
Rethinking Memory System Design for

Data-Intensive Computing

Onur Mutlu

onur@cmu.edu

June 20, 2014

ASAP 2014, Zurich

mailto:onur@cmu.edu

The Main Memory/Storage System

 Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

 Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

2

Processor

and caches
Main Memory Storage (SSD/HDD)

Memory System: A Shared Resource View

3

Storage

State of the Main Memory System

 Recent technology, architecture, and application trends

 lead to new requirements

 exacerbate old requirements

 DRAM and memory controllers, as we know them today,
are (will be) unlikely to satisfy all requirements

 Some emerging non-volatile memory technologies (e.g.,
PCM) enable new opportunities: memory+storage merging

 We need to rethink the main memory system

 to fix DRAM issues and enable emerging technologies

 to satisfy all requirements

4

Agenda

 Major Trends Affecting Main Memory

 The Memory Scaling Problem and Solution Directions

 New Memory Architectures

 Enabling Emerging Technologies: Hybrid Memory Systems

 How Can We Do Better?

 Summary

5

Major Trends Affecting Main Memory (I)

 Need for main memory capacity, bandwidth, QoS increasing

 Main memory energy/power is a key system design concern

 DRAM technology scaling is ending

6

Major Trends Affecting Main Memory (II)

 Need for main memory capacity, bandwidth, QoS increasing

 Multi-core: increasing number of cores/agents

 Data-intensive applications: increasing demand/hunger for data

 Consolidation: cloud computing, GPUs, mobile, heterogeneity

 Main memory energy/power is a key system design concern

 DRAM technology scaling is ending

7

Example: The Memory Capacity Gap

 Memory capacity per core expected to drop by 30% every two years

 Trends worse for memory bandwidth per core!
8

Core count doubling ~ every 2 years

DRAM DIMM capacity doubling ~ every 3 years

Major Trends Affecting Main Memory (III)

 Need for main memory capacity, bandwidth, QoS increasing

 Main memory energy/power is a key system design concern

 ~40-50% energy spent in off-chip memory hierarchy [Lefurgy,

IEEE Computer 2003]

 DRAM consumes power even when not used (periodic refresh)

 DRAM technology scaling is ending

9

Major Trends Affecting Main Memory (IV)

 Need for main memory capacity, bandwidth, QoS increasing

 Main memory energy/power is a key system design concern

 DRAM technology scaling is ending

 ITRS projects DRAM will not scale easily below X nm

 Scaling has provided many benefits:

 higher capacity (density), lower cost, lower energy

10

Agenda

 Major Trends Affecting Main Memory

 The Memory Scaling Problem and Solution Directions

 New Memory Architectures

 Enabling Emerging Technologies: Hybrid Memory Systems

 How Can We Do Better?

 Summary

11

The DRAM Scaling Problem

 DRAM stores charge in a capacitor (charge-based memory)

 Capacitor must be large enough for reliable sensing

 Access transistor should be large enough for low leakage and high
retention time

 Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

 DRAM capacity, cost, and energy/power hard to scale

12

 Row of Cells
 Row
 Row
 Row
 Row

 Wordline

 VLOW VHIGH
 Victim Row

 Victim Row
 Aggressor Row

Repeatedly opening and closing a row
induces disturbance errors in adjacent rows
in most real DRAM chips [Kim+ ISCA 2014]

Opened Closed

13

An Example of The Scaling Problem

Most DRAM Modules Are at Risk

86%
(37/43)

83%
(45/54)

88%
(28/32)

A company B company C company

Up to

1.0×107
errors

Up to

2.7×106
errors

Up to

3.3×105
errors

14
Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of
DRAM Disturbance Errors,” ISCA 2014.

Solutions to the DRAM Scaling Problem

 Two potential solutions

 Tolerate DRAM (by taking a fresh look at it)

 Enable emerging memory technologies to eliminate/minimize
DRAM

 Do both

 Hybrid memory systems

15

Solution 1: Tolerate DRAM

 Overcome DRAM shortcomings with

 System-DRAM co-design

 Novel DRAM architectures, interface, functions

 Better waste management (efficient utilization)

 Key issues to tackle

 Reduce energy

 Enable reliability at low cost

 Improve bandwidth and latency

 Reduce waste

16

Solution 1: Tolerate DRAM

 Liu+, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

 Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.

 Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.

 Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices,” ISCA 2013.

 Seshadri+, “RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” MICRO 2013.

 Pekhimenko+, “Linearly Compressed Pages: A Main Memory Compression Framework,” MICRO 2013.

 Chang+, “Improving DRAM Performance by Parallelizing Refreshes with Accesses,” HPCA 2014.

 Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative
Experimental Study,” SIGMETRICS 2014.

 Luo+, “Characterizing Application Memory Error Vulnerability to Optimize Data Center Cost,” DSN 2014.

 Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance
Errors,” ISCA 2014.

Avoid DRAM:

 Seshadri+, “The Evicted-Address Filter: A Unified Mechanism to Address Both Cache Pollution and
Thrashing,” PACT 2012.

 Pekhimenko+, “Base-Delta-Immediate Compression: Practical Data Compression for On-Chip Caches,” PACT
2012.

 Seshadri+, “The Dirty-Block Index,” ISCA 2014.

17

Solution 2: Emerging Memory Technologies
 Some emerging resistive memory technologies seem more

scalable than DRAM (and they are non-volatile)

 Example: Phase Change Memory

 Expected to scale to 9nm (2022 [ITRS])

 Expected to be denser than DRAM: can store multiple bits/cell

 But, emerging technologies have shortcomings as well

 Can they be enabled to replace/augment/surpass DRAM?

 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a Scalable DRAM Alternative,”
ISCA 2009, CACM 2010, Top Picks 2010.

 Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and Scalable Hybrid Memories,” IEEE
Comp. Arch. Letters 2012.

 Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012.

 Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.

 Meza+, “A Case for Efficient Hardware-Software Cooperative Management of Storage and
Memory,” WEED 2013.

18

Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD
2012 Best Paper Award.

CPU
DRA
MCtrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
Ctrl DRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

An Orthogonal Issue: Memory Interference

Main
Memory

20

Core Core

Core Core

Cores’ interfere with each other when accessing shared main memory

 Problem: Memory interference between cores is uncontrolled

 unfairness, starvation, low performance

 uncontrollable, unpredictable, vulnerable system

 Solution: QoS-Aware Memory Systems

 Hardware designed to provide a configurable fairness substrate

 Application-aware memory scheduling, partitioning, throttling

 Software designed to configure the resources to satisfy different
QoS goals

 QoS-aware memory controllers and interconnects can
provide predictable performance and higher efficiency

An Orthogonal Issue: Memory Interference

Designing QoS-Aware Memory Systems: Approaches

 Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism

 QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07]

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11,
MICRO’11] [Ausavarungnirun+, ISCA’12][Subramanian+, HPCA’13] [Kim+, RTAS’14]

 QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09,

ISCA’11, Top Picks ’12]

 QoS-aware caches

 Dumb resources: Keep each resource free-for-all, but
reduce/control interference by injection control or data
mapping

 Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10,

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] [Nychis+ SIGCOMM’12]

 QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11]

 QoS-aware thread scheduling to cores [Das+ HPCA’13]

22

Some Current Directions

 New memory/storage + compute architectures
 Rethinking DRAM and flash memory

 Processing close to data; accelerating bulk operations

 Ensuring memory/storage reliability and robustness

 Enabling emerging NVM technologies
 Hybrid memory systems with automatic data management

 Coordinated management of memory and storage with NVM

 System-level memory/storage QoS
 QoS-aware controller and system design

 Coordinated memory + storage QoS

23

Agenda

 Major Trends Affecting Main Memory

 The Memory Scaling Problem and Solution Directions

 New Memory Architectures

 Enabling Emerging Technologies: Hybrid Memory Systems

 How Can We Do Better?

 Summary

24

Tolerating DRAM: Example Techniques

 Retention-Aware DRAM Refresh: Reducing Refresh Impact

 Refresh Access Parallelization: Reducing Refresh Impact

 Tiered-Latency DRAM: Reducing DRAM Latency

 RowClone: Accelerating Page Copy and Initialization

 Subarray-Level Parallelism: Reducing Bank Conflict Impact

 Linearly Compressed Pages: Efficient Memory Compression

25

DRAM Refresh

 DRAM capacitor charge leaks over time

 The memory controller needs to refresh each row
periodically to restore charge

 Activate each row every N ms

 Typical N = 64 ms

 Downsides of refresh

 -- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while
refreshed

-- QoS/predictability impact: (Long) pause times during refresh

-- Refresh rate limits DRAM capacity scaling

26

Refresh Overhead: Performance

27

8%

46%

Refresh Overhead: Energy

28

15%

47%

Retention Time Profile of DRAM

29

RAIDR: Eliminating Unnecessary Refreshes

 Observation: Most DRAM rows can be refreshed much less often
without losing data [Kim+, EDL’09][Liu+ ISCA’13]

 Key idea: Refresh rows containing weak cells

 more frequently, other rows less frequently

1. Profiling: Profile retention time of all rows

2. Binning: Store rows into bins by retention time in memory controller

 Efficient storage with Bloom Filters (only 1.25KB for 32GB memory)

3. Refreshing: Memory controller refreshes rows in different bins at
different rates

 Results: 8-core, 32GB, SPEC, TPC-C, TPC-H

 74.6% refresh reduction @ 1.25KB storage

 ~16%/20% DRAM dynamic/idle power reduction

 ~9% performance improvement

 Benefits increase with DRAM capacity

 30
Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Going Forward (for DRAM and Flash)

 How to find out and expose weak memory cells/rows
 Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices:

Implications for Retention Time Profiling Mechanisms”, ISCA 2013.

 Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A
Comparative Experimental Study,” SIGMETRICS 2014.

 Low-cost system-level tolerance of memory errors
 Luo+, “Characterizing Application Memory Error Vulnerability to Optimize Data Center

Cost,” DSN 2014.

 Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,”
Intel Technology Journal 2013.

 Cai+, “Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,”
SIGMETRICS 2014.

 Tolerating cell-to-cell interference at the system level
 Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of

DRAM Disturbance Errors,” ISCA 2014.

 Cai+, “Program Interference in MLC NAND Flash Memory: Characterization, Modeling,
and Mitigation,” ICCD 2013.

31

Experimental Infrastructure (DRAM)

32

Liu+, “An Experimental Study of Data
Retention Behavior in Modern DRAM
Devices: Implications for Retention Time
Profiling Mechanisms”, ISCA 2013.

Khan+, “The Efficacy of Error Mitigation
Techniques for DRAM Retention Failures: A
Comparative Experimental Study,”
SIGMETRICS 2014.

Experimental Infrastructure (DRAM)

33 Kim+, “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

Heater FPGAs FPGAs

Experimental Infrastructure (Flash)

34

USB Jack

Virtex-II Pro

(USB controller)

Virtex-V FPGA

(NAND Controller)

HAPS-52 Mother Board

USB Daughter Board

NAND Daughter Board

3x-nm

NAND Flash

[Cai+, DATE 2012, ICCD 2012, DATE 2013,
ITJ 2013, ICCD 2013, SIGMETRICS 2014]

Tolerating DRAM: Example Techniques

 Retention-Aware DRAM Refresh: Reducing Refresh Impact

 Refresh Access Parallelization: Reducing Refresh Impact

 Tiered-Latency DRAM: Reducing DRAM Latency

 RowClone: Accelerating Page Copy and Initialization

 Subarray-Level Parallelism: Reducing Bank Conflict Impact

 Linearly Compressed Pages: Efficient Memory Compression

35

36

DRAM Latency-Capacity Trend

0

20

40

60

80

100

0.0

0.5

1.0

1.5

2.0

2.5

2000 2003 2006 2008 2011

La
te

n
cy

 (
n

s)

C
ap

ac
it

y
(G

b
)

Year

Capacity Latency (tRC)

16X

-20%

DRAM latency continues to be a critical
bottleneck, especially for response time-sensitive
workloads

37

DRAM Latency = Subarray Latency + I/O Latency

 What Causes the Long Latency?
DRAM Chip

channel

cell array

I/O

DRAM Chip

channel

I/O

subarray

DRAM Latency = Subarray Latency + I/O Latency

Dominant
Su

b
ar

ra
y

I/
O

38

 Why is the Subarray So Slow?

Subarray

ro
w

 d
ec

o
d

er

sense amplifier

ca
p

ac
it

o
r

access
transistor

wordline

b
it

lin
e

Cell

large sense amplifier

b
it

lin
e:

 5
1

2
 c

el
ls

 cell

• Long bitline
– Amortizes sense amplifier cost Small area

– Large bitline capacitance High latency & power

se
n

se
 a

m
p

lif
ie

r

ro
w

 d
ec

o
d

er

39

 Trade-Off: Area (Die Size) vs. Latency

Faster

Smaller

Short Bitline

Long Bitline

Trade-Off: Area vs. Latency

40

 Trade-Off: Area (Die Size) vs. Latency

0

1

2

3

4

0 10 20 30 40 50 60 70

N
o

rm
al

iz
e

d
 D

R
A

M
 A

re
a

Latency (ns)

64

32

128

256 512 cells/bitline

Commodity
DRAM

Long Bitline

C
h

ea
p

e
r

Faster

Fancy DRAM
Short Bitline

41

Short Bitline

Low Latency

 Approximating the Best of Both Worlds

Long Bitline

Small Area

Long Bitline

Low Latency

Short Bitline Our Proposal

Small Area

Short Bitline Fast

Need
Isolation

Add Isolation
Transistors

High Latency

Large Area

42

 Approximating the Best of Both Worlds

Low Latency

Our Proposal

Small Area
Long Bitline
Small Area

Long Bitline

High Latency

Short Bitline

Low Latency

Short Bitline

Large Area

Tiered-Latency DRAM

Low Latency

Small area
using long

bitline

43

 Tiered-Latency DRAM

Near Segment

Far Segment

Isolation Transistor

• Divide a bitline into two segments with an
isolation transistor

Sense Amplifier

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.

44

0%

50%

100%

150%

0%

50%

100%

150%

 Commodity DRAM vs. TL-DRAM
La

te
n

cy

P
o

w
e

r

–56%

+23%

–51%

+49%

• DRAM Latency (tRC) • DRAM Power

• DRAM Area Overhead
~3%: mainly due to the isolation transistors

TL-DRAM
Commodity

DRAM

Near Far Commodity
DRAM

Near Far

TL-DRAM

 (52.5ns)

45

 Trade-Off: Area (Die-Area) vs. Latency

0

1

2

3

4

0 10 20 30 40 50 60 70

N
o

rm
al

iz
e

d
 D

R
A

M
 A

re
a

Latency (ns)

64

32

128
256 512 cells/bitline

C
h

ea
p

e
r

Faster

Near Segment Far Segment

46

 Leveraging Tiered-Latency DRAM

• TL-DRAM is a substrate that can be leveraged by
the hardware and/or software

• Many potential uses
1. Use near segment as hardware-managed inclusive

cache to far segment

2. Use near segment as hardware-managed exclusive
cache to far segment

3. Profile-based page mapping by operating system

4. Simply replace DRAM with TL-DRAM

47

0%

20%

40%

60%

80%

100%

120%

1 (1-ch) 2 (2-ch) 4 (4-ch)
0%

20%

40%

60%

80%

100%

120%

1 (1-ch) 2 (2-ch) 4 (4-ch)

 Performance & Power Consumption

11.5%

N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce

Core-Count (Channel)
N

o
rm

al
iz

e
d

 P
o

w
e

r
Core-Count (Channel)

10.7%

12.4%
 –23%

–24%

–26%

Using near segment as a cache improves
performance and reduces power consumption

Tolerating DRAM: Example Techniques

 Retention-Aware DRAM Refresh: Reducing Refresh Impact

 Refresh Access Parallelization: Reducing Refresh Impact

 Tiered-Latency DRAM: Reducing DRAM Latency

 RowClone: Accelerating Page Copy and Initialization

 Subarray-Level Parallelism: Reducing Bank Conflict Impact

 Linearly Compressed Pages: Efficient Memory Compression

48

Today’s Memory: Bulk Data Copy

Memory

MC L3 L2 L1 CPU

1) High latency

2) High bandwidth utilization

3) Cache pollution

4) Unwanted data movement

49 1046ns, 3.6uJ

Future: RowClone (In-Memory Copy)

Memory

MC L3 L2 L1 CPU

1) Low latency

2) Low bandwidth utilization

3) No cache pollution

4) No unwanted data movement

50 1046ns, 3.6uJ 90ns, 0.04uJ

DRAM Subarray Operation (load

one byte)

Row Buffer (4 Kbits)

Data Bus

8 bits

DRAM array

4 Kbits

Step 1: Activate row

Transfer

row

Step 2: Read

Transfer byte

onto bus

RowClone: In-DRAM Row Copy

(and Initialization)

Row Buffer (4 Kbits)

Data Bus

8 bits

DRAM array

4 Kbits

Step 1: Activate row A

Transfer

row

Step 2: Activate row B

Transfer

row
0.01% area cost

RowClone: Latency and Energy Savings

0

0.2

0.4

0.6

0.8

1

1.2

Latency Energy

N
o

rm
al

iz
e

d
 S

av
in

gs

Baseline Intra-Subarray

Inter-Bank Inter-Subarray

11.6x 74x

53
Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” MICRO 2013.

End-to-End System Design

54

 DRAM (RowClone)

Microarchitecture

ISA

Operating System

Application
How does the software
communicate occurrences
of bulk copy/initialization
to hardware?

How to maximize latency
and energy savings?

How to ensure cache
coherence?

How to handle data reuse?

RowClone: Overall Performance

55

0

10

20

30

40

50

60

70

80

bootup compile forkbench mcached mysql shell

%
 C

o
m

p
a
re

d
 t

o
 B

a
s
e
li

n
e

IPC Improvement Energy Reduction

RowClone: Multi-Core Performance

56

0.9

1

1.1

1.2

1.3

1.4

1.5

N
o

rm
a

li
z
e

d
 W

e
ig

h
te

d
 S

p
e

e
d

u
p

50 Workloads (4-core)

Baseline RowClone

Goal: Ultra-Efficient Processing

Close to Data
CPU
core

CPU
core

CPU
core

CPU
core

mini-CPU
core

video
core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

LLC

Memory Controller

Specialized
compute-capability

in memory

Memory imaging
core

Memory Bus

Slide credit: Prof. Kayvon Fatahalian, CMU

Goal: Memory similar to a “conventional” accelerator

Enabling Ultra-Efficient Search

▪ What is the right partitioning of computation

capability?

▪ What is the right low-cost memory substrate?

▪ What memory technologies are the best

enablers?

▪ How do we rethink/ease (visual) search

Cache

Process
or
Core

 Interconnect

 Memory

Databa
se

Query vector

Results

Picture credit: Prof. Kayvon Fatahalian, CMU

Tolerating DRAM: Example Techniques

 Retention-Aware DRAM Refresh: Reducing Refresh Impact

 Refresh Access Parallelization: Reducing Refresh Impact

 Tiered-Latency DRAM: Reducing DRAM Latency

 RowClone: Accelerating Page Copy and Initialization

 Subarray-Level Parallelism: Reducing Bank Conflict Impact

 Linearly Compressed Pages: Efficient Memory Compression

59

Agenda

 Major Trends Affecting Main Memory

 The Memory Scaling Problem and Solution Directions

 New Memory Architectures

 Enabling Emerging Technologies: Hybrid Memory Systems

 How Can We Do Better?

 Summary

60

Solution 2: Emerging Memory Technologies

 Some emerging resistive memory technologies seem more
scalable than DRAM (and they are non-volatile)

 Example: Phase Change Memory

 Data stored by changing phase of material

 Data read by detecting material’s resistance

 Expected to scale to 9nm (2022 [ITRS])

 Prototyped at 20nm (Raoux+, IBM JRD 2008)

 Expected to be denser than DRAM: can store multiple bits/cell

 But, emerging technologies have (many) shortcomings

 Can they be enabled to replace/augment/surpass DRAM?

61

Phase Change Memory: Pros and Cons

 Pros over DRAM

 Better technology scaling (capacity and cost)

 Non volatility

 Low idle power (no refresh)

 Cons

 Higher latencies: ~4-15x DRAM (especially write)

 Higher active energy: ~2-50x DRAM (especially write)

 Lower endurance (a cell dies after ~108 writes)

 Challenges in enabling PCM as DRAM replacement/helper:

 Mitigate PCM shortcomings

 Find the right way to place PCM in the system

62

PCM-based Main Memory (I)

 How should PCM-based (main) memory be organized?

 Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC’09]:

 How to partition/migrate data between PCM and DRAM

63

PCM-based Main Memory (II)

 How should PCM-based (main) memory be organized?

 Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]:

 How to redesign entire hierarchy (and cores) to overcome
PCM shortcomings

64

An Initial Study: Replace DRAM with PCM

 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” ISCA 2009.

 Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)

 Derived “average” PCM parameters for F=90nm

65

Results: Naïve Replacement of DRAM with PCM

 Replace DRAM with PCM in a 4-core, 4MB L2 system

 PCM organized the same as DRAM: row buffers, banks, peripherals

 1.6x delay, 2.2x energy, 500-hour average lifetime

 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a
Scalable DRAM Alternative,” ISCA 2009.

66

Architecting PCM to Mitigate Shortcomings

 Idea 1: Use multiple narrow row buffers in each PCM chip

 Reduces array reads/writes better endurance, latency, energy

 Idea 2: Write into array at

 cache block or word

 granularity

 Reduces unnecessary wear

67

DRAM PCM

Results: Architected PCM as Main Memory

 1.2x delay, 1.0x energy, 5.6-year average lifetime

 Scaling improves energy, endurance, density

 Caveat 1: Worst-case lifetime is much shorter (no guarantees)

 Caveat 2: Intensive applications see large performance and energy hits

 Caveat 3: Optimistic PCM parameters?
68

Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD
2012 Best Paper Award.

CPU
DRA
MCtrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
Ctrl DRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

One Option: DRAM as a Cache for PCM

 PCM is main memory; DRAM caches memory rows/blocks

 Benefits: Reduced latency on DRAM cache hit; write filtering

 Memory controller hardware manages the DRAM cache

 Benefit: Eliminates system software overhead

 Three issues:

 What data should be placed in DRAM versus kept in PCM?

 What is the granularity of data movement?

 How to design a huge (DRAM) cache at low cost?

 Two solutions:

 Locality-aware data placement [Yoon+ , ICCD 2012]

 Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012]

 70

DRAM vs. PCM: An Observation

 Row buffers are the same in DRAM and PCM

 Row buffer hit latency same in DRAM and PCM

 Row buffer miss latency small in DRAM, large in PCM

 Accessing the row buffer in PCM is fast

 What incurs high latency is the PCM array access avoid this

71

CPU
DRA
MCtrl

PCM
Ctrl

Ban
k

Ban
k

Ban
k

Ban
k

Row buffer
DRAM Cache PCM Main Memory

N ns row hit
Fast row miss

N ns row hit
Slow row miss

Row-Locality-Aware Data Placement

 Idea: Cache in DRAM only those rows that

 Frequently cause row buffer conflicts because row-conflict latency

is smaller in DRAM

 Are reused many times to reduce cache pollution and bandwidth

waste

 Simplified rule of thumb:

 Streaming accesses: Better to place in PCM

 Other accesses (with some reuse): Better to place in DRAM

 Yoon et al., “Row Buffer Locality-Aware Data Placement in Hybrid
Memories,” ICCD 2012 Best Paper Award.

72

Row-Locality-Aware Data Placement: Results

73

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Server Cloud Avg

N
o

rm
a

li
ze

d
 W

ei
g
h

te
d

 S
p

ee
d

u
p

Workload

FREQ FREQ-Dyn RBLA RBLA-Dyn

10% 14% 17%

Memory energy-efficiency and fairness also
improve correspondingly

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Weighted Speedup Max. Slowdown Perf. per Watt

Normalized Metric

16GB PCM RBLA-Dyn 16GB DRAM

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
o

rm
a

li
ze

d
 W

ei
g

h
te

d
 S

p
ee

d
u

p

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
a

li
ze

d
 M

a
x

.
S

lo
w

d
o
w

n

Hybrid vs. All-PCM/DRAM

74

31% better performance than all PCM,
within 29% of all DRAM performance

31%

29%

Aside: STT-MRAM as Main Memory

 Magnetic Tunnel Junction (MTJ)

 Reference layer: Fixed

 Free layer: Parallel or anti-parallel

 Cell

 Access transistor, bit/sense lines

 Read and Write

 Read: Apply a small voltage across
bitline and senseline; read the current.

 Write: Push large current through MTJ.
Direction of current determines new
orientation of the free layer.

 Kultursay et al., “Evaluating STT-RAM as an

Energy-Efficient Main Memory Alternative,” ISPASS
2013.

Reference Layer

Free Layer

Barrier

Reference Layer

Free Layer

Barrier

Logical 0

Logical 1

Word Line

Bit Line

Access
Transistor

MTJ

Sense Line

Aside: STT-MRAM: Pros and Cons

 Pros over DRAM

 Better technology scaling

 Non volatility

 Low idle power (no refresh)

 Cons

 Higher write latency

 Higher write energy

 Reliability?

 Another level of freedom

 Can trade off non-volatility for lower write latency/energy (by
reducing the size of the MTJ)

76

Architected STT-MRAM as Main Memory

 4-core, 4GB main memory, multiprogrammed workloads

 ~6% performance loss, ~60% energy savings vs. DRAM

77

88%

90%

92%

94%

96%

98%

P
e

rf
o

rm
a

n
c
e

v
s
.

D
R

A
M

STT-RAM (base) STT-RAM (opt)

0%

20%

40%

60%

80%

100%

E
n

e
rg

y

v
s
.

D
R

A
M

ACT+PRE WB RB

Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.

Agenda

 Major Trends Affecting Main Memory

 The Memory Scaling Problem and Solution Directions

 New Memory Architectures

 Enabling Emerging Technologies: Hybrid Memory Systems

 How Can We Do Better?

 Summary

78

Principles (So Far)

 Better cooperation between devices and the system

 Expose more information about devices to upper layers

 More flexible interfaces

 Better-than-worst-case design

 Do not optimize for the worst case

 Worst case should not determine the common case

 Heterogeneity in design

 Enables a more efficient design (No one size fits all)

79

Other Opportunities with Emerging Technologies

 Merging of memory and storage

 e.g., a single interface to manage all data

 New applications

 e.g., ultra-fast checkpoint and restore

 More robust system design

 e.g., reducing data loss

 Processing tightly-coupled with memory

 e.g., enabling efficient search and filtering

80

Coordinated Memory and Storage with NVM (I)

 The traditional two-level storage model is a bottleneck with NVM
 Volatile data in memory a load/store interface

 Persistent data in storage a file system interface

 Problem: Operating system (OS) and file system (FS) code to locate, translate,
buffer data become performance and energy bottlenecks with fast NVM stores

81

Two-Level Store

Processor
and caches

Main Memory
Storage (SSD/HDD)

Virtual memory

Address
translation

Load/Store

Operating
system

and file system

fopen, fread, fwrite, …

Persistent (e.g., Phase-Change)
Memory

Coordinated Memory and Storage with NVM (II)

 Goal: Unify memory and storage management in a single unit to
eliminate wasted work to locate, transfer, and translate data

 Improves both energy and performance

 Simplifies programming model as well

82

Unified Memory/Storage

Processor
and caches

Persistent (e.g., Phase-Change) Memory

Load/Store

Persistent Memory
Manager

Feedback

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

The Persistent Memory Manager (PMM)

 Exposes a load/store interface to access persistent data

 Applications can directly access persistent memory no conversion,

translation, location overhead for persistent data

 Manages data placement, location, persistence, security

 To get the best of multiple forms of storage

 Manages metadata storage and retrieval

 This can lead to overheads that need to be managed

 Exposes hooks and interfaces for system software

 To enable better data placement and management decisions

 Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

 83

The Persistent Memory Manager (PMM)

84

PMM uses access and hint information to allocate, locate, migrate
and access data in the heterogeneous array of devices

Persistent objects

Performance Benefits of a Single-Level Store

85
Results for PostMark

~5X

~24X

Energy Benefits of a Single-Level Store

86
Results for PostMark

~5X

~16X

Agenda

 Major Trends Affecting Main Memory

 The Memory Scaling Problem and Solution Directions

 New Memory Architectures

 Enabling Emerging Technologies: Hybrid Memory Systems

 How Can We Do Better?

 Summary

87

Summary: Memory/Storage Scaling

 Memory/storage scaling problems are a critical bottleneck for
system performance, efficiency, and usability

 New memory/storage + compute architectures
 Rethinking DRAM; processing close to data; accelerating bulk operations

 Enabling emerging NVM technologies
 Hybrid memory systems with automatic data management

 Coordinated management of memory and storage with NVM

 System-level memory/storage QoS

 Three principles are essential for scaling

 Software/hardware/device cooperation

 Better-than-worst-case design

 Heterogeneity (specialization, asymmetry)

88

Related: Slides, Papers, Videos

 These slides are a shortened and revised version of the
Scalable Memory Systems course at ACACES 2013

 Website for Course Slides, Papers, and Videos

 http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html

 http://users.ece.cmu.edu/~omutlu/projects.htm

 Includes extended lecture notes and readings

 Overview Reading

 Onur Mutlu,
"Memory Scaling: A Systems Architecture Perspective"
Technical talk at MemCon 2013 (MEMCON), Santa Clara, CA,
August 2013. Slides (pptx) (pdf)

89

http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
http://users.ece.cmu.edu/~omutlu/projects.htm
http://users.ece.cmu.edu/~omutlu/projects.htm
http://users.ece.cmu.edu/~omutlu/pub/memory-scaling_memcon13.pdf
http://www.memcon.com
http://users.ece.cmu.edu/~omutlu/pub/mutlu_memory-scaling_memcon13_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/mutlu_memory-scaling_memcon13_talk.pdf

Thank you.

Feel free to email me with any questions & feedback

onur@cmu.edu

90

mailto:onur@cmu.edu

Rethinking Memory System Design for

Data-Intensive Computing

Onur Mutlu

onur@cmu.edu

June 20, 2014

ASAP 2014, Zurich

mailto:onur@cmu.edu

Another Talk: NAND Flash Scaling Challenges

 Cai+, “Error Patterns in MLC NAND Flash Memory: Measurement,
Characterization, and Analysis,” DATE 2012.

 Cai+, “Flash Correct-and-Refresh: Retention-Aware Error
Management for Increased Flash Memory Lifetime,” ICCD 2012.

 Cai+, “Threshold Voltage Distribution in MLC NAND Flash
Memory: Characterization, Analysis and Modeling,” DATE 2013.

 Cai+, “Error Analysis and Retention-Aware Error Management for
NAND Flash Memory,” Intel Tech Journal 2013.

 Cai+, “Program Interference in MLC NAND Flash Memory:
Characterization, Modeling, and Mitigation,” ICCD 2013.

 Cai+, “Neighbor-Cell Assisted Error Correction for MLC NAND
Flash Memories,” SIGMETRICS 2014.

92

