
Enforcing Access Control Over Data Streams

Barbara Carminati, Elena Ferrari
DICOM, University of Insubria

Varese, Italy
{barbara.carminati,elena.ferrari}@uninsubria.it

Kian Lee Tan
National University of Singapore, Singapore

tankl@comp.nus.edu.sg

ABSTRACT
Access control is an important component of any computational sy-
stem. However, it is only recently that mechanisms to guard against
unauthorized access for streaming data have been proposed. In this
paper, we study how to enforce the role-based access control model
proposed by us in [5]. We design a set of novel secure operators,
that basically filter out tuples/attributes from results of the corre-
sponding (non-secure) operators that are not accessible according
to the specified access control policies. We further develop an ac-
cess control mechanism to enforce the access control policies based
on these operators. We show that our method is secure according
to the specified policies.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access controls; H.2.7 [Database
Administration]: Security, integrity, and protection

General Terms
Security

Keywords
Data stream, Security, Access control

1. INTRODUCTION
Data stream management systems (DSMSs) have been increas-

ingly used to support a wide range of real-time applications (e.g.,
battle field and network monitoring, telecommunications, financial
monitoring, sensor network, and so on). In many of these appli-
cations, there is a need to protect sensitive streaming data from
unauthorized accesses. For example, in battle field monitoring, the
positions of soldiers should only be accessible to the battleground
commanders. Even if data are not sensitive, it may still be of com-
mercial value to restrict their accesses. For example, in a finan-
cial monitoring service, stock prices are delivered to paying clients
based on the stocks they have subscribed to. Hence, there is a need
to integrate access control mechanisms into DSMSs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’07, June 20-22, 2007, Sophia Antipolis, France.
Copyright 2007 ACM 978-1-59593-745-2/07/0006 ...$5.00.

Many access control models have been designed for traditional
database systems [7]. However, these cannot be readily adapted
to data stream applications. First, the long-running queries over
unbounded data streams means that access control enforcement is
data-driven (i.e., triggered whenever data arrive). This implies that
it is computationally expensive to enforce access control. Second,
as data are streaming, temporal constraints (e.g., sliding windows)
become more critical. Third, operators are typically shared across
multiple queries. Hence, access control can hardly be enforced at
data stream or operator levels. In [5], we proposed a role-based
access control model based on the Aurora model [2]. Objects to be
protected are essentially views (or rather queries) over data streams.
The model supports two types of privileges - Read privilege for op-
erations such as Filter, Map, BSort, and Aggregate privileges for
operations such as Min, Max, Count, Avg and Sum. In addition,
to deal with the intrinsic temporal dimension of data streams, two
temporal constraints have been introduced - general constraints,
that allow access to data during a given time bound, and window
constraints, that support aggregate operations over the data within a
specified time window. The work in [5] largely presents the formal
semantics of the model, and shows how access control policies can
be specified. However, it does not consider access control enforce-
ment.

In this paper, we build on the access control model in [5], and ad-
dress how to enforce access control under the Aurora data stream
prototype. Aurora query processing exploits a data-flow paradigm,
modeling queries as a loop-free direct graph of operations (i.e.,
boxes). Users specify queries by adding boxes to the graph. In
such a model, an access request is therefore a request to add a box
in a graph. Thus, unlike conventional RDBMSs, our access con-
trol mechanism operates at query definition time, and hence avoids
run-time overhead. Whenever a user tries to insert a box in a graph,
the reference monitor checks the authorization catalogs to verify
whether the access can be partially or totally granted, or should be
denied. In case of partially authorized access request, the speci-
fied query is rewritten in such a way that it accesses only autho-
rized data. To realize our access control mechanism, we design a
set of novel secure operators (namely, Secure Read, Secure
View, Secure Join and Secure Aggregate) that filter out
from the results of the corresponding (non-secure) operators those
tuples/attributes that are not accessible according to the access con-
trol policies. We believe that this is a major extension to [5], since
our secure operators together with the query rewriting mechanism
are the essential components to integrate a reference monitor into a
data stream engine.

Recently, Lindner and Meier also looked at the problem of se-
curing data streams [8], and proposed a Owner extended RBAC
(OxRBAC) security model to protect data stream from unautho-

21

rized accesses. Besides an object level security model that restricts
accesses to objects (schemas, catalogs, queries, streams), there is
a data level security model to protect data access. The basic idea
of the data level security is to apply a newly designed operator,
called SECFILTER, at the query output stream to filter out out-
put tuples that do not conform to the access control rules. This
“post-processing” approach means that many wasted computations
are performed. Moreover, as noted in [8], it is possible for a user
to remain “connected” to an output stream though he/she may not
receive any output tuples (e.g., because his/her access rights have
been revoked). This is not desirable. Finally, because the pro-
posed framework is non-intrusive, SECFILTER cannot handle cer-
tain queries that involve output streams obtained from aggregating
data over multiple streams.

The remainder of this paper is organized as follows. In the next
section, we provide some background to this work. In Section 3, we
present a set of secure operators derived from the Aurora algebra.
Section 4 presents the access control mechanism to enforce access
control in Aurora. Section 5 presents some formal results. Finally,
we conclude the paper with directions for future work in Section 6.

2. BACKGROUND
In this section, we first review the Aurora data model, query

model and algebra. Then, we review the access control model in
[5].

2.1 Aurora query model and algebra
We adopt the Aurora data stream model and algebra [2]. We have

cast our work in the Aurora framework as it is relatively mature
(in comparison with the other stream processing systems [3, 6]).
Moreover, Aurora has been successfully transferred to the com-
mercial domain (i.e., the StreamBase engine [9]), and redesigned
with distributed functionalities (i.e., Borealis [1]).

Aurora data model. A stream consists of an append-only sequence
of tuples with the same schema. In addition to standard attributes
A1,. . . , An the stream schema contains an additional attribute, de-
noted as ts. Attribute ts stores the time of origin of the corre-
sponding tuple, thus it can be exploited to monitor stream attributes
values over time.

Aurora query model. The Aurora query processor exploits a data-
flow paradigm - queries are modeled as a loop-free direct graph of
operations (called boxes), where tuples flow through all the oper-
ations defined in the graph (called network). Figure 2(b) in Sec-
tion 4.2 illustrates an example of Aurora network with two in-
put streams, namely Health and Position, where Health is
passed through two different boxes (i.e., Filter and Map) before
being joined with Position.

Aurora algebra. The Aurora algebra consists of a set of operators
to be applied on data streams. The Filter box, like a relational
selection, applies several distinct selections at the same time on a
stream, and output tuples that satisfy the predicates. The Filter
syntax is: Filter(P1, . . . , Pn)(S), where P1, . . . , Pn are predi-
cates over stream S. The result consists of n + 1 different streams
S1 . . . Sn, where each stream Sj contains those tuples of S satis-
fying predicate Pj , j ∈ {1, . . . , n}. Moreover, tuples that do not
satisfy any predicate among P1, . . . , Pn are returned in an addi-
tional stream Sn+1. In this paper, we do not consider the (n + 1)th
stream by simply assuming that these tuples are deleted. Moreover,
if the predicates are omitted then all the tuples in the input stream
are returned.

Another operator, the Map box, can be considered as a gener-
alized projection operator. Instead of projecting the value of an

attribute Ai, it projects the result of an arbitrary function applied
on it. The syntax of Map is the following: Map(Ai=Fi, . . .
Aj=Fj)(S), where Ai, . . . , Aj are a subset of the attributes of S,
and Fi, . . . Fj are arbitrary functions over the input stream.1

A further operator is Bsort, which sorts the tuples of a stream.
Aurora also provides an aggregate operator, i.e., Aggregate box,
that computes, according to a sliding window-based approach, an
aggregate over data streams. The Aggregate operator receives
as input both the size of the window and an integer, called here-
after step, specifying how to advance the window when it slides.
The simplified syntax used throughout the paper is the following:
Aggregate(Op,s,i)(S), where OP is a pair (F,A) such that F
is either an SQL-style aggregate operation or a Postgres-style user-
defined function, A is the attribute of S on which F has to be com-
puted, whereas s and i are the size and step, respectively.

Aurora also supports a binary Join operator, where the join
predicate P is specified as input. More precisely, the syntax of this
operator is Join(P)(S1,S2). A further operator is the Resample
box, which can be helpful to align pairs of streams. Finally, we also
have the Union box, which is used to merge a set of streams, hav-
ing a common schema, into a unique output stream.

2.2 An access control model for data streams
In this section we summarize the main characteristics of the ac-

cess control model proposed in [5] and introduce the definitions we
need throughout the paper. We refer the interested reader to [5] for
a full description of the model and its semantics.

The access control model in [5] is a role-based model specif-
ically tailored to the protection of data streams. Privileges sup-
ported by the model are of two different types that correspond to
the two different classes of operations provided by the Aurora al-
gebra (see Section 2.1): a read privilege, that authorizes a user to
apply the Filter, Map and Bsort and Aggregate box on a
data stream, that is, all operations that require to read tuples from
the data stream. Additionally, it authorizes to apply the Union,
Join and Resample box if the read privilege is granted on
both the operand streams. The other class of privileges supported
by our model, called aggregate privileges, corresponds to ag-
gregate functions allowed by Aurora and are provided to grant a
user the authorization to perform an aggregate operations without
accessing all the tuples over which the operation is computed. As
introduced in Section 2.1, Aurora supports both SQL-style aggre-
gate operations and Postgres-style user-defined functions. To be as
system independent as possible, in the following we consider as ag-
gregate functions only the standard SQL-style functions. Thus, the
aggregate privileges are: min, max, count, avg, and sum.

Privileges can be specified for whole streams, as well as for a
subset of their attributes and/or tuples, where the set of authorized
tuples is specified by defining a set of conditions on their attributes
values. Additionally, the model allows the Security Administra-
tor (SA) to restrict the exercise of the read privilege only to a
subset of a joined stream. To model such a variety of granular-
ity levels, we borrow some ideas from how access control is en-
forced in traditional RDBMSs, where different granularity levels
are supported through views. The idea is quite simple: define a
view satisfying the access control restrictions and grant the access
on the view instead of on base relations. In a RDBMS, a view is
defined by means of a CREATE VIEW statement, where the SE-
LECT clause of the query defining the view specifies the autho-
rized attributes, the FROM clause specifies a list of relations/views,
and the WHERE clause states conditions on attributes’ values. We

1In the paper, for simplicity, we assume that F is the identity func-
tion.

22

subject protection object priv gtc wtc
streams attributes expressions size step

Captain Position Pos, SID Position.Platoon=self.Platoon read - - -
Captain Position Pos, SID Position.Platoon�=self.Platoon ∧ read [TAction start(a), TAction end(a)] - -

Pos≥Target(a)-δ ∧ Pos≤Target(a)+ δ - -
Soldiers Position Pos Pos≥Target(a)-δ ∧ Pos≤Target(a)+ δ avg [TAction start(a), TAction end(a)] 1 1
Doctor Health Heart, SID Position.Platoon=self.Platoon read - - -
Doctor Health, Heart, SID Position.SID= Health.SID ∧ read [TAction start(a), TAction end(a)] - -

Position Pos≥Target(a)-δ ∧ Pos≤Target(a)+ δ

Table 1: Examples of access control policies for data streams

adopt the same idea to specify protection objects to which an access
control policy applies. However, since a standard query language
for data streams has not yet emerged, we give a language inde-
pendent representation of protection objects. Basically, we model
a protection object by means of three components, which corre-
sponds to the SELECT, FROM and WHERE clauses of an SQL
statement.The formal definition of protection object specification
is given below.

Definition 1. (Protection object specification) [5]. A protec-
tion object specification p obj is a triple (STRs,ATTs,EXPs),
where:

• STRs is a set of names or identifiers of streams {S1, . . . , Sn};

• ATTs denotes a set of attributes A1, . . . , Al, where Aj , j ∈
{1, . . . , l}, belongs to the schema of the stream resulting
from the Cartesian product (S1 ×· · ·×Sn) of the streams in
STRs. If ATTs is equal to symbol ‘*’, it denotes all the at-
tributes belonging to the schema of the stream resulting from
(S1 × · · · × Sn).

• EXPs is a boolean formula, built over predicates of the form:
Ai ⊕ value or Ai ⊕ Aj , where Ai, Aj are attributes belong-
ing to the schema of the Cartesian product (S1×· · ·×Sn), ⊕
is a comparison operator of the Aurora algebra, and value
is a value compatible with the domain of Ai. If EXPs is
empty, it denotes all the tuples in (S1 × · · · × Sn). �

Given a protection object specification p obj, we use the dot
notation to refer to its components.

Note that, the format of protection object specifications does not
allow the SA to specify the read privilege for a view consisting of
the union of more data streams because we assume that the Union
operation is authorized if the requesting user has the read privi-
lege on the two operand streams.

The access control model in [5] also allows the SA to specify
two different types of temporal constraints, that is, general and
window-based constraints. Constraints of the first kind state
limitations on the time during which users can exercise privileges
on protection objects. They are expressed in the form: [begin,
end], where begin and end are the lower and upper bounds
of the interval, begin ≤ end, and end can assume the infinite
value.2 The begin and end values can be explicitly specified by
the SA or can be returned by a predefined set of system functions
SF . For instance, we assume a function TAction start(),
which returns the time when a given action starts, and a function
TAction
end() that returns the time when a given action ends. Since by
definition a stream always contains a temporal information, i.e., the
timestamp ts, a general time constraint gtc identifies all and only
those tuples satisfying the predicate: ts ≥ begin ∧ ts≤ end.
2We assume that begin and end values are specified by means of
an SQL-like syntax.

The other class of constraints is related to window-based aggregate
operators supported by the Aurora algebra. A window is speci-
fied by two information: the window’s size and the advance step.
A window time constraint wtc can therefore be defined by a pair:
[size,step], denoting the minimum size and step allowed in a
window-based operation. The value 0 for size and/or step denotes
that the corresponding aggregate operation can be performed with
any size and/or step.

The formal definition of access control policies for data streams
is given below.

Definition 2. (Access control policy for data streams) [5]. An
access control policy for data streams is a tuple: (sbj, obj, priv,
gtc, wtc), where: sbj is a role, obj is a protection object spe-
cification defined according to Definition 1, priv∈{read, min,
max, count, avg, sum} is an access privilege, gtc is a general
time constraint, and wtc is a window time constraint. �

Given an access control policy acp we denote with acp.sbj,
acp.obj, acp.priv, acp.gtc and acp.wtc the sbj, obj,
priv, gtc, and wtc components, respectively. We assume that
all the specified access control policies are stored into a unique au-
thorization catalog, called SysAuth. SysAuth contains a diffe-
rent tuple for each access control policy, whose attributes store the
access control policy components, as illustrated by the following
example.

EXAMPLE 2.1. Here and in what follows we consider the mili-
tary domain presented in [2] as running example. In this scenario,
stream data are used to monitor positions and health conditions
of platoon’s soldiers. Hereafter, we consider two data streams,
namely, Position and Health, with the following schemas:
Position(ts,SID,Pos,Platoon), Health(ts,SID,
Platoon,Heart,BPressure), where the SID and Platoon
attributes store soldier’s and platoon’s identifiers, respectively, both
in the Position and Health streams, the Pos attribute con-
tains the soldier position, the Heart attribute stores the heart
beats, whereas the BPressure attribute contains the soldier’s
blood pressure value. An example of SysAuth catalog referring
to the Position and Health streams is given in Table 1.

In particular, the first policy grants captains the read privi-
lege on the position and id of soldiers belonging to their platoons,
where this condition is modeled as a predicate (i.e., Position.
Platoon=self.Platoon).3 The second access control policy
authorizes captains to read the id and position of soldiers not be-
longing to their platoons, but whose position is near to the target
of action a, that is, whose positions distance at most δ from action a
target’s position (Pos≥ Target(a)-δ∧Pos≤Target(a)+δ).4

3We assume that each user has an associated profile, i.e., a set of
attributes modeling his/her characteristics, like for instance the pla-
toon one belongs to.
4We assume a function Target() that returns the position of the
target of a given action.

23

Additionally, this privilege is granted only during the time of action
a. By the third policy soldiers are allowed to compute the average
of the positions of soldiers that are close to the target of action a.
Moreover, this policy states that the average can be computed only
during the action time and with windows of minimum 1 hour and
with 1 as minimum step.

Finally, the fourth access control policy states that a doctor is
authorized to monitor the heart beats only of those soldiers be-
longing to his/her platoon, whereas, the fifth policy grants a doctor
the possibility of monitoring the heart beats of all soldiers (not only
those belonging to his/her platoons) but only if the soldier position
is near to the target of action a and only during the action time. �

3. SECURE OPERATORS
In this section, we present a set of operators, derived from those

of the Aurora algebra to keep into account the specified access con-
trol policies. The operators basically prune from the results of the
corresponding Aurora operators those tuples/attributes that are not
accessible according to the specified access control policies. These
operators are the basis of the access control mechanism described
in Section 4.2.

The first operator, called Secure view, takes as input a stream
and an access control policy and returns the “view” of the stream
that can be accessed according to the policy. This view may con-
tain only selected attributes and/or tuples of the input stream. The
view is represented by the corresponding expression in the Aurora
algebra.

Definition 3. (Secure view). Let S be a stream, and acp be an
access control policy such that acp.obj.STRs = S. Let Attr(S)
be the set of attributes belonging to S’s schema. The Secure view,
Sec View, of S wrt policy acp is defined as follows:

Sec View(S, acp) = Map(att)(Filter(P)(S))
where:

att =

{
Attr(S) ∩ acp.obj.ATTs if acp.obj.ATTs �= ∗
Attr(S) otherwise

P =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

acp.obj.EXPS if acp.obj.EXPs is
not empty

P ∧ (ts ≥ acp.gtc.begin
∧ts ≤ acp.gtc.end) if acp.gtc is not null
null if acp.obj.EXPs is empty

and acp.gtc is null
�

Based on the Sec View operator we can define the Sec Read
operator, which takes as input a user u and a data stream S and
returns the view of S over which u can exercise the read privilege,
according to the policies in SysAuth. Note that, since more than
one policy can apply to the same user on the same stream (referring
for instance to different attributes and/or with different conditions
over tuples) the result of Sec Read is actually a set of views, each
of which denoted by the corresponding expression in the Aurora
algebra.

Definition 4. (Secure read). Let S be a stream and u be a user.
Let Role(u) be the set of roles u is authorized to play, and let
Pol(S, u) be the set of read access control policies specified for
S and which apply to u, that is, Pol(S,u) ={acp ∈ SysAuth|
acp.obj.STRs = S, acp.sbj∩Role(u) �= ∅, acp.priv = read}.
The Secure read operator, Sec Read, is defined as follows:

Sec Read(S,u) =
⋃

acpj∈Pol(S,u){Sec View(S, acpj)}.
�

EXAMPLE 3.1. Let us consider the access control policies in-
troduced in Table 1, assuming that there exists a user, say Paul,
belonging to platoon X and authorized to play only the captain
role. Moreover, we assume that action a is not currently taking
place. In this case, only the first policy is applicable to Paul, which
authorizes Paul to access position and id of soldiers belonging to
his platoon. This is exactly the view, hereafter called AuthV iew,
obtained by the evaluation of Sec Read(Position, Paul). In-
deed, according to Definition 4, AuthV iew is defined as the union
of the views returned by the Secure view operator, for each po-
licy in Pol(Position,Paul). Pol(Position,Paul) consists of
the first and the second access control policy of Table 1, say acp1

and acp2. Thus, AuthV iew consists of the union of Sec View(
Position,acp1) and Sec View(Position,acp2). According
to Definition 3, Sec View(Position,acp1) returns the follow-
ing Aurora expression: Map(Pos,SID)(Filter(Position.
Platoon=X)(Position)) (denoted in what follows as V iew1).
In contrast, Sec View(Position,acp2) is given by: Map(Pos,
SID)(Filter(Position.Platoon �=X∧Pos≥Target(
a)-δ∧Pos≤Target(a)+δ∧ts≥TAction start(a)∧ts≤
TAction end(a))(Position)). However, we assume that if
an action is not currently taking place the evaluation of Target(),
TAction start(), and TAction end() for that action re-
turns null. Thus, all the predicates referring to these functions in
the Filter operator above null, and therefore no tuples are selected
by the Filter operator. Thus, the view of Position stream on
which Paul has the read privilege consists only of V iew1, that is,
all the positions and ids of soldiers belonging to his platoon. �

Our access control model allows one to specify policies for ag-
gregate privileges. We therefore need to define a further operator,
called Secure aggregate, which, given an aggregate operation over
a stream S and a user u, considers the policies specified over S
for the requested aggregate operation that apply to u and returns
the result of the aggregate operation only over the “view” autho-
rized by these policies. As for the previously defined operators, the
view may actually be a set of views, each of which denoted by an
expression of the Aurora algebra. Since in the case of aggregate
operations both policies and operation requests may have some as-
sociated temporal constraints (i.e., the window size and the step),
these may be considered when determining the result of Secure ag-
gregate.

Definition 5. (Secure aggregate). Let S be a stream, u be a
user, Op be an aggregate operator consisting of an SQL-like ag-
gregate function, Op.F , and an attribute of S, Op.A. Let s and
i be two natural numbers, and let Polagg(S,u) be the set of ac-
cess control policies in SysAuth granting u the Op.F privilege
over attribute Op.A, that is, Polagg(S,u) ={acp ∈ SysAuth|
acp.obj.STRs= S, Op.A ∈ acp.obj.ATTs, acp.sbj∩Role(u) �=
∅, acp.priv = Op.F}. The Secure aggregate operator, Sec Aggr
is defined as follows:

Sec Aggr(S, Op, s, i, u) =⋃
acpj∈Polagg(S,u){Aggregate(Op,maxsize, maxstep)

(Map(Op.A)(Filter(P)(S)))}
where: maxsize = max(acpj.wtc.size,s),maxstep = max(acpj.
wtc.step,i), and

P =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

acpj.obj.EXPS if acpj.obj.EXPs is
not empty

P ∧ (ts ≥ acpj.gtc.begin
∧ts ≤ acpj.gtc.end) if acpj.gtc is not null
null if acpj.obj.EXPs is empty

and acpj.gtc is null

24

EXAMPLE 3.2. Suppose that a user authorized to play only the
soldier role, say Alice, is interested in the average position of sol-
diers calculated with windows of 5 hours and 5 as step. Moreover,
let us assume that action a is taking place, whose target has posi-
tion 1000, whose starting time is 105000, whereas ending time is
infinite, since the action has not ended yet.

According to the access control policies in Table 1, since Alice’s
role is soldier, she is only authorized to perform avg operations
on the Pos attribute of those tuples referring to soldiers that are
close to the target of action a. Moreover, the average can be per-
formed with at minimum a window of size 1 hour and 1 as step.
Let us consider the view returned by the Secure aggregate oper-
ator. In this case, Polagg(Position,Alice) consists only of the
third access control policy. Thus, Sec Aggr(Position,(Avg,
Pos),Alice,5,5) is equal to Aggregate((Avg,Pos),5,5)(Map(
Pos)(Filter(Pos≥1000-δ∧Pos≤1000+δ∧ts≥105000
∧ ts≤ ∞)(Position))), since 5 is the maximum step (i.e,
size) between the step (i.e, size) specified in the access control po-
licy and the required one. Thus, the Secure aggregate operator
considers only the Pos attribute of those tuples in the Position
stream satisfying predicate: Pos≥1000-δ∧Pos≤1000+δ, that
is, tuples near to the target of a, and: ts≥105000∧ts≤ ∞, that
is, tuples generated during action a. Then, only for those values, it
calculates the average with windows of size 5 hours and with 5 as
step. �

The last operator we need to define, called Secure join is used
to manage join operations. Indeed, according to our access con-
trol model, we can specify policies that apply to the join of two or
more streams, by authorizing the access only to selected attributes
and/or tuples in the joined stream. These policies are those that
have more than one stream in the obj.STRs component. Sim-
ilarly to Sec Aggr, the Secure join operator returns the set of
“views” over the joined stream corresponding to the authorized at-
tributes and tuples.

Definition 6. (Secure join). Let S1 and S2 be two streams, P
a join predicate over S1 and S2, and u be a user. The Secure join
operator, Sec Join, is defined as follows:

Sec Join(S1, S2, P, u) = Sec Read(Join(P)(S1, S2),u).
�

EXAMPLE 3.3. Consider a user, say Rick, who is authorized
to play only the role doctor and belongs to platoon X. Suppose
that Rick is interested to know the position, id, and health informa-
tion of those soldiers which are across some border k (modeled as
Pos≥k). Since the position of a soldier is stored in the Position
stream, whereas health information is in the Health stream, he
needs to perform a join of the Position and
Health streams, and selecting only those tuples which refer to
soldiers whose position satisfies the condition above. According
to the access control policies in Table 1, this operation is possible
only during action a and only for those tuples referring to soldiers
whose positions are near to the action’s target. Let us assume that
action a is not currently undergoing, and see how the Secure join
operator evaluates over the requested query, that is, Sec Join
(Position,Health,(Position.SID=Health.SID ∧ Pos
≥k),Rick).

According to Definition 6, the above expression first generates
the joined stream, say S3, resulting from Join(
Position.SID= Health.SID ∧Pos≥k)(Position,
Health). Then, it passes S3 to the Secure read operator, with
the aim of generating the corresponding authorized view for Rick.

Sec Read(S3,Rick) considers the set of access control policies
Pol(S3, Rick) which consists only of the last access control policy
of Table 1, say acp5. By Definition 4, this implies that Sec Read
returns the view generated by Sec View(S3,acp5), that is, the tu-
ples returned by the evaluation of the following Aurora expression:
Map(Heart,SID)(Filter(Position.SID=Health.SID
∧Pos≥k∧ts≥null∧ts≤null∧Pos≥null-δ∧Pos≤null
+δ)(Position,Health)). Since the last predicate in the above
Filter operator evaluates null, no tuples are selected, thus the
authorized view is empty. �

Note that the Aurora algebra defines a further binary operator,
that is, Resample. However this operator is defined as a semijoin,
thus we omit the definition of Sec Resample since it is very sim-
ilar to Definition 6. We recall moreover that, in our access control
model we assume that a policy cannot be specified on a view result-
ing from the union of two or more streams. This is due to the fact
that we assume that a user can perform the union of two streams
only if he/she has the read privilege over them. For this reason,
we do not need to define the Secure union operator.

4. ACCESS CONTROL ENFORCEMENT ON
A REAL DATA-STREAM PROTOTYPE:
AURORA

In this section, we introduce an access control mechanism en-
forcing the access control policies presented in Section 2.2, by con-
sidering Aurora as the reference target. Enforcing access control
having as target the Aurora query model (cfr. Section 2.1) im-
plies to regulate whether a user can (or cannot) insert a box into
a graph. As an example, consider the access control policy stat-
ing that a captain can read position of soldiers belonging to his/her
platoons, whereas he/she cannot access the position of other pla-
toon’s soldiers. Whenever a captain tries to apply a Filter box
to the Position stream, the access control mechanism must en-
force the access control policy by limiting the Filter operation
only to those tuples referring to soldiers belonging to captain’s pla-
toon.

According to the Aurora query model, access control enforce-
ment can therefore be applied at query definition time. The access
control mechanism starts up whenever a user requests to apply a
box. If the user is not authorized to perform the operation denoted
by the box, the access is denied. In case the user is partially autho-
rized, the access control module rewrites the query in terms of the
allowed operations, otherwise if the operation denoted by the box
can be fully authorized, the reference monitor does not make any
modification to the user query.

In the next sections we first introduce how we represent access
requests, then we show how the secure operators introduced in Sec-
tion 3 can be exploited for access control enforcement.

4.1 Access requests
According to the Aurora query model, an access request is equiv-

alent to the request of a user to apply a box to one or more streams.
Thus, an access request can be modeled in terms of three compo-
nents: (i) the user submitting the access request; (ii) the stream(s)
on which he/she requires to apply the box; (iii) the operator corre-
sponding to the box to be inserted. We can therefore formalize an
access request R as a triple (u,Objs,p), where u is the (identifier
of the) requesting user, p is the Aurora operation that u requires to
execute on the objects (i.e., streams) specified in Objs.

Before introducing the access control mechanism, we need to
illustrate how streams are modeled in Objs. According to the Au-
rora query model a user is able to apply a box to one or more input

25

streams, as well as to one or more internal streams, that is, streams
resulting after one or more input streams have flowed through the
processing operations (i.e., boxes) defined in a graph. For what
concerns access control, the first case is the simplest one. Indeed,
in the first case, the reference monitor must verify whether there ex-
ists an access control policy acp applying on the input streams, that
is, having acp.obj.STRs equal to one of the requested stream,
and/or applying directly on the stream resulting from the requested
operation (in case of join, resample and aggregate operations). In
this case, the reference monitor has to decide whether the access
can be fully or partially granted. Otherwise the access is denied.

The second case is more complicated and has some similarities
to an access request on a view in a RDBMS, in that an internal
stream is generated by applying one or more Aurora operators, ac-
cording to the order specified by a given graph, on a set of input
streams. For instance, with reference to Figure 2(b), if a user re-
quires to apply a box on the stream resulting from the join box, it
is not immediate to detect which access control policies should be
considered to answer the access request.

To easily detect the access control policies that must be consid-
ered to evaluate access requests on internal streams, we have de-
cided to model each internal stream S’ on which the request to ap-
ply a box is performed with a protection object like representation,
similar to the one given in Definition 1. Thus, we model an internal
stream as a triple (STRs,ATTs,EXPs). Note that this represen-
tation can be adopted even for input streams, by simply setting the
ATTs component to * and omitting the EXPs component.

An internal stream can be defined in terms of (the portion of)
the graph by which it results. Therefore, given an internal stream
S’ and the corresponding graph G, the protection object like repre-
sentation of S’ can be defined in terms of the boxes contained into
G. More precisely, given a graph G, not containing an Union box,
defined over a set S in of input streams we can define the stream
S’ resulting from graph G, as the Cartesian product of streams in
S in, where all attributes specified in the Map boxes of the graph
G are projected, and all predicates specified in the Filter, Join
and Resample boxes are applied. Thus, a possible approach to
convert a graph G into a protection object like representation Objs
is to traverse the whole graph by collecting into the Objs.ATTs
component all attributes specified in the encountered Map boxes, in
the Objs.EXPs component the predicates specified in the encoun-
tered Filter, Join and Resample boxes, and by inserting into
the Objs.STRs component all the input streams. If the graph con-
tains an Union box, the function operates in the same way with the
only difference that, when an Union box is encountered, instead
of the Cartesian product of the input streams, only one of the two
is considered in the protection object like representation. As it will
be more clear from the explanation below, since, Union applies to
two streams with the same schema and returns a stream with the
same schema as the input streams, one of the two input streams can
be indifferently selected in the protection object like representation.

Figure 1 presents a function to generate the protection object
like representation of an internal stream. The protection object like
representation is recursively obtained starting from the end of the
graph, i.e., the last box applied over the internal streams, till reach-
ing the input streams. In particular, each time the function encoun-
ters a box, say box, it verifies whether it is applied over a single or
over more than one streams (step 4). In the first case, it further ver-
ifies if the stream, say S in, over which box is applied is an input
or an internal stream. Then, the function performs different steps
on the basis of the box type. In the case S in is an input stream
and box denotes the Map or Aggregate operator, the function
sets the protection object like representation being returned, called

FUNCTION 1. Function proc obj(G)

INPUT: A graph G representing an Aurora query.
OUTPUT: S out=(STRs,ATTs,EXPs), that is, the protection object like representation

of the stream resulting from G.
1 S out.STRs and S out.ATTs are initialized to be empty
2 Let box be the last Aurora box applied on the stream resulting from G
3 Let S in be the input stream(s) of box
4 If (|S in| = 1)

a If (S in is an input stream)
i S out.STRs:={S in}
ii If (box = Map OR box = Aggregate)

1 Let att be the set of attributes specified in box
2 S out.ATTs:=att, S out.EXPs is set empty
3 Return S out

iii If (box = Filter)
1 Let exp be the predicate specified in box
2 S out.ATTs:=*, S out.EXPs:=exp
3 Return S out

Else
iv Let G’ be the subgraph of G generating S in
v S res:=proc obj(G’)
vi If (box = Map OR box = Aggregate)

1 Let att be the set of attributes specified in box
2 S out.STRs:=S res.STRs, S out.ATTs:=att∩
S res.ATTs,S out.EXPs:=S res.EXPs

3 Return S out
vii If (box = Filter)

1 Let exp be the predicate specified in box
2 S out.STRs:=S res.STRs, S out.ATTs:=S res.ATTs,
S out.EXPs:=exp∨ S res.EXPs
3 Return S out

EndIf
Else

b Let S1 in and S2 in be the streams given in input to box
c Case: (S1 in and S2 in are input streams)

i If (box= Union)
1 S out.STRs:=S1 in, S out.ATTs:=*,
S out.EXPs is set empty

2 Return S out
ii If ((box = Join) OR (box = Resample))

1 Let exps be the join predicate in box
2 S out.STRs:={S1 in,S2 in}, S out.ATTs:=*,
S out.EXPs:=exps

3 Return S out
d Case: ((S1 in is an input stream AND S2 in is an internal stream)

OR (S1 in is an internal stream AND S2 in is an input stream))
i Let S int and S inp be empty streams
ii If (S2 in is an internal stream)

1 S int:=S2 in, S inp:=S1 in
Else

2 S int:=S1 in, S inp:=S2 in
iii Let G’ be the subgraph of G generating S int
iv S res:=proc obj(G’)
v If (box = Union)

1 S out.STRs:=S1 in, S out.ATTs:=S res.ATTs,
S out.EXPs:=S res.EXPs

2 Return S out
vi If ((box = Join) OR (box = Resample))

1 Let exps be the join predicate specified in box
2 S out.STRs:={S res}∪S inp, S out.ATTs:=
S res.ATTs, S out.EXPs:=S res.EXPs∨ exps

3 Return S out
e Case (S1 in and S2 in are internal streams)

i Let G1 be the subgraph of G generating S1 in
ii S1 res:=proc obj(G1)
iii Let G2 be the subgraph of G generating S2 in
iv S2 res:=proc obj(G2)
v If (box = Union)

1 S out.STRs:=S1 res.STRs, S out.ATTs:=,
S1 res.ATTs S out.EXPs:=S1 res.EXPs
∨ S2 res:=EXPs

2 Return S out
vi If ((box = Join) OR (box = Resample))

1 Let exps be the join predicate specified in box
2 S out.STRs:=S1 res.STRs∪S1 res:STRs,
S out.ATTs:=S1 res.ATTs∪S2 res.ATTs,
S out.EXPs:=S1 res.EXPs∨S2 res.EXPs∨exps

3 Return S out
EndIf

Figure 1: A function for generating the protection object like
representation of a data stream

26

Figure 2: Aurora queries

S out, as follows: the ATTs component contains the attributes
specified in box, the STRs component is set to S in, whereas the
EXPs component is omitted (step 4.a.ii). In contrast, in the case
S in is an input stream and box denotes the Filter operator,5

the function sets S out as follows: the EXPs component contains
the predicate specified in box, whereas the STRs component is set
to S in, and the ATTs component is set equal to * (step 4.a.iii).

If S in is an internal stream, the function starts by recursively
calling itself by passing the subgraph G’ generating the stream S in
and storing the resulting protection object like representation in
R res (steps 4.a.iv, 4.a.v). Then, if box denotes the Map or
Aggregate operator, it sets the ATTs component of S out as
the intersection of the set of attributes in S res with the set of at-
tributes specified in box, whereas the EXPs component is set equal
to the value of EXPs component of S res (steps 4.a.vi.1-3). In
contrast, if box denotes the Filter operator, the function sets
the EXPs component of S out as the disjunction of the predicate
in R res with the predicate specified in box (step 4.a.viii). The
STRs component of S out is set equal to the corresponding one
in S res, in both cases.

If the box is applied on two streams, say S1 in and S2 in,
the function first verifies whether both, one, or none of them are
input streams (steps 4.c, 4.d, and 4.e). Let us consider the first
case. If box denotes the Union operator, the function inserts in
S out only a single stream, either S1 in or S2 in (step 4.c.i.1).6

Indeed, according to the definition of protection object inserting
both the streams implies the Cartesian products S1 1× S2 in,
which obviously does not respect the semantics of the Union op-
erator. Then, the function considers the case when box denotes
the Join or Resample operator (steps 4.c.ii.1-3). In this case,
the resulting protection object like representation is defined by in-
serting both S1 in and S2 in in the STRs component, and by
setting the EXPs component equal to the join predicate specified in
box. If both S1 in and S2 in are internal streams (step 4.e),
the function calls itself twice, by passing as input the subgraph
G1 (i.e., G2) generating the stream S1 in (i.e., S2 in) and stor-
ing the resulting protection object like representation into S1 res
(i.e., S2 res), respectively (steps 4.e.i-iv). Then, if box denotes
the Union operator, proc obj() sets S out components as follows:
since the Union can be performed only if the streams’ schema are
identical, the function stores into the STRs and ATTs components
the corresponding components of S1 res or S2 res, whereas

5Note that the function does not consider the case when box is the
Bsort operator, since Bsort does not require to insert anything
into ATTs and EXPs components of S out.
6Since the Union operator can be performed only on two streams
having the same schema, it does not matter which one is inserted.

the EXPs component is set as the disjunction of the predicates in
the EXPs components of S1 res and S2 res (step 4.e.v). By
contrast, if box is the Join or Resample operator, proc obj()
sets the STRs and ATTs components of S out as the union of
S1 res and S2 res corresponding components, whereas to the
EXPs component is added the join predicate in addition to the dis-
junction of the predicates contained into the EXPs components of
S1 res and S2 res (steps 4.e.vi.1-2). Then, the resulting pro-
tection object like representation S out is returned. We omit the
discussion of the case in which there only one between S1 in and
S2 in is an input stream (step 4.d), since it has many similarities
with steps 4.c and 4.e.

EXAMPLE 4.1. Let us consider the graph G in Figure 2(a) and
see which is the output of function proc obj() when it is evaluated
over G. The last Aurora operation applied on the stream resulting
from G is the Map box. Moreover, since the stream over which this
box is applied is an internal stream (i.e., the stream resulting from
the Filter box), the function recursively calls itself with input
G’, that is, the subgraph of G generating this internal stream, and
stores the result into S res. When the function evaluates G’, the
last Aurora operation is the Filter box. This box is applied on
an input stream (i.e., Health), thus the function (step 4.a.iii) ini-
tializes the protection object like representation to be returned, i.e.,
S out, by setting the STRs component to Health. Then, it sets
the EXPs component of S out with the predicate specified in the
Filter box , that is, Health.Platoon=X∧ Heart>160 (cfr.
Figure 2(a)). The ATTs component is set equal to * (step 4.a.iii.2).
Thus, proc obj(G’) returns as a result the following protection ob-
ject like representation: ({Health},*,Health.Platoon=X ∧
Heart>160) (step 4.a.iii.3) which is stored into variable S res.

Then, the computation of proc obj(G) continues (step 4.a.v).
Thus, since box is equal to Map, proc obj(G) enters step 4.a.vi,
where STRs, and EXPs components of S out are set to: S res.
STRs, i.e., Health; S res.EXPs, i.e., Health.Platoon=X
∧ Heart>160, respectively. Moreover, the ATTs component is
set equal to the set of attributes specified in the Map box (i.e.,
Heart and SID) (step 4.a.vi.2). Thus, the final returned protec-
tion object like representation of graph G has the following com-
ponents: {Health},{Heart,SID},(Health.Platoon=X ∧
Heart>160). �

Thus, when a user requires to apply a box to one or more streams,
the reference monitor first generates the protection object like rep-
resentation of these streams. After that, the Objs component of an
access request is a set of triples of the form: (STRs,ATTs,EXPs),
one for each input or internal stream over which the user requires
to apply a box.

27

4.2 Access control enforcement
The building block of the reference monitor is represented by

the algorithm in Figure 3. The algorithm receives as input an ac-
cess request R modelled as a triple (u,Objs,p), where the Objs
component is generated by function proc obj() (cfr. Section 4.1) by
taking in input the graph representation G of the stream(s) on which
the user requires to apply box p. Therefore, in case R is a request
for a Map, Filter, Bsort or Aggregate box, Objs consists
of a single triple, whereas if the request is for Join, Resample or
Union, Objs consists of two tuples denoting the protection object
like representation of the operand streams.7

Then, the algorithm exploits the secure operators introduced in
Section 3 to generate a set of Aurora expressions, if any, whose
evaluation over G generates the authorized views resulting from the
requested operations, that is, the stream resulting from the appli-
cation of the requested box and from which unauthorized tuples
and/or attributes have been pruned. The algorithm returns access
denied, if the user does not have the right to perform the requested
operation.

Let us see in more details how Algorithm 1 works. The algorithm
considers separately the case when R.Objs consists of one or two
tuples. In the first case R.p is one among Map, Filter, Bsort
or Aggregate. R.u is authorized to perform Map, Filter,
or Bsort operations only if he/she has the read privilege over
the stream denoted by R.Objs.STRs. In contrast, in case of
Aggregate operator the algorithm has to consider two different
kinds of access control policies. Indeed, a user is authorized to
perform an aggregate operator if he/she is authorized to read the
stream denoted by R.Objs.STRs or there exists one or more ac-
cess control policies granting R.u the aggregate privilege speci-
fied in R.p on the stream denoted by R.Objs.STRs. In general,
no matter which operator R.u requires, if the stream in R.Objs
is an input stream, as a first step the algorithm evaluates the Se-
cure read operator on it, by storing the returned Aurora expressions
into Sec Objs (step 2.a.i). Note that, the Secure read operator is
called only for input streams. If the stream(s) on which the request
is performed is an internal one it is not necessary to evaluate on it
the Secure read operator because each internal stream is generated
by a graph defined starting from one or more input streams. Since
the algorithm is called each time the user requires to insert a box in
the graph, the non authorized portions of the input streams have al-
ready been pruned by the Secure read operator called the first time
the stream is inserted into the graph. Thus, if the stream in R.Objs
is an internal stream, the algorithm simply stores the Aurora ex-
pression corresponding to R.Objs directly into Sec Objs (step
2.a.ii). To this purpose, here and in the following we make use of
a function Cartesian(), which takes in input a set of streams and
returns their Cartesian product. Then, if R.p is different from the
Aggregate operator, the algorithm simply generates the autho-
rized views by applying over each Aurora expression in Sec Objs
the box corresponding to R.p (step 2.b.i). In contrast, if R.p is
the Aggregate operator, the algorithm generates a first set of
authorized views, called Auth viewAGG, by applying over each
Aurora expression in Sec Objs the Aggregate operator (step
2.b.vi.1). Then, the algorithm applies the Sec Aggr operator
and merges the returned Aurora expressions with the expressions
in Auth viewAGG, obtaining the authorized views (step 2.b.vii).

7Note that the limitation to two input streams is compliant to Au-
rora algebra where Join and Resample are defined as binary
operators. The only operator that is not binary is Union, however
it can be executed over more than two operand streams, by itera-
tively applying the binary union operator (i.e., Union(S1,S2,S3)
= Union(S1, Union(S2,S3))).

ALGORITHM 1. The Access control algorithm

INPUT: An access request R=(u,Objs,p), where u is the requesting user,
p is the requested operation and Objs is the protection object like
representation of the streams over which u requires p.

OUTPUT: Access denied or set of Aurora expressions generating
the authorized streams.

1 Let Auth views and Auth viewsAGG be initialized to be empty
2 If (|R.Objs| = 1)

a If (R.Objs.STRs is an input stream)
i Sec Objs:=Sec Read(R.Objs.STRs,R.u)

Else
ii Sec Objs:=Map(R.Objs.ATTs)(Filter(R.Objs.EXPs)

(Cartesian(R.Objs.STRs)))
Endif
b If (R.p �= aggregate)

i Foreach so∈ Sec Objs do
1 If (R.p = Map)

a Let atts be the set of attributes specified in R.p
b Auth views:=Auth views∪Map(atts)(so)

2 If (R.p = Filter)
a Let exp be the predicate specified in R.p
b Auth views:=Auth views∪Filter(exp)(so)

3 If (R.p = Bsort)
a Auth views:=Auth views∪Bsort(so)

EndFor
Else

ii Let s be the size specified in R.p
iii Let i be the step specified in R.p
iv Let F be the aggregate function specified in R.p
v Let A be the attribute specified in R.p
vi If (R.Objs.STRs is an input stream)

1 Foreach so∈ Sec Objs do
a Auth viewsAGG:=Auth viewsAGG∪Aggregate((F,A),s,i)(so)

EndFor
EndIf
vii Auth views:=Auth viewsAGG ∪Sec Aggr(R.Objs.STRs,(F,A),s,i,R.u)

EndIf
Else

c Let Obj1 and Obj2 be the elements in R.Objs
d If (Obj1.STRs is an input stream)

i Sec Objs1:=Sec Read(Obj1.STRs,R.u)
Else

ii Sec Objs1:=Map(Obj1 .ATTs)(Filter(Obj1 .EXPs)
(Cartesian(Obj1 .STRs)))

EndIf
e If (Obj2.STRs is an input stream)

i Sec Objs2:=Sec Read(Obj2.STRs,R.u)
Else

ii Sec Objs2:=Map(Obj2 .ATTs)(Filter(Obj2 .EXPs)
(Cartesian(Obj2 .STRs)))

EndIf
f Foreach so1∈Sec Objs1 do

i Foreach so2∈Sec Objs2 do
1 If (R.p = Union)

a Auth views:=Auth views ∪Union(so1,so2)
2 If (R.p= Join)

a Let P be the join predicate specified in R.p
b Auth views:=Auth views∪Join(P)(so1,so2)

3 If (R.p= Resample)
a Let P be the join predicate specified in R.p
b Auth views:=Auth views∪Resample(P)(so1,so2)

EndFor
EndFor
g Objs1:=Map(Obj1 .ATTs)(Filter(Obj1 .EXPs)(Cartesian(Obj1.STRs)))
h Objs2:=Map(Obj2 .ATTs)(Filter(Obj2 .EXPs)(Cartesian(Obj2.STRs)))
i If (R.p= Join)

a Auth views:=Auth views∪Sec Join(Objs1, Objs2 ,P,R.u)
l If (R.p= Resample)

a Auth views := Auth views ∪ Sec Resample(Objs1, Objs2,P,R.u)
EndIf
If (Auth views = ∅)

Return Access denied
Else

Return Auth views

Figure 3: An algorithm for access control enforcement

28

Let us consider now the case that R.u requires to apply R.p
over two streams, each one modeled through a protection object
like representation say Obj1 and Obj2. In this case R.p is one
among Union, Join and Resample. A user is authorized to ap-
ply one of such operator if he/she has the read privilege on both
the streams denoted by the input protection object like representa-
tion. In this case, the user is allowed to perform R.p only over
the authorized views of the streams, i.e., the views returned by
Sec Read. Additionally, if R.p is Join or Resample, the al-
gorithm has to further verify whether there exists access control
policies defined for the join itself. If this is the case, in addition
to the join computed over the results of Sec Read, the authorized
view consists also of the views returned by Sec Join evaluated
over the requested streams. Therefore, the algorithm firstly ap-
plies the Secure read operator on Obj1 (i.e., Obj2), if Obj1 (i.e.,
Obj2) is an input stream. The returned Aurora expressions are
stored into Sec Objs1 and Sec Objs2, respectively (steps 2.d
and 2.e). Then, the algorithm considers each possible combination
of Aurora expressions in Sec Objs1 and Sec Objs2 and per-
forms over them the required operation R.p (i.e., Union, Join
and Resample) (steps, 2.f.i.1-3). Moreover, if R.p is the Join
or the Resample operator, the algorithm checks whether there ex-
ists some access control policies granting R.u the join (resample)
privilege over the streams denoted by the Aurora expressions in
Objs1 and Objs2. To this purpose, the algorithm makes use of
the Sec Join operator (Sec Resample operator) over the re-
quested stream. Thus, in this case the authorized views are given
by the Aurora expressions obtained by applying the Sec Join op-
erator (Sec Resample operator) over Objs1 and Objs2, plus
the views generated by applying the Join (or Resample op-
erator) over each possible combination of Aurora expressions in
Sec Objs1 and Sec Objs2.

EXAMPLE 4.2. Let us consider an example of the execution of
Algorithm 1. In particular, let us assume that doctor Rick belong-
ing to platoon X is interested to know information about soldiers
having the number of heart beats greater than 160. Therefore,
Rick tries to apply a Filter box over the Health stream, with
predicate: Heart>160. This access request is modeled as fol-
lows: (Rick, ({Health},*, null), (Filter,Heart>160)). To process
this access request, the algorithm first calls the Secure read opera-
tor, i.e., Sec Read(Health,Rick), which, according to the access
control policies in Table 1 returns the following Aurora expression:
Map(Heart,SID)(Filter(Health.Platoon=X)(Health)).
Thus the authorized view given in output by Algorithm 1 is the one
resulting from the evaluation of the following Aurora expression:
Filter(Heart>160)(Map(Heart,SID)(Filter(Health.
Platoon=X)(Health))). This Aurora expression is equivalent
to the graph in Figure 2(a). Indeed, we assume that before insert-
ing the corresponding box into the graph, the Aurora expressions
resulting from Algorithm 1 are optimized, that is, Filter/Map
boxes are collapsed together, if possible.

Let us assume now that Rick is further interested to restrict the
research only to those soldiers that have crossed a certain border
k. Moreover, we assume that currently action a is taking place,
whose targets position is 1000, starting time is 105000, whereas
ending time is infinite since the action has not ended. As pointed
out in Example 3.3, since the position of a soldier is stored into
the Position stream, in order to obtain such a restriction, Rick
has to perform a join of the Position stream with the internal
stream resulting by the previous query (i.e., the stream resulting by
the graph of Figure 2(a)), by selecting only those tuples which refer
to soldiers whose position satisfies the condition above. The access
request is therefore transformed with the help of function proc obj()

(cfr. Figure 1) into the following triple: (Rick,{(Position,*,null),
(Health,{Heart,SID},Health.Heart>160∧Health.
Platoon=X)},(Join,Position.SID=Health.SID∧Pos≥k)).
In this case the algorithm verifies that the first object is in input
stream, whereas the second is an internal one. Thus, in step 2.d.i,
the algorithm calls Sec Read(Position,Rick). However, since
no access control policies in Table 1 authorize the read privilege
on Position, Sec Objs1 is set empty. This implies that no it-
eration of the cycle in step 2.f is performed. However, since the
requested operator is Join, the algorithm calls the Secure join
operator. More precisely, the algorithm calls it by passing as input
Objs1= Map(*)(Position) and Objs2= Map(Heart,SID)
(Filter(Heart>160∧Platoon=X)(Health)). Similarly to Ex-
ample 3.3, the operator returns as authorized view the one corre-
sponding to the following Aurora expression: Map(Heart,
SID)(Filter(Position.SID= Health.SID∧ts≥105000
∧ts≤ ∞∧Pos≥10000-δ∧Pos≤1000+δ∧Pos≥k)(Position,
Health)). This Aurora expression is equivalent to the graph in Fi-
gure 2(b). �

5. FORMAL RESULTS
In this section we formally prove the correctness of Algorithm

1. In order to do that we have to prove that given an access re-
quest R=(u,Objs,p), for each tuple t contained in the streams
AS generated by the Aurora expressions AE returned by Algorithm
1, there exists a set of access control policies in SysAuth that
authorize u to access t.

This formulation can be better stated according to the following
observations. The first is related to the minimum number of access
control policies that must be checked to verify whether u can or
cannot access t. Indeed, according to Algorithm 1, if the required
operator is Filter, Bsort, and Map then a tuple t belongs to AS
if there exists at least an access control policy granting the read
privilege to u. Whereas, if the operator is an aggregate box, t is
in AS if there exists at least an access control policy granting the
read or the required operator (e.g., avg, sum, min, etc.) privilege
to u. In contrast, if the required operator is Join, Resample, and
Union, t belongs to AS if there exist at least two access control
policies granting the read privilege to u over the operand streams,
or in case p is Join or Resample, if there exists an access control
policy granting the join or resample privilege over a view of the
requested joined stream.

Further, we need to formally state which is the set of tuples over
which a user can exercise a privilege according to an access control
policy. Therefore, we exploit the semantics of the access control
policies presented in [5]. In particular, in [5] we have defined the
semantics of the protection object specification of a policy acp as
the set of tuples over which a user to which the policy applies can
exercise privilege acp.priv. We report the formal definition of
the semantics of the protection object specification, which is ex-
ploited in formulation of the correctness theorem.

Definition 7. (Protection object specification semantics) [5].
Given an access control policy acp, the protection object speci-
fication semantics of acp is given by the β function defined as
follows:

• if |acp.obj.STRs|=1, then β(acp)=Map(A1, . . . , An)
(Filter(acp.obj.EXPs∧ ts ≥ acp.gtc.begin ∧
ts≤ acp.gtc.end)(acp.obj.STRs)), otherwise

• β(acp)=Map(A1, . . . , An)(Filter(acp.obj.EXPs∧
ts≥acp.gtc.begin∧ts≤acp.gtc.end)

29

(Cartesian({S1, . . . , Sk}))), Sj ∈acp.obj.STRs∀j ∈
[1, k];

where {A1, . . . , An} belongs to acp.obj.ATTs. If acp.obj.
ATTs = *, then {A1, . . . , An} are all the attributes of streams be-
longing to acp.obj.STRs.

We can now formally state the correctness of Algorithm 1.

THEOREM 5.1. Let R=(u,Objs,p) be an access request and
let AE be the set of Aurora expressions returned by Algorithm 1.
Let AS be the set of streams resulting from the evaluation of the
expressions in AE. For each tuple t∈AS then:

• if R.p is in {Filter, Bsort, Map}, there exists an access
control policy acp having acp.priv=read such that t∈
R.p(β(acp));8

• if R.p is in {Min, Max, Count, Avg, Sum}, there exists an
access control policy acp having acp.priv={read∨R.p}
and such that t∈ Aggregate(R.p, s, i)(β(acp)), where s,
i, are the window and step specified in R.p;

• if R.p is Union, there exist two access control policies acp1
and acp2 having acp1.priv= acp2.priv=read and
such that t∈Union(β(acp1),β(acp2));

• if p is Join or Resample, one of the following condition
holds:

– there exist two access control policies acp1 and acp2
having acp1.priv=acp2.priv=readand such that
t∈
Join(P)(β(acp1), β(acp2)) (i.e.,Resample(P)(
β(acp1), β(acp2))), where P is the predicate speci-
fied in R.p;

– there exists an access control policy acp having
acp.priv= join and such that t∈ β(acp);

The proof is reported in [4].

6. CONCLUSION
Today’s data stream management systems do not offer adequate

mechanisms to protect against unauthorized access of sensitive stream-
ing data. In this paper, we investigated the problem of enforc-
ing access control under the role-based access control model pro-
posed in [5]. We designed a set of novel secure operators (namely,
Secure Read, Secure View, Secure Join and Secure
Aggregate). These operators essentially prune away tuples/attributes
from results of the corresponding non-secure counterparts that are
not accessible according to the specified access control policies.
We also developed an access control mechanism to enforce the ac-
cess control policies based on these operators. We showed that our
method obeys the specified access control policies.

We plan to extend the work reported in this paper along sev-
eral directions. First, we plan to investigate completeness issues
related to the proposed enforcement mechanism. Then, we plan
to implement and integrate the proposed mechanism into a stream
processing engine. This requires to investigate very challenging is-
sues. Indeed, the expressions returned by Algorithm 1 presented
in this paper are just the basic building blocks of the access con-
trol mechanism we would like to develop. A crucial aspect is how
8For sake of simplicity, we use this simplified syntax R.p() in-
stead of specifying the Aurora expression for each single cases,
i.e., Filter, Bsort, and Map.

the evaluation of these expressions can be optimized and integrated
with the optimization techniques in place in the stream engine. Al-
though we have casted our work in the Aurora framework because
up to now is the most widely accepted and mature proposal, another
issue to be investigated is how to adapt the proposed mechanism to
other stream engine (e.g., the ones proposed in [3, 6]). The use
of suitable indexing strategies for policies is also a topic we would
like to investigate in the future. Moreover, once implemented we
would like to perform an extensive evaluation of the performance
of the proposed mechanism to evaluate the overhead implied by ac-
cess control checks. Finally, we will extend the model (and hence
the enforcement strategies) to deal with updates.

7. REFERENCES
[1] D.J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M.

Cherniack, J.H. Hwang, W. Lindner, A. Maskey, A. Rasin, E.
Ryvkina, N. Tatbul, Y. Xing, and S.B. Zdonik. The design of
the borealis stream processing engine. In Proceedings of
Conference of Innovative Data System Research (CIDR’05),
pages 277–289, Asilomar, USA, 2005.

[2] D.J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C.
Convey, S. Lee, M. Stonebraker, N. Tatbul, and S.B. Zdonik.
Aurora: a new model and architecture for data stream
management. In VLDB Journal, 12(2):120–139, 2003.

[3] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, I.
Nishizawa, J. Rosenstein, and J. Widom. Stream: The
stanford stream data manager. In Proceedings of ACM
SIGMOD’03, page 665, San Diego, USA, 2003.

[4] B. Carminati, E. Ferrari, and K.L. Tan. Enforcing access
control policies on data streams. Extended version of this
paper. Available at:“http://www.dicom.uninsubria.it/˜
elena.ferrari/stream/TR0107.pd”, 2006.

[5] B. Carminati, E. Ferrari, and K.L. Tan. Specifying access
control policies on data streams. In Proceedings of the
Database System for Advanced Applications Conference
(DASFAA 2007), Bangkok, Thailand, 2007.

[6] S. Chandrasekaran, O. Cooper, A. Deshpande, M.J. Franklin,
J.M. Hellerstein, W. Hong, S. Krishnamurthy, S. Madden, V.
Raman, F. Reiss, and M.A. Shah. TelegraphCQ: continuous
dataflow processing for an uncertain world. In Proceedings
of the Conference of Innovative Data System Research
(CIDR’03), Asilomar, USA, 2003.

[7] E. Ferrari and B. Thuraisingham. Secure Database Systems.
In O. Diaz and M. Piattini editors, Advanced Databases:
Technology and Design, Artech House, London, 2000.

[8] W. Lindner and Jorg Meier. Securing the borealis data stream
engine. In Proceeding of the International Database
Engineering and Application Symposium (IDEAS’06), Dehli,
India, 2006.

[9] StreamBase Home Page. http://www.streambase.com//.

30

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

