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Abstract Intelligent systems cover a wide range of tech-
nologies related to hard sciences, such as modeling and
control theory, and soft sciences, such as the artificial
intelligence (AI). Intelligent systems, including neural
networks (NNs), fuzzy logic (FL), and wavelet techni-
ques, utilize the concepts of biological systems and hu-
man cognitive capabilities. These three systems have
been recognized as a robust and attractive alternative to
the some of the classical modeling and control methods.
The application of classical NNs, FL, and wavelet
technology to dynamic system modeling and control has
been constrained by the non-dynamic nature of their
popular architectures. The major drawbacks of these
architectures are the curse of dimensionality, such as the
requirement of too many parameters in NNs, the use of
large rule bases in FL, the large number of wavelets, and
the long training times, etc. These problems can be
overcome with dynamic network structures, referred to
as dynamic neural networks (DNNs), dynamic fuzzy
networks (DFNs), and dynamic wavelet networks
(DWNs), which have unconstrained connectivity and
dynamic neural, fuzzy, and wavelet processing units,
called ‘‘neurons’’, ‘‘feurons’’, and ‘‘wavelons’’, respec-
tively. The structure of dynamic networks are based on
Hopfield networks. Here, we present a comparative
study of DNNs, DFNs, and DWNs for non-linear dy-
namical system modeling. All three dynamic networks
have a lag dynamic, an activation function, and inter-
connection weights. The network weights are adjusted
using fast training (optimization) algorithms (quasi-
Newton methods). Also, it has been shown that all
dynamic networks can be effectively used in non-linear
system modeling, and that DWNs result in the best
capacity. But all networks have non-linearity properties
in non-linear systems. In this study, all dynamic

networks are considered as a non-linear optimization
with dynamic equality constraints for non-linear system
modeling. They encapsulate and generalize the target
trajectories. The adjoint theory, whose computational
complexity is significantly less than the direct method,
has been used in the training of the networks. The up-
dating of weights (identification of network parameters)
is based on Broyden–Fletcher–Goldfarb–Shanno meth-
od. First, phase portrait examples are given. From this,
it has been shown that they have oscillatory and chaotic
properties. A dynamical system with discrete events is
modeled using the above network structure. There is a
localization property at discrete event instants for time
and frequency in this example.
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1 Introduction

Intelligent systems including neural networks (NNs),
fuzzy logic (FL), and wavelet techniques utilize the
concepts of biological systems and human cognitive
capabilities. They possess learning, adaptation, and
classification capabilities that hold out the hope of im-
proved modeling and control for today’s complex sys-
tems. In this study, we present improved model design
through three sorts of intelligent modeler which will be
used in intelligent controllers; those based on dynamic
neural networks (DNNs), those based on dynamic fuzzy
networks (DFNs), and those based on dynamic wavelet
networks (DWNs). DNNs capture the dynamic parallel
processing and learning capabilities of biological ner-
vous systems; DFNs, in addition to those properties,
capture the decision-making capabilities of human lin-
guistic and cognitive systems; and DWNs give a better
approximation to signals and other transient or localized
phenomena, both in time and frequency, and also cap-
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ture the dynamic parallel processing and learning cap-
abilities.

This study brings DNNs, DFNs, and DWNs together
with dynamical model and control systems. Intelligent
systems modeling (or identification) and control achieve
automation via the emulation of biological intelligence.
Intelligent systems modeling and control contain a wide
area of technologies, such as the proportional-integral-
derivative (PID) control, optimal control theory, system
identification, artificial intelligence (AI) such as NNs,
FL, wavelets, etc., and heuristics. In many physical and
engineering systems, non-linearity properties are enough
to prevent the well known application of linear control
theory. There are many methods to solve different kinds
of non-linear optimal control problem [5, 6, 16, 25, 26,
57]. One of the difficult problems encountered is optimal
control for non-linear systems. An important aspect of
any control system is its implementation on actual in-
dustrial systems. The major complication introduced
during the modeling of a non-linear dynamical system
with intelligent systems (which are DNNs, DFNs, and
DWNs in this study) is which principles should be
considered to obtain the accurate ‘‘model equivalence’’
of a known model of a non-linear dynamical system?
Neural, fuzzy, and wavelet modeling and control have
emerged as the most important branches in the last
decade. They achieved successes in their application to
many engineering systems in the real world [21, 23, 41,
58, 73, 75]. One of the goals of AI is focused on devel-
oping computational approaches to intelligent behavior
[14]. As a final analysis, the role model is the human
brain and NNs, the human mind and fuzzy networks
(FNs), and the localized signals and wavelet networks
(WNs), which are three of the oversimplified models of it
[23].

Recently, NNs, FNs, and WNs have been paid more
attention in the identification and control of unknown
non-linear systems, owing to their massive parallelism,
fast adaptation properties, and locality capturing and
learning capabilities. But, until now, the most widely
used NNs, FNs, and WNs systems are algebraic systems,
despite the immense popularity of the algebraic neural,
fuzzy, and wavelet systems (or feedforward networks)
that are usually implemented for the approximation of a
non-linear function [13, 23, 50, 52, 69, 73, 75].

In this study, the modeling principles of a non-linear
system with DNNs, DFNs, and DWNs with un-
constrained connectivity and with dynamic neural, fuz-
zy, or wavelet processing units, called ‘‘neurons’’,
‘‘feurons’’, or ‘‘wavelons’’, have been given. The dy-
namic networks modeling problem is considered as a
non-linear optimization with dynamic equality con-
straints and DNNs, DFNs, and DWNs, as compared
with each other, are used for modeling with learning,
generalization, and encapsulating capabilities.

The application of NNs, FNs, and WNs to dynamic
system modeling and control has been constrained by
the non-dynamic nature of popular network archi-
tectures. All algebraic (feedforward) NNs, FNs, and

WNs suffer from some drawbacks. In non-linear system
modeling, a taped-delay lines approach is required, re-
sulting in the number of rules increasing exponentially,
the number of parameters in the rules getting large (this
is called as ‘‘the curse of dimensionality’’), a long com-
putational time, easily being affected by external noise,
and difficulty in obtaining an independent system
simulator [32, 45, 52, 54]. The major drawbacks in these
architectures are the curse of dimensionality, such as the
requirement of too many parameters in NNs, the use of
large rule bases in FL, the large number of wavelets, and
the long training times, etc. An important problem for
neural and fuzzy system applications is how to deal with
the neuron and layer number, and this rule explosion
problem. The same problems also exist in algebraic
(feedforward) wavelet networks. Many of the problems
as stated above can be overcome with DNNs, DFNs,
and DWNs [1–4, 17, 18, 21, 28, 30, 31, 33, 45].

In previous research, to overcome the drawbacks,
some alternative approaches have been developed. The
recurrent neural network (RNN) structure is developed
for this purpose [33, 53, 56, 68]. The most important
model is the fuzzy Takagi–Sugeno model. The original
idea of the Takagi–Sugeno model comes from fuzzy
identification. The linear dynamic fuzzy model is used
for non-linear system modeling [63, 64]. The Takagi–
Sugeno model incorporates an idea that local dynamics
(linear dynamics) of a non-linear system can be re-
presented by different linear dynamic models [8, 66, 67].
On the wavelet front, some important developments
have been made in the last decade [2, 12, 40, 45, 65, 71,
73].

In this study, alternatively, we used dynamic net-
works (for DNNs, DFNs, and DWNs)—these have a
quasi-linear dynamic nature—containing dynamic ele-
ments such as integrators (or delayers in discrete time) in
their processing units, which promise to overcome those
drawbacks and may also allow for the incorporation of
both heuristics (this includes neuron number from test
and experience, if–then rules from people experience,
and wavelons number from test and experience) and
hard knowledge to exploit the best characteristics of the
dynamical systems [1–4, 28, 30, 31, 45, 52, 69, 72].

The most important complication when dynamics are
incorporated into the networks (algebraic networks)
model is related to supervised training algorithms. The
training algorithms are used to obtain appropriate net-
work weights, time constants, and membership and wa-
velet function parameters of the wavelet and fuzzy
systems. In only algebraic/feedforward neural, fuzzy, and
wavelet networks, identification of its parameters is easy
to compute [13, 39, 45, 50, 52, 69]. In dynamic networks,
the gradient calculation with respect to networks weights
(or parameters) are more complicated [59]. The gradient
calculation structure in dynamic systems has been
developed in systems, control, identification, and optimal
control theory [5, 16, 34, 38, 72]. These approaches have
been successfully applied in identification, modeling, and
control applications [1–4, 27–31, 45, 53].
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Intelligent systems cover a wide range of technologies
related to hard sciences, such as modeling and control
theory, and soft sciences, such as AI. Figure 1 shows a
general diagram of intelligent modeling and control
history.

In Sect. 2, we present the structure of the DNN,
DFN, and DWN we used, together with illustrative
examples. The non-linear optimization problem based
on the adjoint sensitivity approach is discussed in
Sect. 3. Simulation results are given in Sect. 4 for
modeling a system with a non-linear discrete event
process using a fully connected neuron DNN, DFN, and
DWN.

2 General dynamic network architecture

During the last few years, the non-linear dynamic system
modeling of processes by neural and fuzzy networks has
been extensively studied. NNs, FNs, and WNs have
learning, approximation, and generalization properties.
We present the dynamic type of networks. In fact, FNs
and WNs are NNs with a special structure. NN and FN
systems belong to a larger class of systems called ‘‘non-
linear network structures’’ [37] that have some proper-
ties of extreme importance for feedback control systems.
These networks are universal approximators [11, 19, 20,
51, 70], and WNs are also alternative universal ap-
proximators [12, 40, 74]. Non-linear dynamic models of
processes with NNs, FNs with taped-delay lines, and
recurrency have been often used [13, 32, 33, 39, 50, 52–
54, 56, 68, 69], but WNs during the last few years have
been even more widely used [45, 65, 71].

Dynamic network models has been used in the
meaning of a network. The DNN, DFN, and DWN
models we used have unconstrained connectivity and
have dynamic elements in the neuro (neuron of DNN),

feuro (neuron of DFN), and wavelo (neuron of DWN)
processing units. A schematic diagram for the dynamic
networks with three neurons is shown in Fig. 2. Ni can
be a neuron in a DNN, a feuron in a DFN, or a wavelon
in a DWN. In general, there are L input signals which
can be time-varying, n dynamic units, n bias terms, and
M output signals. The units have dynamics associated
with them and they receive the input from themselves,
the bias term, and from all other units. The output of a
unit yi is an activation function h(xi) of a state variable xi
associated with the unit. The output of the overall net-
work is a linear weighted sum of the unit outputs. The
bias term bi is added to the unit inputs. pij is the input
connection weights from the jth input to the ith neuron
(or feuron or wavelon), wij is the interconnection weight
from the jth neuron (or feuron or wavelon) to the ith
neuron (or feuron or wavelon) and qij is the output
connection weight from the jth neuron (or feuron or
wavelon) to the ith output. Ti is the dynamic constant of
the ith neuron (or feuron or wavelon) and bi is the bias
(or polarization) term of the ith neuron (or feuron or
wavelon).

Fig. 1 Schematic diagram of intelligent modeling and control

Fig. 2 Schematic diagram of a DNN, DFN, or DWN with three
neurons/feurons/wavelons

341



The DNNs we describe here can be contrasted with
the mathematical representations of neural systems
found in the literature [1, 3, 4, 17, 18]. They take a
popular form: standard algebraic neural network sys-
tems with external dynamics [15, 53]. In this study, a
logarithmic sigmoid function is used as the activation
function in the DNN:

hi xi; ci; bið Þ ¼ 1

1þ exp� cixi þ bið Þ ð1Þ

The processing unit in the DFN is the feuron [4, 46–
48]. The feuron represents a single dynamic neuron with
a fuzzy activation function. A DFN schematic diagram
is as in Fig. 2. The dynamic feuron resembles the bio-
logical neuron model. This model fires if the inputs of
the feurons are excited enough. The firing procedure is
done through lag dynamics, such as Hopfield dynamics.
The fuzzy activation function h behaves as biological
neurons which have receptive field units in the visual
cortex, in part of the cerebral cortex, and in the outer
parts of the brain [17, 18, 52]. We have chosen the
Gaussian function (this is known as the membership
function in fuzzy logic literature) for the receptive field
function (that is the part of fuzzy activation functions)
as below:

Rij xið Þ ¼ exp � 1

2

xi � cij

rij

� �2
 !

ð2Þ

where cij is the center and rij is the spread of the jth
receptive field unit of the its ith feuron. The standard
fuzzy system that has been used is the singleton fuzzifier,
product inference engine with Gaussian membership
function and center average defuzzifier. The ith activa-
tion function with the standard fuzzy system can be
written as:

hi xið Þ ¼
PRi

j¼1 aijlj xið ÞPRi
j¼1 lj xið Þ

¼

PRi
j¼1 aij exp � 1

2

xi�cij

rij

� �2� �

PRi
j¼1 exp � 1

2

xi�cij

rij

� �2� �

ð3Þ

The upper and lower membership functions of the
universe of discourse can be considered by hard con-
straints (xiL and xiU) as below:

l1 xið Þ ¼ 1 if xi6xiL and

lRi
xið Þ ¼ 1 if xi>xiU

ð4Þ

where R is number of fuzzy rules, aij are the output
membership function centers and lj(xi) is the premise
membership function of the jth rule. The feurons’ fuz-
zification structure is a single input/single output (SISO)
algebraic fuzzy system. The dynamic fuzzy networks we
describe here can be contrasted with the mathematical
representations of fuzzy and neural systems found in the
literature. They take a popular form: standard algebraic
neural network systems with external dynamics [15, 53,

69]. Another form is functional fuzzy systems, which are
based on Takagi–Sugeno systems [49, 63, 64]. The
standard algebraic and functional fuzzy systems ne-
cessitate the large number of rules that cause the im-
portant problem of ‘‘the curse of dimensionality.’’ On
the contrary, the DFN has a fewer number of para-
meters and simpler units.

In DWNs, wavelet neurons (wavelons) input over a
lag dynamic transport to output via a wavelet activation
function. Wavelets are usually explained as basis func-
tions which are compact (closed and bounded), ortho-
gonal (or orthonormal), and have time–frequency
localization properties. But, to provide all of those
properties is very difficult. Basis functions are called
‘‘activation functions’’ in ANN literature, and can be a
global or local feature in time. Global basis functions are
active for the wide values of inputs and the receptive
field of the basis function is approximately constant far
from the center (i.e., logarithmic sigmoid function). But,
the local basis functions are only active near the center;
the value tends to zero far from the center.

If the global basis function is used in a network, all
activation functions interact with each other and each
node, and they cover a wide input interval. This causes
the large number of parameters to adjust and necessi-
tates a long computation time. In addition, for wide
input intervals, much more extrapolation error occurs.
The most important disadvantage of orthonormal
compact basis functions is that they can not obtained in
the closed analytical form.

To remove all those disadvantages, the local basis
functions can be used. The local basis functions are only
active for certain inputs. In addition, the generalization
errors decrease [36]. In this study, only the local basis
functions have been used. The most important local
function is Gaussian:

/ xð Þ ¼ exp � x2

2

� �
; x 2 R ð5Þ

where u2L2(R). For the more general case:

/
x� l

r

� �
¼ exp � 1

2

x� l
r

� �2� �
; x 2 R ð6Þ

where l is the center or translation and r is the standard
deviation or dilation. The localization of the Gaussian
function in time is shown in Fig. 3a . However, the
Gaussian function is not local in frequency, as shown in
Fig. 3b. The locality features in both time and frequency
is a very important concept for the representation of the
signals. Therefore, the mission of the wavelet functions
is comprehensive.

The locality in time and frequency can be explained
as follows:

– If a function is described in a bounded interval and
has a very small value outside the boundary, then that
function is local in time. The local function in time can
be shifted by changing its center.
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– If the frequency spectrum of the local function in time
is described in a bounded frequency interval and has
very small value outside the boundary, and also can
be shifted by changing its dilation, then that function
is local in frequency.

A deficiency of Gaussian-based ANNs is that they do
not have localization capabilities in frequency. As shown
in Fig. 3b, the Gaussian function is not local in fre-
quency. Therefore, it is very difficult to use Gaussian-
based functions in some applications [60]. To overcome
these problems, there is a very effective way to use wa-
velet functions with time–frequency localization prop-
erties [7]. The time and frequency envelope of the
Mexican Hat function (second derivative of the Gaus-
sian function) is shown in Fig. 3. In some studies, the
first derivative of the Gaussian function has been used
[40, 45]. However, the locality properties of the second
derivative of the Gaussian function are clearer. A non-
orthonormal Mexican Hat basis function can be easily
written in the analytical form and its Fourier transform
can be found [65], thus:

/ xið Þ ¼ 1� x2i
� �

exp � x2i
2

� �
; x 2 R ð7Þ

/ xð Þ ¼
ffiffiffiffiffiffi
2p
p

x2 exp �x2

2

� �
; x 2 R ð8Þ

where x is a real frequency. The last equation can be
generalized as follows:

/
xi � li

ri

� �
¼ 1� xi � li

ri

� �2
 !

exp � 1

2

xi � li

ri

� �2
 !

ð9Þ

where li and ri are the translation (center) and dilation
(standard deviation) parameters, respectively. Wavelet
functions have efficient time–frequency localization
properties, as shown from the frequency spectrum [40].
As shown in Fig. 4, if the dilation parameter is changed,
the support region width of the wavelet function chan-
ges, but the number of cycles does not change. That is,
the peak number does not change; however, when the
dilation parameter decreases, the peak point of the
spectrum shifts to a higher frequency. Therefore, all
frequency spectrums can be obtained by changing the
dilation. In this study, Eq. 7 has been used as a mother
(main) wavelet [65]. An N-dimensional mother wavelet
can be given in the separable structure with the product
rule as follows [7, 40, 45, 74, 75]:

Ui xð Þ ¼
YN
j¼1

/j

xj � lij

rij

� �
ð10Þ

where xi2RN is the input and N is the input number. A
function y=f(x) can be represented with wavelets ob-
tained from the mother wavelet, [7, 40, 45] as below:

yi ¼ hi xð Þ ¼
XNw

j¼1
cijUj xð Þ þ ai0 þ

XN

j¼1
aikxk ð11Þ

(a) (b)Fig. 3 a Gaussian (solid line)
and wavelet (dashed line) basis
functions. b The Fourier
transform of the Gaussian (solid
line) and wavelet (dashed line)
basis functions
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where cij are the coefficients of the mother wavelets, Nw

is the number of wavelets, ai0 is a mean or bias term, and
aik are the linear term coefficients of this approach.

The wavelet function in this structure will be used in
the DWN given in Fig. 2. The structure used in [1, 3, 4,
28, 30, 31, 46–48] has been adapted to this network. The
wavelets in Eqs. 10 and 11 will be used as the activation
functions in the network. Each activation function has
a single input/single output (SISO), and can be re-
expressed as:

Ui xið Þ ¼ /i

xi � lij

rij

� �
ð12Þ

yi ¼ hi xið Þ ¼
XNw

j¼1
cij/i

xi � lij

rij

� �
þ ai0 þ ai1xi ð13Þ

/i

xi�lij

rij

� �
¼ 1�

xi�lij

rij

� �2
 !

exp �1
2

xi�lij

rij

� �2
 !

ð14Þ

The mathematical expression of the DWN can be written
like that of the DNN and DFN [1–4, 28, 30, 31, 46–48].

In all of these theoretical aspects, the more general
and open computational model of DNNs, DFNs, and
DWNs is shown in Fig. 5.

The computational model of DNNs, DFNs, and
DWNs is given in the following equations:

zi ¼
Xn

j¼1
qijyj; i ¼ 1; 2; . . . M ð15Þ

yi ¼ h xi; pið Þ; i ¼ 1; 2; . . . ; n ð16Þ

_xi¼ fi xi;pð Þ¼ 1

Ti
�xiþ

Xn

j¼1
wijyjþ

XL

j¼1
pijujþbi

" #
;

xi 0ð Þ¼ xi0; i¼ 1;2; . . . ;n ð17Þ

where qij are the weights of the outputs of networks, w,
p, q, and b are the interconnection parameters of the
dynamic networks, T is the time constant, and p is the
parameter of the activation function which are the
neuron, feuron, or wavelon parameters, as given above.
The initial conditions on the state variables xi(0) must be
specified. This model is similar to those in the literature
[1–4, 18, 24, 43, 46–48, 56, 62].

2.1 Illustrative examples for the dynamical behavior
of DNNs, DFNs, and DWNs

These models (DNN, DFN, DWN) approximate phy-
sical dynamic non-linear systems. In this section, some
examples are given in which the DNNs, DFNs, and
DWNs converge to an attractor or limit cycle, oscillate,
or end in a chaotic fashion. The problem of training
trajectories by means of continuous recurrent neural
networks whose feedforward parts are as a multilayer
perceptron has been studied [35]. The DNN, DFN, and
DWN open diagram with two inputs/two outputs and
two neurons, feurons, or wavelons is shown in Fig. 6.

Fig. 5 General mathematical computational model diagram of
DNNs, DFNs, and DWNs

Fig. 6 The state diagram of
DNN/DFN/DWN with two
neurons/feurons/wavelons and
two inputs/two outputs
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Given a set of parameters, initial conditions, and in-
put trajectories, the output set of Eqs. 16 and 17 can be
numerically integrated from t=0 to the final time tf. This
will produce trajectories over time for the state variables
xi. We have used a 5-degree Runga–Kutta method [9,
44]. The integration step size has to be commensurate
with the temporal scale of dynamics, determined by the
time constants Ti. In our work, we have specified a lower
bound on Ti and have used a fixed integration time step
of some fraction (e.g., 1/10) of this bound.

2.1.1 DNNs, DFNs, and DWNs as a chaotic system

Consider the Lorenz system [25, 32] for the training of
DNNs, DFNs, and DWNs. The interconnection and
some neurons’, feurons’ membership (here, we used five
memberships in a feuron), and wavelons’ (with three-
mother wavelet) parameters of the networks found by
the training algorithm are given below:

The initial conditions were xi(0)=�6, �10, �4, (i=1,
2, 3). All of the dynamic networks successfully realized a
chaotic system, which only shows x1�x3 as a state space
combination of DNN, DFN, and DWN. Figure 7 also
shows the state x1 error trajectories between DNN/
DFN/DWN and the actual Lorenz attractor trajectories.
The error is very small up to approximately 18 s. After
that, the error increases and the overlap rate is high.
Overall, the overlap rate is satisfactory. When these
portraits are compared with the real Lorenz system, the
DWN portrait is nearest to the Lorenz portrait with the
DFN being next in terms of good performance and,
lastly, is the DNN. All networks were trained with the
same iterations. Trajectory tracking performance is ex-
cellent in this application for all networks.

2.1.2 DNN, DFN, and DWN as an oscillator example

In this application, an oscillator system in [25] is mod-
eled with two neurons/feurons/wavelons in a DNN/
DFN/DWN. The interconnection and some neurons’,
feurons’ membership (we used five memberships in a
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feuron), and wavelons’ (with three-mother wavelet)
parameters of networks are shown below:

The DNN/DFN/DWN converge to an oscillation
situation for several initial conditions (xi(0), i=1, 2) (see
Fig. 8). As can be seen, all the dynamic networks cap-
ture the oscillator system’s behavior adequately.

In all of the above illustrative examples, the DNN,
DFN, and DWN successfully capture the behavior of a
non-linear physical dynamic system.

3 Parameter identification based on adjoint sensitivity
analysis for dynamic network training

The DNN, DFN, and DWN training is used to en-
capsulate a given set of trajectories by adjusting network
parameters. In this section, adjusting the parameters of
the dynamic networks is presented for trajectory track-
ing. This is done by minimizing the cost function (error
function). The gradient-based algorithms have been used
for this problem. The cost gradients with respect to
network parameters are required for the algorithm. The
dynamic networks’ general schematic diagram is shown
in Fig. 9. Our focus in this paper has been the adjoint
sensitivity analysis for calculating the cost gradients with
respect to all networks parameters. The common net-
work parameters are w, p, q, b, T; c and b for DNN also;
c, r, and a for DFN also; and c, l, r, and a for DWN

also. Note that some DFN and DWN parameters are
different but the same notation was used.

A performance index (PI) or cost structure is selected
in the simple quadratic form as follows:

E ¼ 1

2

Ztf

0

z tð Þ � zd tð Þ
� 	T

z tð Þ � zd tð Þ
� 	

dt ð18Þ

where e(t)=z(t)�zd(t) is the error function. z(t) is the
response of the DNN, DFN, and DWN models (out-
put), and zd(t) is the desired (target) system response. We
want to compute the cost sensitivities with respect to the
various parameters:

@E
@w

;
@E
@p

;
@E
@q

;
@E
@T

;
@E
@b

;
@E
@c
;
@E
@r

;
@E
@a

;
@E
@l

ð19Þ

The output weight gradients can be easily obtained by
differentiating Eqs. 18 and 15:

w ¼
0 �1

1 1

" #
; p ¼

0

0

" #
; q ¼

1

1

" #
; b ¼

0

0

" #
; T ¼

1 0

0 1

" #
for DNN, DFN, DWN

additionally for DNN: c ¼
0:786

0:812

" #

additionally for DFN: r ¼
0:594 1:005 0:129 0:865 1:131

0:683 1:118 0:122 0:924 2:129

" #

additionally for DWN: c ¼
�0:872 �1:209

�1:431 �1:098

" #
, l ¼

0:059 �1:113

�0:287 0:098

" #

Fig. 8a–c The state space trajectories of a DNN, b DFN, and
c DWN as an oscillatory system
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@E
@qij
¼
Ztf

0

zi tð Þ � zd
i tð Þ

� 	 @zi

@qij
dt ¼

Ztf

0

ei tð Þyjdt ð20Þ

One approach to solving the constrained dynamic
optimization problem is based on the use of the calculus
of variations, which is called the ‘‘adjoint’’ method for
sensitivity computation [1, 3–5, 27–31, 34]. The number
of differential equations to be solved only depends on
the neuron/feuron/wavelon number, and does not de-
pend on network parameters. A new dynamical system
defined with adjoint state variables ki is obtained as
follows:

� _ki ¼ �
1

Ti
ki þ

1

Ti

X
j

wijy0jkj þ ei tð Þ
X

j

qijy0j; kj tfð Þ ¼ 0

ð21Þ

y0j¼
@hj xj
� �
@xj

¼

cjhj 1�hj
� �

forDNN

PRj
k¼1 hj�ajkð Þexp �1

2

xj�cjk
rjk

� �2
� �

xj�cjk

r2
jk

� �

PRj
k¼1 exp �1

2

xj�cjk
rjk

� �2
� � forDFN

�
PNw

k¼1
cjk 3/jþ2

xj�lj

r2
jk

� �2
 !

xj�lj

r2
jk

� �
þaj1 forDWN

8>>>>>>>>>><
>>>>>>>>>>:

ð22Þ

The size of the adjoint vector is n and is independent
of the network parameters. There are n quadratures for
computing the sensitivities. The integration of the dif-
ferential equations must be performed backwards in
time, from tf to 0. We have used the 5th-order Runga–
Kutta–Butcher integration rule [9, 44]. Let p be a vector
containing all network parameters. Then, the cost gra-
dients with respect to the parameters are given by the
following quadratures:

@E
@p
¼
Ztf

0

@f
@p

� �T

kdt ð23Þ

Some of the cost gradients as in [1–4, 30, 46–48] are as
follows:

@E
@wij

¼
Ztf

0

kiyj

Ti
dt;

@E
@bi
¼
Ztf

0

ki

Ti
dt ð24Þ

@E
@Ti
¼
Ztf

0

ki

T 2
i
�xi þ

Xn

j¼1
wijyj þ

Xl

j¼1
pijuj þ bi

" #
dt ð25Þ

@E
@ci
¼
Ztf

0

X
i
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 !
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� �
dt ð26Þ

(b)

(a)Fig. 10 a Modeling diagram of
discrete event system. b The
unit step gain functions
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@E
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¼
Ztf

0

 X
i

ki

Ti
wij

aik � fi

PR
k¼1 exp

�
� 1

2

�
xi�cik

rik

�2�

� exp

�
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�
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rik
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@J
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0

X
k

kk
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wki/i
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� � !
dt for DWN ð28Þ

All other gradients can be easily derived. Detailed
results can be found in the literature [1, 3, 46, 47]. We
assume that, at each iteration, the gradients of the per-
formance index with respect to all networks parameters,
g ¼ @E

@p, is computed. Here, we describe an algorithm we
have used for updating parameter values based on this
gradient information:

pkþ1 ¼ pk þ skdk; dk ¼ �Hkgk
p ð29Þ

where d is the search direction, s is the optimal step
size along the search direction, g is the cost gradient
with respect to the parameter, and H ffi rppJ

� ��1
is

the inverse of the approximate Hessian matrix. The
Broyden-Fletcher-Golfarb-Shanno gradient method
has been used for updating network weights. This
method is faster than the simple gradient method and

more robust than the simple conjugate gradient ap-
proach [1, 3, 4, 10, 16, 30, 46, 47, 55, 61]. This method
provides the history of the parameter and gradient
changes, yielding approximately second-order in-
formation.

The adjoint way of computing performance index
sensitivities is efficient in the number of differential
equations that need to be solved, but the intermediate
computations within the time interval do not produce
information that is meaningful in the original networks
(DNN, DFN, DWN). Whereas the forward sensitivity
method produces trajectories of the state and response
sensitivities, the adjoint method produces trajectories of
adjoint variables.

For algorithms requiring the exact Hessian, a com-
putationally efficient approach is available using both
the adjoint and forward response sensitivities [27, 29].
Thus, by performing both the forward and adjoint sen-
sitivity analyses, an exact Newton method in the func-
tion space can be implemented at a substantially lower
cost than that involved in the ‘‘forward’’ computation of
exact second-order sensitivities.

4 Simulation results

As an application, a non-linear piecewise-continuous
scalar function (discrete event system) [74] has been
considered in the dynamic structure (passing through
1 s�1) by adding a control function and this function
is the one to be modeled with DNN, DFN, and
DWN. For this, the f(x) function is substituted
into the _x ¼ f x; uð Þ; x t0ð Þ ¼ x0; 06t6tf expression as
below:

Fig. 11a–f The modeled process with DNN, DFN, and DWN.
a Control input (dashed-dotted line), DNN output (dashed line), and
process output (solid line). b DFN output (dashed line) and process
output (solid line). c DWN output (dashed line) and process output
(solid line), Error trajectories for d DNN, e DFN, and f DWN
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The modeling structure is shown in Fig. 10a. The unit
step gain functions ki(x) (i=1, 2, 3) used are given in
Fig. 10b.

This process has been trained by a DWN with a
wavelon in the time interval t2[0, 10]. The control
function to be applied to the system input that was se-
lected so that there was an adequate amount of oscilla-
tion of the system is shown in Fig. 11a. The initial
condition was taken to be x0=�0.4. At the beginning of
the training, some modeling parameters were set to
pij=1 and Ti=1, but the others were started randomly.
After the training, the output of the DNN, DFN, and
DWN are as in Fig. 11a–c, respectively. The right-hand
side of Eq. 17 for u(t)=0 (that is, f̂ xð Þ; the static side of
DNN, DFN, and DWN) has been successfully fitted to
the real function f(x) given by right-hand side of Eq. 30
for u(t)=0 (see Fig. 12a–c). As can be seen, the joint
point at x=�2 was successfully modeled with DNN,
DFN, and DWN. When one carefully looks at Figs. 11
and 12, the DWN approximation is better than the
others, but DNN and DFN also are successful approx-
imators.

5 Conclusions and future works

In this work, we presented three intelligent methods to
be used in modeling, control, and the other applications.
Any non-linear physical dynamic system can be cap-
tured by dynamic neural networks (DNNs), dynamic
fuzzy networks (DFNs), and dynamic wavelet networks
(DWNs). Simulation results show that the dynamic
network structure can grown more accurately by neuro/
fuzzy/wavelet approximators.

All of the results presented here were obtained with
the help of a trained DNN, DFN, and DWN, which
generated the model response policy close to the target
process. In the illustrative examples, the dynamic net-
works used have some non-linear dynamic system be-
havior, such as chaotic, oscillator, etc.

In the simulations presented, we used a non-linear
system with a discrete event system. All three networks
were successfully used for modeling the target process.
According to the modeling and training speed perfor-
mance, better results have been obtained from DWNs,
but DFNs and DNNs have also produced satisfactory

_x ¼ f x; uð Þ ¼
�2:186x� 12:864þ u �10 6 x \� 2
4:246xþ u �2 6 x \0
10 exp �0:05x� 0:5ð Þ � sin 0:03xþ 0:7ð Þxð Þ þ u 0 6 x \10

8<
: ð30Þ
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results. The exact Hessian-based optimization algo-
rithm for application to DNN, DFN, and DWN is
a valuable approximation to speed up training time.
In addition, the local and orthogonal wavelet usage
in these areas can increase the training speed for
DWNs.
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