT) (Tenhunen et al.,
1998; Valentini, 2003). Scots pine (Pinus sylvestris L.)
dominates the vegetation with only 1% of the canopy made
up of other species within ca. 200 m of the tower. The
homogeneous fetch reaches ca. 1200 m. The stand was
planted in 1962 and the mean height of the trees reached 12
m with the average breast height diameter (BHD) of 13 cm
in 1996. The stem density is ca. 2500 stems ha!1 with total
biomass of 45 t ha!1. And the projected leaf area index of
this tree stand is 3. The understory consists of a well-
developed canopy of Vaccinium myrtillus, which may play
an important role in ecosystem function at this site. The soil
can be characterized as a sandy to coarse silty glacial till.

A 73-m high mast and a 15-m tower are used to measure
meteorological parameters and gas composition as well as
the gas exchange of the trees, cf. Vesala et al. (1998).
Incoming global radiation and PAR are measured at 18 m
height, while reflected global radiation and PAR are
measured at 70 m height. The radiation sensors for global
radiation (both incoming and reflected) are the Reemann TP
3 pyranometer (Astrodata, Tartu, Estonia) and for PAR the
LI-190SZ quantum sensor (LiCor, Lincoln, NE, USA). The
wavelength range of the pyranometer is from 0.3 to 4.8 Am,
while PAR sensors include from 0.4 to 0.7 Am. Hourly time-
step data were retrieved by averaging the output for 60-min
intervals. For the conversion of photon flux density (Amol
m!2 s!1) to energy flux density (W m!2), conversion
factors from Ross and Sulev (2000) have been applied in the
paper (0.2195 for incoming PAR and 0.2072 for reflected
PAR).
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2.2. Broadband NDVI and FAPAR for Hyytiälä

The definition of NDVI utilizes differences in leaf
absorptance in the red and near-infrared regions (Deering,
1978):

NDVI ¼ XNIR ! XR

XNIR þ XR
ð1Þ

where X can be digital counts, at-satellite radiance, top of
the atmosphere apparent reflectances, land-leaving surface
radiance, surface reflectances, or hemispherical spectral
albedos (Huete et al., 1999).

Huemmrich et al. (1999) replaced the red domain with
PAR and the near-infrared with an optical infrared domain
in order to use the upward and downward PAR and global
radiation sensors measurements. Thus, the broadband NDVI
is calculated from:

NDVIb ¼
qOIR ! qPAR
qOIR þ qPAR

ð2Þ

where qPAR is PAR reflectance (the ratio of reflected and
incoming PAR measured by downward and upward PAR
sensors),

qPAR ¼ PARrefl

PARin
ð3Þ

and qOIR is the reflectance of optical infrared radiance
(irradiance value between the difference of global radiation
and PAR), thus qOIR is calculated from:

qOIR ¼ GRrefl ! PARrefl

GRin ! PARin
ð4Þ

where GRin and GRrefl are incoming and reflected global
radiation, respectively.

Relationships between vegetation indexes with fraction
of absorbed photosynthetically active radiation have been
established both theoretically (Choudhury, 1987; Knyazi-
khin et al., 1999; Sellers, 1987) or empirically (Gamon et
al., 1995; Wylie et al., 2002). These studies relate mainly to
satellite-derived NDVI, but similar approaches may be taken
with respect to broadband NDVI. In this case,

FAPAR ¼ PARin ! PARrefl

PARin
ð5Þ

This calculation neglects the PAR penetrating through
the canopy and absorbed by the ground. However, the small
percentage of ground absorbed PAR has little effect on the
analysis.

2.3. Satellite-derived NDVI for Hyytiälä

NOAA AVHRR weekly NDVI data from 1996 through
1998 and the year 2000 were obtained from the German
Remote Sensing Data Center (DFD). This weekly product is
based on NOAA-14 AVHRR data and maximum value
compositing over 21 AVHRR passes during the period.

Before compositing, special emphasis has been given to a
precise image registration and a cloud screening procedure
to ensure that only cloud free pixels are taken for the latter
compositing process. This is based on a mixture of
unsupervised pre-processing steps and a supervised param-
eterization of the cloud tests and an image navigation
control. The 1998 through 2001 SPOT VEGETATION
NDVI (first version) on a 10-day basis were downloaded
from the free VEGETATION products site (http://
www.free.vgt.vito.be/), and 2001 TERRA MODIS NDVI
and EVI (version 3) were obtained from the Earth
Observing System Data Gateway on a 16-day basis (EOS,
http://edcimswww.cr.usgs.gov/pub/imswelcome/). All the
products have a spatial resolution of 1 km. And the data
from the tower site pixel were extracted.

Several factors other than land surface characteristics
influence the stability of the satellite-derived NDVI, e.g.,
cloud contamination, atmospheric variability, and bidirec-
tional reflectance (Gutman, 1991). The changes in NDVI
caused by these factors are seen as undesirable noise in
vegetation studies. Thus, compositing methods have been
developed to eliminate these effects. The currently accepted
procedure is the maximum value composite technique
(MVC, Holben, 1986), which has been applied to the
AVHRR NDVI data source. The MVC selects the maximum
NDVI value on a per-pixel basis over a set compositing
period. It performs better over near-Lambertian surfaces and
for data uncorrected for atmospheric composition (Cihlar et
al., 1994), which is not suitable for MODIS (atmospheric
corrected according to Van Leeuwen et al., 1999). The
MODIS algorithm selects all reflectance data from a 16-day
period, based on data integrity and cloud flags, and fits the
Walthall BRDF model to the individual band data before the
final calculation of NDVI. The first version of SPOT-
VEGETATION data is derived using the MVC method, but
a new method designated as bidirectional compositing
(BDC) has been designed to allow anisotropy removal by
retrieving BRDF (Duchemin et al., 2002; Duchemin &
Maisongrande, 2002).

Considerable noise remains in satellite-derived NDVI
time series data even after application of the various
compositing methods. Missing data or periods where the
stored values are obtained under cloudy conditions often
lead to sudden and large decreases in NDVI. One approach
to deal with this problem is to smooth NDVI profiles using
statistical filters (e.g., Dijk et al., 1987), but statistical filters
generally do not remove noise. Sellers et al. (1994) applied
Fourier wave adjustment of outliers in the NDVI time series
to eliminate large and sudden decreases. Viovy et al. (1992)
proposed the best index slope extraction (BISE) as an
alternative to MVC method to reduce noise in NDVI time
series.

The satellite-derived NDVI data used here is the
composite data available from the above listed data sources,
not originally recorded data. Our goal is to post-process
these data such that stability is improved (eliminating the
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remaining effects from clouds which occur over long
periods) and smooth temporal trends that allow estimation
of NDVI on a daily basis for comparison with ground-based
measurements are identified. Examination of the results
from post-processing of the data products seems appropri-
ate, since these data provide the starting point in most
applications and the problems are continually confronted.
Two different smoothing methods that were designed for
compositing NDVI time series have been further used were
used here in post-processing steps, namely BISE and
Fourier wave adjustment.

2.3.1. BISE
Originally, BISE was designed as an alternative to MVC

and was applied to daily NDVI data (Viovy et al., 1992).
The BISE algorithm assumes (1) that clouds and other
factors will only decrease NDVI values, (2) data trans-
mission errors will cause abnormally high NDVI, and (3)
that actual vegetation-related NDVI decreases (e.g., due to
cutting of meadows, removal of trees, etc.) may be sudden
but will persist for relatively long time periods since any
vegetation re-growth is relatively slow. Considering com-
posite data, assumption (2) is no longer needed. Based on
these assumptions, we accept only large decreases in NDVI
when there are no values in the subsequent 30 days that are
greater than 120% of the immediate low value. Subsequent
large increases are assumed to occur due to the ending of
cloudy periods. The threshold of 20% is same as used by
Viovy et al. (1992), while the dsliding periodT of 30 days for
considering whether an actual change in vegetation has
occurred is based on our experience with the frequency of
cloudiness in Western Europe. Thus, for AVHRR, the next
three NDVI data in time series are taken into account, next
two for SPOT-VEGETATION, and next one for MODIS
NDVI data.

2.3.2. Adjusted Fourier transformation (AFT)
Decomposition of temporal data to the frequency domain

can be achieved using Fourier analysis, in which frequency
information is represented as constituent sine and cosine
functions (Briggs & Hensen, 1995). Decomposed signals
can be converted back to the temporal domain through the
inverse Fourier transform. If the original data is discrete
rather than continuous, the discrete Fourier transform (DFT)
which requires a regular spacing of samples within the
temporal domain should be applied. Fourier analysis is an
objective, consistent, and concise summarization of the
temporal signature that is sensitive to systematic changes in
vegetation and applied widely in NDVI phenology analysis
(e.g., Azzali & Menenti, 1999; Moody & Johnson, 2001;
Sellers et al., 1994).

The discrete Fourier transform is given by

yk ¼
1

N

X

N!1

k¼0

cke
!i2pk=N ð6Þ

where N is the number of samples in the time series, k is the
current sample number, i is an imaginary number, and c is
the kth sample value.

Substituting Euler’s equation into the DFT formula and
expanding gives:

yn ¼ a0 þ a1cos
2pn
N

þ b1

! "

sin
2pn
N

! "

þ a2cos
4pn
N

! "

þ b2sin
4pn
N

"

þ N þ akcos
2kpn
N

"

þbksin
2kpn
N

"!!!

ð7Þ

where a0 is the mean, a1 and b1 are first-order trigono-
metrics, a2 and b2 are second-order trigonometrics, and so
on to the kth order. Each order represents a harmonic.

The composite NDVI time series are obtained with a
composite period sampling rate, which fits to the require-
ment of DFT. Although several harmonics can be produced
from DFT, only the first two harmonics are included in
inverse transformation. The determination of trigonometric
coefficients is based on the modification of Sellers et al.
(1994), which applies robust least-squares optimizing
(taking into account that errors in NDVI result in lower
values; AFT). Thus, negative deviations receive low
weights and positive deviations high weights during fitting.
The detailed procedures are given in Appendix A.

2.4. GPP determinations at the Hyytiälä site

The GPP dataset in Hyyti7l7 site was obtained from
tower eddy covariance measurements and micrometeoro-
logical data following the methods described by Falge et al.
(2003). A detailed description of steps in the procedure is
given in Wang et al. (2004). In summary, continuous
measurements of NEE and microclimate parameters at a
half-hourly time step from 1997 to 2000 were gap filled
(Falge et al., 2001, look-up table method) and were used to
extract estimates of half-hourly step GPP and ecosystem
respiration (Reco). GPP is obtained by adding Reco to the
observed net ecosystem exchange (NEE) by the eddy
covariance technique. Reco may be estimated from the
observations via several methodologies (Falge et al., 2002).
Only Reco estimated from nighttime data was applied here,
where:

Reco ¼ Reco!Tref e
Ea
R

1
Tref

! 1
TK

#$ #$

ð8Þ

Reco-Tref (the ecosystem respiration rate at reference
temperature, Tref, of 283.16 K) and Ea, the activation energy
in J mol!1, are fitted site-specific parameters, R is the gas
constant (8.134 J K!1 mol!1), and TK the soil temperature
at a depth of 5 cm or the air temperature measured above the
canopy. In the analysis conducted here, we used the air
temperature above the canopy.

The regression was first fit to nighttime data for the entire
year to obtain an estimate of Ea applicable over a broad
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range in nighttime temperature. Subsequently, Ea was held
constant and Reco-Tref fit for 21-day periods for each data set
starting on January 1 of each year. The parameters were then
used to estimate temperature dependent corrections on a
half-hour basis at the temperatures observed during the
daytime period, i.e., to obtain half-hourly GPP. Hourly step
GPP dataset was obtained through averaging the two half-
hourly GPP values for each hour. Daily GPP was estimated
by integrating all half-hour GPP within the time from
sunrise to sunset on each day.

3. Results

3.1. Broadband NDVI

3.1.1. Relationship to phenology
Broadband NDVI was calculated from measurements of

PAR and global radiation over the canopy on a daily basis
for 1997–2001 except the year 1998 when a global radiation
sensor failed to function. In order to remove possible errors
in further analysis when comparing with satellite-derived
NDVI, the measurements were evaluated at the approximate
time of satellite overpasses. These were 10:00 LT for
VEGETATION and MODIS and 14:00 LT for AVHRR.
Thus, two broadband NDVI time series were obtained that
corresponded to these two times of day.

Fig. 1 shows the broadband NDVI in various years at
daily time-step (only the 14:00 LT time series is presented).
Spikes are observed in the curves when including all days.
These consistently occur between Julian days (JD) 1 and 60
or after JD 270. Clear days occur in Hyyti7l7 mainly within
the growing season, while winter has long periods with
continuous cover by clouds. Selecting only clear day points
as Huemmrich et al. (1999), re-occurring trends in NDVI
over the season are clearly seen within the period JD 80–
250. Smoothing the overall data with a moving mean
provides a longer time sequence but includes inherent noise.
Interpretation of this smoothed NDVI remains difficult
during the winter period indicated.

Ignoring the winter period with noisy data (probably due
to changes in snow cover and reflectance changes associated
with cloudy weather), a broadband NDVI value of ca. 0.5
was consistently observed with increase in clear days in
spring (ca. JD 90–100). NDVI then increased to a maximum
value of ca. 0.75–0.8 throughout summer, followed by a
slow decrease between JD 230 and 270 (recognizable only
during 1999 and 2000 with a longer period in late season
with clear days).

Reed et al. (1994) suggested criteria to link NDVI
changes to vegetation phenology. According to their
methods, phenological change is indicated where momen-
tary data correspond to the moving mean and where an
increasing or decreasing trend is observed. Onset of green-
ness occurs where the maximum sustained number of days
are found with increasing NDVI, while the end-of-season

may be determined from a similar decreasing NDVI trend.
As pointed out by Reed et al. (1994), the selection of the
averaging period influences the final result, since a long
time interval results in a less sensitive trend detector and a
short interval is responsive to insignificant trend changes.
For the Hyyti7l7 data, a period of 15 days was found to
provide correspondence between the moving mean and
individual observations.

According to such phenological criteria (cf. Reed et al.,
1994), the beginning of the growing season is recognizable

Fig. 1. Daily broadband NDVI in Hyyti7l7 site, Finland for 1997, 1999,

2000, and 2001. NDVI time series are based on 14:00 LT observations.
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where NDVI consistently takes on a value of ca. 0.52–0.54
and then begins to increase. However, the end-of-season is
not definable from the NDVI time series, since large
variation in NDVI are observed after JD 270. The maximum
NDVIs occur late in the growing season. Variations in
NDVI after JD 270 seem most easily explained as controlled
by abiotic factors, since strong winter hardening is to be
expected at the Hytti7l7 site.

3.1.2. Relationship with air temperature
As seen in Fig. 2, broadband NDVI and daily average

air temperature exhibit similar annual patterns. NDVI
increases when air temperature surpasses 0 8C and tend
to increase until the temperature is over 10 8C. Cross
correlation (Fig. 3) demonstrated that there was no time

lag between broadband NDVI and daily average air
temperature. The correlation coefficient was lower in
1999 at 0.52, compared with 0.67 and 0.73 in year 1997
and 2000, respectively. This most probably is due to the
data gap before JD 91, which was caused by failure of the
global radiation sensor. Oscillations in air temperature
during summer and before Julian day 241 are not
correlated with any change in NDVI, even if air temper-
ature decreases below 10 8C. In contrast, small decreases
in air temperature after JD 241 were associated with
decreases in NDVI.

3.1.3. Daily variation in broadband NDVI
To provide a background for analysis of satellite-derived

NDVI, daily variation in broadband NDVI was investigated.
Results from typical clear, partly cloudy, and cloudy days
from 1997 to 2001 are shown in Fig. 4. Clear days were
selected such that sunshine hours occurred during more than
70% of the day length, while cloudy days indicate sunshine
duration less than 30% of the time.

The daily variation in broadband NDVI is small on clear
days. The mean absolute deviation for all clear days in 1997
was 2.4% of daily average NDVI, 1.7% for both 1999 and
2000, and 1.8% for 2001. The daily patterns were also
similar, with relatively low values around noon and higher
values in early morning and late afternoon. A slightly larger
mean absolute deviation was found for partly cloudy days
(4.2% in 1997, 3.0% in 1999, 4.5% in 2000, and 4.6% in
2001). Surprisingly, the daily pattern of broadband NDVI on
partly cloudy and clear days was extremely similar. With
increased length of cloud cover, daily patterns in broadband
NDVI were more diverse. The mean absolute deviation
increased to 9.7% in 1997, 11.1% in 1999, 12.5% in 2000,
and 8.4% in 2001. Although broadband NDVI is little
influenced by solar zenith angle and is stable on partly
cloudy days, dense clouds obviously modify the spectral
quality and reflectance of light in the wavelength bands
utilized. Nevertheless, broadband NDVI seems a rather
stable vegetation index as compared with satellite-derived
NDVI.

Fig. 2. Annual course in broadband NDVI and daily average air temperature

at Hyyti7l7, Finland for 1997, 1999, and 2000.

Fig. 3. Cross correlation between broadband NDVI and air temperature

with different time lags at Hyyti7la site, Finland in 1997, 1999, and 2000.
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Fig. 4. Daily variation of broadband NDVI with clear, partly cloudy, and cloudy weather conditions in 1997, 1999, 2000, and 2001 at Hyyti7l7, Finland.

Fig. 5. Downloaded composite and smoothed NDVI times series from different satellite-borne sensors during various years for Hyyti7la, Finland.
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3.2. Satellite-derived NDVI

3.2.1. Relationships between NDVIs from different sensors
The downloaded composited NDVI data (original from

data source) from three satellite-borne sensors together with
smoothed time series by the adjusted Fourier transform and
BISE methods are illustrated in Fig. 5. All downloaded
NDVI, independent of the specific data source, exhibited
sudden decreases, which were obviously not caused by
changes in the vegetation. Both the adjusted Fourier
transform and BISE smoothed NDVIs followed the trends
in original composite NDVI but showed less variation.
However, the adjusted Fourier transform NDVI exhibited
large deviations at the beginning and end of the year, while
BISE smoothed NDVI remained consistent with the
composite NDVI observations.

The relationships between the smoothed NDVI time
series from different methods were examined by regression
analysis. The regression coefficient ranged from 0.28 to
0.96 if all interpolated daily NDVI are included in the
analysis. The regressions improve if only data from the
summer growth period are used (from JD 90 to 270; with
exceptions in year 2000 for VEGETATION NDVI and
AVHRR NDVI).

Narrow band NDVI (satellite-derived NDVI) may have a
different value from broadband NDVI; however, the
seasonal patterns should correspond if both are similar
indicators for changes in vegetation characteristics. Thus,
we compared satellite-derived and broadband NDVI (Table

1). For AVHRR NDVI, adjusted Fourier transform was
more consistent from year to year and exhibited a higher R2

value except during 1997 and 1999 when BISE performed
better. For VEGETATION NDVI, BISE performed better
than the adjusted Fourier transform in all years. For MODIS
NDVI, both methods produce a high quality NDVI time
series during the growth period, but BISE had provided a
higher R2 value when the entire annual data set was used.

An effort to obtain phenological indices from smoothed
satellite-derived NDVI time series based on the method of
Reed et al. (1994) failed. None of the satellite-derived NDVI
time series allowed estimation of the end-of-season at this
site (Table 2). Although onset-of-greenness information was
obtained from adjusted Fourier transform NDVI time series,
the indicated dates were determined when average air
temperature was below 0 8C. No onset-of-greenness points
were distinguishable from BISE smoothed NDVI time
series.

3.3. Applications of NDVI time series

3.3.1. Relationship of NDVI to GPP
GPP is an integrative expression of overall function of

aboveground vegetation in assimilation of carbon. Since
changes in the physiology and structure of plant canopies, i.e.
development of pigment systems and leaf area, are directly
viewed byNDVI, comparisons at flux tower locations such as
Hyyti7l7 can provide useful insight into the coupling of
phenology, ecosystem physiology, and remote sensing. Fig. 6

Table 1

Regression comparison (R2) of the satellite-derived NDVI from different smoothing methods as a function of broadband NDVI in various years in Hyyti7l7,
Finland

Data source Smoothing 1997 1999 2000 2001

method
All GP All GP All GP All GP

AVHRR FFT 0.42 0.7 0.35 0.58

BISE 0.43 0.82 0.09 0.13

VEGETATION FFT 0.01 0.67 0.14 0.1 0.52 0.8

BISE 0.28 0.71 0.20 0.76 0.63 0.77

MODIS FFT 0.44 0.89

BISE 0.75 0.84

Results are given for the entire year and for Julian days 90–270 (growth period=GP).

Table 2

Phenological information retrieved from smoothed satellite-derived NDVI time series in various years at Hyyti7l7, Finland

Data source Smoothing 1997 1999 2000 2001

method
Onset-of-

greenness

End-of-

season

Onset-of-

greenness

End-of-

season

Onset-of-

greenness

End-of-

season

Onset-of-

greenness

End-of-

season

AVHRR FFT 26 (!3.3 8C) n 43 (!7.8 8C) n 36 (!2.7 8C) n

BISE n n n n n n

VEGETATION FFT 64 (!6.5 8C) n n n 66 310

BISE n n n n n n

MODIS FFT 31 n

BISE 26 n

Average daily temperature on indicated days is given in parentheses. n indicates that a determination was not possible.
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shows the scatter diagrams of broadband NDVI and GPP for
all weather conditions and only clear weather conditions for
the years of 1997, 1999, and 2000 when both broadband
NDVI and GPP are available.

The curve fit to the data for all weather conditions is
(GPP in Amol m!2 s!1):

GPP ¼ 0:0081e 9:34TNDVIBBð Þ R2 ¼ 0:50
% &

ð9Þ

The R2 is improved if only clear weather days are used in
the analysis:

GPP ¼ 0:0031e 11:33TNDVIBBð Þ R2 ¼ 0:72
% &

ð10Þ

It is evident that the broadband NDVI tends to be
saturated in relation to GPP at large NDVI values (N0.7).
Nevertheless, with changes from spring to summer or from
summer to fall, there is a strong correlation between NDVI
and GPP despite small changes in LAI. Also, there seems to
be interannual variability in the relationship, which is
evident from the clustering of values at two NDVI maxima.

Since high NDVI and the saturation phenomenon usually
occur on clear days with strong solar radiation in summer,
we might speculate that good indications of seasonal
controls on gas exchange may possibly be read from the
data but when the maximum carbon uptake capacity of the
canopy is achieved, other factors, e.g., temperature or water
availability, strongly influence day to day in GPP and limit
the information that is available from simple correlation
analyses.

Utilizing smoothed satellite-derived NDVI time series,
exponential relationships were similarly obtained (Table 3).
In contrast to broadband NDVI, the smoothed satellite-
derived data exhibited higher R2 with all weather con-
ditions included. Smoothing with BISE provided better
results with R2 values similar to those obtained with
broadband NDVI.

3.3.2. Relationship with FAPAR
A linear relationship was obtained between FAPAR and

broadband NDVI on clear days (Fig. 7):

FAPAR ¼ 0:138NDVIþ 0:869 R2 ¼ 0:79
% &

ð11Þ

The R2 decreased to 0.69 if all weather conditions were
included:

FAPAR ¼ 0:521NDVIþ 0:605 R2 ¼ 0:69
% &

ð12Þ

In the case of satellite-derived NDVI time series, a
logistic relationship was obtained for FAPAR (Table 4). The

Fig. 6. Scatter diagrams of broadband NDVI and GPP for the Scots pine

forest at Hyyti7l7, Finland. The GPP data set includes daily integrated

values from the years of 1997, 1999, and 2000.

Table 3

Exponential relationships between GPP and smoothed satellite-borne NDVI time series and fitted parameters for model: GPP=a*eb*NDVI at Hyyti7l7, Finland

Data source Smoothing

method

GPP

All Clear days

a b R2 n a b R2 n

AVHRR FFT 0.107 9.917 0.67 505 0.472 7.087 0.37 204

BISE 0.139 9.603 0.76 436 0.533 6.871 0.58 204

VEGETATION FFT 0.821 2.991 0.41 346 1.589 2.637 0.22 299

BISE 0.43 4.166 0.60 346 0.506 4.194 0.53 299

Fig. 7. Relationship between FAPAR and broadband NDVI under clear

weather conditions at Hyyti7l7, Finland during the years of 1997, 1999, and
2000.
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correspondence between smoothed and FAPAR was low in
all cases. For AVHRR NDVI, adjusted Fourier transformed
NDVI had a stronger relationship with FAPAR than did
BISE smoothed NDVI, while the opposite is true for
VEGETATION NDVI.

4. Discussion and conclusions

The use of satellite-derived NDVI time series for
describing phenological changes in vegetation at large
scales has been demonstrated in a number of studies (e.g.,
Birky, 2001; Justice et al., 1985; Moody & Johnson, 2001).
These analyses provide a basis for monitoring fluctuations
and trends in surface characteristics as driven by interannual
climate variability, climate change, and other natural and
anthropogenic effects that impact the functioning of
ecosystems. The derived phenological information has
provided a basis for discriminating land cover and is widely
applied in land cover classification (e.g., Loveland et al.,
1991; DeFries and Townshed, 1994; Townshend et al.,
1987).

Time series of NDVI have also been used to derive
biophysical parameters critical to process models, FPAR and
LAI in TURC (Ruimy et al., 1996); FPAR, soil water
content, and evapotranspiration in GLO-PEM (Prince,
1991); FPAR in CASA (Potter et al., 1993) and LAI in
BEPS (Liu et al., 1999). Nevertheless, the quality of NDVI
time series after compositing either has been ignored or is
not detailed in the these studies, leaving open the questions
of how well a coupling between actual ecosystem responses
and remote sensing of change has been achieved, and how
specifically NDVI provides indication with respect to
particular changes in ecosystem structure and function The
satellite-derived NDVI time series decrease temporal reso-
lution of observations depending on the compositing period.
Moreover, the whiskbroom sensors (AVHRR, MODIS) alter
the pixel size with scan angle by as much as a factor of 4
(Van Leeuwen et al., 1999). These limitations on temporal
and spatial resolution of satellite-derived NDVI time series
as well as remaining effects of clouds make direct
comparisons with on-the-ground response difficult
(Huemmrich et al., 1999). The strong effects of temporal
sampling, remaining cloud cover, and data processing are
apparent from the comparisons presented in Fig. 5 and Table

1. One possible way to increase temporal resolution to a
daily time-step is to interpolate the smoothed NDVI time
series by BISE or Fourier wave adjustment. However, the
interpolation may lead to a large bias. Such bias is only
revealed by comparison with ground-based NDVI time
series. As shown in Table 1, only with recent data from
MODIS was there a good correspondence between broad-
band and satellite-derived NDVI.

One of the reasons detailed ground-based NDVI time
series are seldom produced is that most spectroradiometers
used in remote sensing are not designed to operate
automatically and to be exposed to the weather, which
limits data collection. Micrometeorology based NDVI
provides a new potential as a benchmark criterion in the
validation and study of NDVI time series. Compared with
satellite-derived data, micrometeorology-based NDVI is not
affected by atmospheric conditions (Fig. 4). Thus, a ground-
based network of NDVI estimates will provide a very
powerful tool for evaluation of remote sensing NDVI
estimates and associated corrections. Existing tower-based
networks (e.g., FLUXNET, Baldocchi et al., 2001) provide
anchor stations for such activities.

Moreover, one can use the broadband NDVI directly as
input into models that simulate ecosystem function (e.g.,
GPP). This will allow us to evaluate the assumptions and
algorithms of remote sensing-based GPP algorithms, elim-
inating the uncertainties that occur due to atmospheric
effects. While it would be desirable to install high spectral
resolution instruments at tower sites, the broadband NDVI is
advantageous since most instrumentation is are already
installed at many sites and the required extension may be
economically achieved.

Any comparisons with remote-sensing based NDVI must
of course recognize that the wavelengths used in broadband
NDVI calculation are quite different from those used for
satellite-derived NDVI. Nevertheless, similar relationships
between ecosystem response and both broadband or satellite-
borne NDVI should be expected, as shown by Huemmrich et
al. (1999) who compared the broadband NDVI with
narrowband NDVI from helicopter-mounted multiband
modular radiometer (MMR) measurements over the BOR-
EAS sites.

Broadband NDVI may be more closely related to canopy
physiology than satellite-derived NDVI. It is less influenced
by weather conditions and the temporal link to ecosystem

Table 4

Logistic relationships between FAPAR and smoothed satellite-derived NDVI time series and fitted parameters for model: FAPAR=a+b*ln(NDVI) in Hyyti7l7,
Finland

Data source Smoothing

method

FAPAR

All Clear days

a b R2 n a b R2 n

AVHRR FFT 1.016 0.067 0.26 772 0.994 0.032 0.53 345

BISE 0.995 0.043 0.15 772 0.986 0.021 0.48 345

VEGETATION FFT 0.969 0.041 0.13 471 0.972 0.017 0.15 299

BISE 0.969 0.031 0.12 471 0.978 0.035 0.54 299
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observations may be determined separately in individual
investigations. Thus, broadband NDVI should provide the
appropriate tool for identifying biophysical parameters for
ecological models via reflective properties. Simultaneous
examination of broadband and satellite-derived NDVI and
comparison with ground-based information from ecosystem
study sites must be emphasized in order to couple remote
sensing with detailed knowledge of ecosystem process
regulation, for example with GPP and carbon balances. In
this way, the scatter shown in Figs. 6 and 7 may eventually
be interpreted, and the empirical functions shown may be
replaced with others based on ecosystem process understan-
ding. As a goal, we may hope to obtain consistent
relationships between NDVI and critical biophysical varia-
bles rather than the confounded results given in Figs. 6 and 7
together with Tables 3 and 4. Satellite-derived NDVI
remains our only choice for generalization in large-scale
investigations. Thus, intensified examination of the influen-
ces of smoothing and downscaling of satellite-derived NDVI
is inevitable.
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Appendix A

Adjusted Fourier transform details

There are missing data in the sequence of downloaded
NDVI, since clouds may occur during the entire compositing
period and the resulting values are eliminated by the bcloud
maskQ. Moreover, some errors in NDVI still exit which
produce a data sequence with sudden decreases and increases.
Since further adjustment of the NDVI time series is necessary,
we applied the AFT suggested by Sellers et al. (1994).

The adjusted Fourier transform of NDVI time series is
based on two assumptions:

(1) NDVI time series should vary smoothly at any given
point in time;

(2) External factors influencing NDVI and leading to
errors can only decrease the value of NDVI.

Fourier series can be grouped as:

YiV ¼
X

m

j¼1

ajcos j! 1ð Þui þ bjsin j! 1ð Þuið Þ
%

ðA1Þ

where aj and bj are Fourier coefficients, n the number of
points in the sequence, and m is the number of harmonics.

As for weekly NDVI time series, n=52 and m is set to 7 in
this study.

The modified robust least-squares optimizing technique
from Sellers et al. (1994) has been applied. In this
modification, the negative deviations receive low weights
during fitting, while positive deviations obtain high weights
based on the assumption that errors in the NDVI result in
lower values. The procedures are:

(1) First insert 0 for all missing data before fitting of the
Fourier series;

(2) The Fourier series are fitted through the data using the
least-squares method.

F½ 'T F½ '
$ #

c½ ' ¼ F½ 'T Y½ ' ðA2Þ

where [Y] is the observed data, c the Fourier constants
that must be solved for, and [F] the values of
cos(( j!1)/i) and sin(( j!1)/i) that correspond to the
phase of data points yi.

(3) The weights, Wi, are calculated according to distance
from the fitted curve

Wi ¼ 0; if UiV! k

Wi ¼ 1þ Ui þ rð Þ=kð Þ4; if ! kbUib! r

Wi ¼ 1; if ! rVUiVr

Wi ¼ 1þ Ui ! rð Þ=kð Þ2; if UiNr ðA3Þ

with U=(Y!Y’)/M, M the median of the absolute
difference values of YV and Y, k=2, r=M/20;

(4) Fourier series are fitted through the data with the
weights W taken into account;

(5) Each point is checked against its original value and its
four nearest neighbors. The new value is not to exceed
the maximum of the five original values by more than
2% or to be lower than the original value.

References

Asrar, G., Myneni, R. B., & Choudhury, B. J. (1992). Spatial heterogeneity

in vegetation canopies and remote sensing of absorbed photosyntheti-

cally active radiation: A modeling study. Remote Sensing of Environ-

ment, 41, 85–101.

Azzali, S., & Menenti, M. (1999). Mapping isogrowth zones on continental

scale using temporal Fourier analysis of AVHRR-NDVI data. JAG, 1,

9–20.

Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., et al.

(2001). FLUXNET: A new tool to study the temporal and spatial

variability of ecosystem-scale carbon dioxide, water vapor, and energy

flux densities. Bulletin of the American Meteorological Society, 82,

2415–2434.

Birky, A. K. (2001). NDVI and a simple model of deciduous forest seasonal

dynamics. Ecological Modelling, 143, 43–58.

Q. Wang et al. / Remote Sensing of Environment 93 (2004) 225–237 235



Briggs, W. L., & Hensen, V. E. (1995). The DFT: An owner’s manual for

the discrete Fourier transform. Philadelphia, PA7 Society for Industrial

and Applied Mathematics.

Brown, J. F., Loveland, T. R., Merchant, J. W., Reed, B. C., & Ohlen, D. O.

(1993). Using multisource data in global land-cover characterization:

Concepts, requirements, and methods. Photogrammetric Engineering

and Remote Sensing, 59, 977–987.

Choudhury, B. J. (1987). Relationships between vegetation indices,

radiation absorption, and net photosynthesis evaluated by sensitivity

analysis. Remote Sensing of Environment, 22, 209–233.

Cihlar, J., Manak, D., & Voisin, N. (1994). AVHRR bi-directional

reflectance effects and compositing. Remote Sensing of Environment,

32, 427–437.

Deering, D. W., 1978. Rangeland reflectance characteristics measured by

aircraft and spacecraft sensors. PhD Dissertation, Texas A&M

University, College Station, TX. 338 pp.

DeFries, R. S., & Townshend, J. R. G. (1994). NDVI-derived land cover

classification at global scales. International Journal of Remote Sensing,

15(17), 3567–3586.

Dijk, A., Callis, S. L., Sakamoto, C. M., & Decker, W. L. (1987).

Smoothing index profiles: An alternative method for reducing radio-

metric disturbance in NOAA/AVHRR data. Photogrammetric Engi-

neering and Remote Sensing, 53, 1059–1067.

Duchemin, B., Berthelot, B., Dedieu, G., Leroy, M., & Maisongrande, P.

(2002). Normalisation of directional effects in 10-day global syntheses

derived from VEGETATION/SPOT: II. Validation of an operational me-

thod on actual data sets. Remote Sensing of Environment, 81, 101–113.

Duchemin, B., Goubier, J., & Courrier, G. (1999). Monitoring phenological

key stages and cycle duration of temperate deciduous forest ecosystems

with NOAA/AVHRR data. Remote Sensing of Environment, 67, 68–82.

Duchemin, B., & Maisongrande, P. (2002). Normalisation of directional

effects in 10-day global syntheses derived from VEGETATION/

SPORT: I. Investigation of concepts based on simulation. Remote

Sensing of Environment, 81, 90–100.

Eidenshink, J. C., & Faundeen, J. L. (1994). The 1 km AVHRR global land

data set: First stages in implementation. International Journal of

Remote Sensing, 15, 3443–3462.

Evans, D. L., Zhu, Z., & Winterberger, K. (1993). Mapping forest

distributions with AVHRR data. World Resource Review, 5, 66–71.

Falge, E., Baldocchi, D. D., Tenhunen, J. D., et al. (2001). Gap filling

strategies for defensible annual sums of net ecosystem exchange.

Agricultural and Forest Meteorology, 107, 43–69.

Falge, E., Baldocchi, D. D., Tenhunen, J. D., Aubinet, M., Bakwin, P.,

Berbigier, P., et al. (2002). Seasonality of ecosystem respiration and

gross primary production as derived from FLUXNET measurements.

Agricultural and Forest Meteorology, 113, 53–74.

Falge, E., Tenhunen, J., Aubinet, M., Bernhofer, C., Clement, R., Granier,

A., et al. (2003). A model-based study of carbon fluxes at ten European

forest sites. In: R. Valentini (Ed.), Fluxes of Carbon, Water and Energy

of European Forests, Ecological Studies, vol. 163, (pp. 151–177).

Heidelberg7 Springer Verlag.
Gamon, J. A., Field, C. B., Goulden, M. L., Griffin, K. L., Hartley, A. E.,

Joel, G., et al. (1995). Relationships between NDVI, canopy structure,

and photosynthesis in three California vegetation types. Ecological

Applications, 5, 28–41.

Goward, S. N., & Huemmrich, K. F. (1992). Vegetation canopy PAR

absorptance and the normalized difference vegetation index: An

assessment using the SAIL model. Remote Sensing of Environment,

39, 119–140.

Goward, S. N., Kerber, A., Dye, D. G., & Kalb, V. (1987). Comparison of

North and South American biomes from AVHRR observations. Geo-

carto, 2, 27–40.

Goward, S. N., Tucker, C. J., & Dulaney, D. G. (1985). North American

vegetation patterns observed with the NOAA-7 advanced very high

resolution radiometer. Vegetation, 64, 3–14.

Gutman, G. G. (1991). Vegetation indices from AVHRR: An update and

future prospects. Remote Sensing of Environment, 35, 121–136.

Hill, M., & Donald, G. E. (2003). Estimating spatio-temporal patterns of

agricultural productivity in fragmented landscapes using AVHRR

NDVI time-series. Remote Sensing of Environment, 84, 367–384.

Holben, B. N. (1986). Characterization of maximum value composites from

temporal AVHRR data. International Journal of Remote Sensing, 7,

1417–1434.

Huemmrich, K. F., Black, T. A., Jarvis, P. G., McCaughey, J. H., & Halls, F.

G. (1999). High temporal resolution NDVI phenology from micro-

meteorological radiation sensors. Journal of Geophysical Research,

104(D22), 27935–27944.

Huete, A., Justice, C., & van Leeuwen, W., (1999). MODIS Vegetation

Index (MOD 13), Algorithm Theoretical Basis Document (Version 3).

James, M. E., & Kalluri, S. N. V. (1994). The pathfinder AVHRR land data

set: An improved coarse resolution data set for terrestrial monitoring.

International Journal of Remote Sensing, 15, 3347–3363.

Justice, C. O., Townshend, J. R. G., Holben, B. N., & Tucker, C. J.

(1985). Analysis of the phenology of global vegetation using

meteorological satellite data. International Journal of Remote Sensing,

6, 1271–1318.

Knyazikhin, Y., Glassy, J., Privette, J. L. Tian, Y., Lotsch, A., Zhang, Y., et

al., (1999). MODIS Leaf Area Index (LAI) and Fraction of Photo-

synthetically Active Radiation Absorbed by Vegetation (FPAR) Product

(MOD15) Algorithm Theoretical Basis Document. http://www.eospso.

gsfc.nasa.gov/atbd/modistables.html.

Liu, J., Chen, J. M., Cihlar, J., & Chen, W. (1999). Net primary productivity

distribution in the BOREAS region from a process model using satellite

and surface data. Journal of Geophysical Research, 104, 27735–27754.

Loveland, T. R., Merchant, J. W., Ohlen, D. O., & Brown, J. F. (1991).

Development of a land-cover characteristics database for the contermi-

nous U.S. Photogrammetric Engineering and Remote Sensing, 57(11),

1453–1463.

Moody, A., & Johnson, D. M. (2001). Land-surface phonologies from

AVHRR using the discrete Fourier transform. Remote Sensing of

Environment, 75, 305–323.

Prince, S. D. (1991). A model of regional primary production for use with

coarse resolution satellite data. International Journal of Remote

Sensing, 12, 1313–1330.

Prince, S. D., & Tucker, C. J. (1986). Satellite remote sensing of rangelands

in Botswana: II. NOAA AVHRR and herbaceous vegetation. Interna-

tional Journal of Remote Sensing, 7, 1555–1570.

Potter, C. S., Randerson, J. T., Field, C. B., Matson, P. A., Vitousek, P. M.,

Mooney, H. A., et al. (1993). Terrestrial ecosystem production—A

process model based on global satellite and surface data. Global

Biogeochemical Cycles, 7, 811–841.

Reed, B. C., Brown, J. F., VanderZee, D., Loveland, T. R., Merchant, J. W.,

& Ohlen, D. O. (1994). Measuring phenological variability from

satellite imagery. Journal of Vegetation Science, 5, 703–714.

Ross, J., & Sulev, M. (2000). Sources of errors in measurements of PAR.

Agricultural and Forest Meteorology, 100, 103–125.

Ruimy, A., Dedieu, G., & Saugier, B. (1996). TURC: A diagnostic model

of continental gross primary productivity and net primary productivity.

Global Biogeochemical Cycles, 10, 269–286.

Running, S. W., & Hunt, E. R. (1993). Generalization of a forest ecosystem

process model for other biomes, BIOME-BGC, and an application for

global scale models. In J. R. Ehleringer, & C. B. Field (Eds.), Scaling

physiological processes: Leaf to globe (pp. 141–158). San Diego, CA7
Academic.

Running, S. W., & Nemani, R. R. (1988). Relating seasonal patterns of the

AVHRR vegetation index to simulated photosynthesis and transpiration

of forest in different climates. Remote Sensing of Environment, 24,

347–367.

Sellers, P. J. (1987). Canopy reflectance, photosynthesis, and transpiration:

II. The role of biophysics in the linearity of their interdependence.

Remote Sensing of Environment, 21, 143–183.

Sellers, P. J., Tucker, C. J., Collatz, G. J., Los, S. O., Justice, C. O., Dazlich,

D. A., et al. (1994). A global 1 by 1 NDVI data set for climate studies:

Part 2. The generation of global fields of terrestrial biophysical

Q. Wang et al. / Remote Sensing of Environment 93 (2004) 225–237236



parameters from the NDVI. International Journal of Remote Sensing,

15, 3519–3545.

Spanner, M. A., Pierce, L. L., Running, S. W., & Peterson, D. L. (1990).

The seasonality of AVHRR data of temperate coniferous forests:

Relationship with leaf area index. Remote Sensing of Environment, 33,

97–112.

Tenhunen, J. D., Valentini, R., Kfstner, B., Zimmermann, R., & Granier, A.

(1998). Variation in forest gas exchange at landscape to continental

scales. Annales des Sciences Forestières, 55, 1–12.

Townshend, J. R. G., Justice, C. O., & Kalb, V. T. (1987). Characterization

and classification of South American land cover types using satellite

data. International Journal of Remote Sensing, 8, 1189–1207.

Townshend, J. R. G., Justice, C. O., Skole, D. & et al. The 1 km

resolution global data set: Needs of the International Geosphere

Biospehere Programme. International Journal of Remote Sensing, 15,

3417–3441.

Tucker, C. J., & Sellers, P. J. (1986). Satellite remote sensing of primary

productivity. International Journal of Remote Sensing, 7, 1395–1416.

Valentini, R. (Ed.) (2003). Fluxes of Carbon, Water and Energy of

European Forests, Ecological Studies, vol. 163. Heidelberg7 Springer
Verlag.

van Leeuwen, W. J. D., Huete, A. R., & Laing, T. W. (1999). MODIS

vegetation index compositing approach: A prototype with AVHRR data.

Remote Sensing of Environment, 69, 264–280.

Vesala, T., Haataja, J., Aalto, P., et al. (1998). Long-term field measure-

ments of atmosphere-surface interactions in boreal forest combining

forest ecology, micrometeorology, aerosol physics and atmospheric

chemistry. Trends in Heat, Mass & Momentum Transfer, 4, 17–35.

Viovy, N., Arino, O., & Belward, A. S. (1992). The best index slope

extraction (BISE): A method for reducing noise in NDVI time-series.

International Journal of Remote Sensing, 13, 1585–1590.

Wang, Q., Tenhunen, J., Falge, E., Bernhofer, Ch., Granier, A., & Vesala, T.

(2004). Simulation and scaling of temporal variation in gross primary

production for coniferous and deciduous temperate forests. Global

Change Biology, 10, 37–51.

Wang, Q., Watanabe, M., Hayashi, S., & Murakami, S. (2003). Using

NOAA AVHRR data to assess flood damage in China. Environmental

Monitoring and Assessment, 82, 119–148.

Wylie, B. K., Meyer, D. J., Tieszen, L. L., & Mannel, S. (2002). Satellite

mapping of surface biophysical parameters at the biome scale over the

North America grasslands: A case study. Remote Sensing of Environ-

ment, 79, 266–278.

Q. Wang et al. / Remote Sensing of Environment 93 (2004) 225–237 237


