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The Main Memory/Storage System 

 

 

 

 

 

 
 

 Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor 

 

 Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits 
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Processor 

and caches 
Main Memory Storage (SSD/HDD) 



Memory System: A Shared Resource View 
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Storage 



State of the Main Memory System 

 Recent technology, architecture, and application trends 

 lead to new requirements 

 exacerbate old requirements 

 

 DRAM and memory controllers, as we know them today, 
are (will be) unlikely to satisfy all requirements 

 

 Some emerging non-volatile memory technologies (e.g., 
PCM) enable new opportunities: memory+storage merging 

 

 We need to rethink the main memory system 

 to fix DRAM issues and enable emerging technologies  

 to satisfy all requirements 
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Major Trends Affecting Main Memory (I) 

 Need for main memory capacity, bandwidth, QoS increasing  

 

 

 

 

 Main memory energy/power is a key system design concern 

 

 

 

 DRAM technology scaling is ending  
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Major Trends Affecting Main Memory (II) 

 Need for main memory capacity, bandwidth, QoS increasing  

 Multi-core: increasing number of cores/agents 

 Data-intensive applications: increasing demand/hunger for data 

 Consolidation: cloud computing, GPUs, mobile, heterogeneity 

 

 

 Main memory energy/power is a key system design concern 

 

 

 

 DRAM technology scaling is ending  
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Example: The Memory Capacity Gap 

 

 

 

 

 

 

 

 

 

 
 

 Memory capacity per core expected to drop by 30% every two years 

 Trends worse for memory bandwidth per core! 
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Core count doubling ~ every 2 years  

DRAM DIMM capacity doubling ~ every 3 years 



Major Trends Affecting Main Memory (III) 

 Need for main memory capacity, bandwidth, QoS increasing  

 

 

 

 Main memory energy/power is a key system design concern 

 ~40-50% energy spent in off-chip memory hierarchy [Lefurgy, 

IEEE Computer 2003] 

 DRAM consumes power even when not used (periodic refresh) 

 

 DRAM technology scaling is ending  
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Major Trends Affecting Main Memory (IV) 

 Need for main memory capacity, bandwidth, QoS increasing  

 

 

 

 

 Main memory energy/power is a key system design concern 

 

 

 DRAM technology scaling is ending  

 ITRS projects DRAM will not scale easily below X nm  

 Scaling has provided many benefits:  

 higher capacity (density), lower cost, lower energy 
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The DRAM Scaling Problem 

 DRAM stores charge in a capacitor (charge-based memory) 

 Capacitor must be large enough for reliable sensing 

 Access transistor should be large enough for low leakage and high 
retention time 

 Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009] 

 

 

 

 

 

 

 

 

 DRAM capacity, cost, and energy/power hard to scale 
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 Row of Cells 
 Row 
 Row 
 Row 
 Row 

 Wordline 

 VLOW  VHIGH 
 Victim Row 

 Victim Row 
 Aggressor Row 

Repeatedly opening and closing a row 
induces disturbance errors in adjacent rows 
in most real DRAM chips [Kim+ ISCA 2014] 

Opened Closed 
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An Example of  The Scaling Problem 



Most DRAM Modules Are at Risk 

86% 
(37/43) 

83% 
(45/54) 

88% 
(28/32) 

A company B company C company 

Up to 

1.0×107  
errors  

Up to 

2.7×106 
errors  

Up to 

3.3×105  
errors  
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Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of 
DRAM Disturbance Errors,” ISCA 2014. 



Solutions to the DRAM Scaling Problem 

 Two potential solutions 

 Tolerate DRAM (by taking a fresh look at it) 

 Enable emerging memory technologies to eliminate/minimize 
DRAM 

 

 Do both 

 Hybrid memory systems 
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Solution 1: Tolerate DRAM 

 Overcome DRAM shortcomings with 

 System-DRAM co-design 

 Novel DRAM architectures, interface, functions 

 Better waste management (efficient utilization) 

 
 

 Key issues to tackle 

 Reduce energy 

 Enable reliability at low cost 

 Improve bandwidth and latency 

 Reduce waste 
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Solution 1: Tolerate DRAM 
 

 Liu+, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 

 Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012. 

 Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013. 

 Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices,” ISCA 2013. 

 Seshadri+, “RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” MICRO 2013. 

 Pekhimenko+, “Linearly Compressed Pages: A Main Memory Compression Framework,” MICRO 2013. 

 Chang+, “Improving DRAM Performance by Parallelizing Refreshes with Accesses,” HPCA 2014. 

 Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative 
Experimental Study,” SIGMETRICS 2014. 

 Luo+, “Characterizing Application Memory Error Vulnerability to Optimize Data Center Cost,” DSN 2014. 

 Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance 
Errors,” ISCA 2014. 

 

Avoid DRAM: 

 Seshadri+, “The Evicted-Address Filter: A Unified Mechanism to Address Both Cache Pollution and 
Thrashing,” PACT 2012. 

 Pekhimenko+, “Base-Delta-Immediate Compression: Practical Data Compression for On-Chip Caches,” PACT 
2012. 

 Seshadri+, “The Dirty-Block Index,” ISCA 2014. 
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Solution 2: Emerging Memory Technologies 
 Some emerging resistive memory technologies seem more 

scalable than DRAM (and they are non-volatile) 

 Example: Phase Change Memory 

 Expected to scale to 9nm (2022 [ITRS]) 

 Expected to be denser than DRAM: can store multiple bits/cell 

 

 But, emerging technologies have shortcomings as well 

 Can they be enabled to replace/augment/surpass DRAM? 
 

 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a Scalable DRAM Alternative,” 
ISCA 2009, CACM 2010, Top Picks 2010. 

 Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and Scalable Hybrid Memories,” IEEE 
Comp. Arch. Letters 2012. 

 Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012. 

 Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.  

 Meza+, “A Case for Efficient Hardware-Software Cooperative Management of Storage and 
Memory,” WEED 2013. 
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Hybrid Memory Systems 

 

 

 

 

 

 

 

 

 

 
Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012. 

Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 
2012 Best Paper Award. 

 

 

CPU 
DRA
MCtrl 

Fast, durable 
Small,  

leaky, volatile,  
high-cost 

Large, non-volatile, low-cost 
Slow, wears out, high active energy 

PCM 
Ctrl DRAM Phase Change Memory (or Tech. X) 

Hardware/software manage data allocation and movement  
to achieve the best of multiple technologies 



An Orthogonal Issue: Memory Interference 

Main  
Memory 
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Core Core 

Core Core 

Cores’ interfere with each other when accessing shared main memory 



 Problem: Memory interference between cores is uncontrolled 

 unfairness, starvation, low performance 

 uncontrollable, unpredictable, vulnerable system 

 

 Solution: QoS-Aware Memory Systems 

 Hardware designed to provide a configurable fairness substrate  

 Application-aware memory scheduling, partitioning, throttling 

 Software designed to configure the resources to satisfy different 
QoS goals 

 

 QoS-aware memory controllers and interconnects can 
provide predictable performance and higher efficiency 

 

 

An Orthogonal Issue: Memory Interference 



Designing QoS-Aware Memory Systems: Approaches 

 Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism 

 QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07] 

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11, 
MICRO’11] [Ausavarungnirun+, ISCA’12][Subramanian+, HPCA’13] [Kim+, RTAS’14] 

 QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09, 

ISCA’11, Top Picks ’12] 

 QoS-aware caches 
 

 Dumb resources: Keep each resource free-for-all, but 
reduce/control interference by injection control or data 
mapping 

 Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10, 

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] [Nychis+ SIGCOMM’12] 

 QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11] 

 QoS-aware thread scheduling to cores [Das+ HPCA’13] 
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Some Current Directions 
 

 New memory/storage + compute architectures 
 Rethinking DRAM and flash memory 

 Processing close to data; accelerating bulk operations 

 Ensuring memory/storage reliability and robustness 
 

 

 Enabling emerging NVM technologies  
 Hybrid memory systems with automatic data management 

 Coordinated management of memory and storage with NVM 
 

 

 System-level memory/storage QoS 
 QoS-aware controller and system design 

 Coordinated memory + storage QoS 
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Tolerating DRAM: Example Techniques 

 Retention-Aware DRAM Refresh: Reducing Refresh Impact 

 

 Refresh Access Parallelization: Reducing Refresh Impact 

 

 Tiered-Latency DRAM: Reducing DRAM Latency 

 

 RowClone: Accelerating Page Copy and Initialization  

 

 Subarray-Level Parallelism: Reducing Bank Conflict Impact 

 

 Linearly Compressed Pages: Efficient Memory Compression 
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DRAM Refresh 

 DRAM capacitor charge leaks over time 

 

 The memory controller needs to refresh each row 
periodically to restore charge 

 Activate each row every N ms 

 Typical N = 64 ms 

 

 Downsides of refresh 

    -- Energy consumption: Each refresh consumes energy 

-- Performance degradation: DRAM rank/bank unavailable while 
refreshed 

-- QoS/predictability impact: (Long) pause times during refresh 

-- Refresh rate limits DRAM capacity scaling  
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Refresh Overhead: Performance 
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8% 

46% 



Refresh Overhead: Energy 
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15% 

47% 



Retention Time Profile of DRAM 
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RAIDR: Eliminating Unnecessary Refreshes 

 Observation: Most DRAM rows can be refreshed much less often 
without losing data [Kim+, EDL’09][Liu+ ISCA’13] 
 

 Key idea: Refresh rows containing weak cells  

    more frequently, other rows less frequently 

1. Profiling: Profile retention time of all rows 

2. Binning: Store rows into bins by retention time in memory controller 

 Efficient storage with Bloom Filters (only 1.25KB for 32GB memory) 

3. Refreshing: Memory controller refreshes rows in different bins at 
different rates 

 

 Results: 8-core, 32GB, SPEC, TPC-C, TPC-H 

 74.6% refresh reduction @ 1.25KB storage 

 ~16%/20% DRAM dynamic/idle power reduction 

 ~9% performance improvement  

 Benefits increase with DRAM capacity 

 30 
Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 



Going Forward (for DRAM and Flash) 

 How to find out and expose weak memory cells/rows 
 Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices: 

Implications for Retention Time Profiling Mechanisms”, ISCA 2013. 

 Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A 
Comparative Experimental Study,” SIGMETRICS 2014. 
 

 Low-cost system-level tolerance of memory errors 
 Luo+, “Characterizing Application Memory Error Vulnerability to Optimize Data Center 

Cost,” DSN 2014. 

 Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,” 
Intel Technology Journal 2013. 

 Cai+, “Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,” 
SIGMETRICS 2014. 

 

 Tolerating cell-to-cell interference at the system level  
 Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of 

DRAM Disturbance Errors,” ISCA 2014. 

 Cai+, “Program Interference in MLC NAND Flash Memory: Characterization, Modeling, 
and Mitigation,” ICCD 2013. 
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Experimental Infrastructure (DRAM) 

32 

Liu+, “An Experimental Study of Data 
Retention Behavior in Modern DRAM 
Devices: Implications for Retention Time 
Profiling Mechanisms”, ISCA 2013. 
 
Khan+, “The Efficacy of Error Mitigation 
Techniques for DRAM Retention Failures: A 
Comparative Experimental Study,” 
SIGMETRICS 2014. 



Experimental Infrastructure (DRAM) 

33 Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014. 

Temperature 
Controller 

 

PC 

Heater FPGAs FPGAs 



Experimental Infrastructure (Flash) 
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USB Jack 

Virtex-II Pro 

(USB controller) 

Virtex-V FPGA 

(NAND Controller) 

HAPS-52 Mother Board 

USB Daughter Board 

NAND Daughter Board 

3x-nm 

NAND Flash 

[Cai+, DATE 2012, ICCD 2012, DATE 2013, 
ITJ 2013, ICCD 2013, SIGMETRICS 2014] 



Tolerating DRAM: Example Techniques 

 Retention-Aware DRAM Refresh: Reducing Refresh Impact 

 

 Refresh Access Parallelization: Reducing Refresh Impact 

 

 Tiered-Latency DRAM: Reducing DRAM Latency 

 

 RowClone: Accelerating Page Copy and Initialization  

 

 Subarray-Level Parallelism: Reducing Bank Conflict Impact 

 

 Linearly Compressed Pages: Efficient Memory Compression 
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DRAM Latency-Capacity Trend 

0 

20 

40 

60 

80 

100 

0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

2000 2003 2006 2008 2011 

La
te

n
cy

 (
n

s)
 

C
ap

ac
it

y 
(G

b
) 

Year 

Capacity Latency (tRC) 

16X 

-20% 

DRAM latency continues to be a critical 
bottleneck, especially for response time-sensitive 
workloads 
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DRAM Latency = Subarray Latency + I/O Latency 

   What Causes the Long Latency? 
DRAM Chip 

channel 
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DRAM Chip 

channel 

I/O 
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DRAM Latency = Subarray Latency + I/O Latency 
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O
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   Why is the Subarray So Slow? 
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   Trade-Off: Area (Die Size) vs. Latency 
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40 

   Trade-Off: Area (Die Size) vs. Latency 
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Short Bitline 

Low Latency  

   Approximating the Best of Both Worlds 
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   Approximating the Best of Both Worlds 
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   Tiered-Latency DRAM 

Near Segment 

Far Segment 

Isolation Transistor 

• Divide a bitline into two segments with an 
isolation transistor 

Sense Amplifier 

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013. 
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   Trade-Off: Area (Die-Area) vs. Latency 
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   Leveraging Tiered-Latency DRAM 

• TL-DRAM is a substrate that can be leveraged by 
the hardware and/or software 
 

• Many potential uses 
1. Use near segment as hardware-managed inclusive 

cache to far segment 

2. Use near segment as hardware-managed exclusive 
cache to far segment 

3. Profile-based page mapping by operating system 

4. Simply replace DRAM with TL-DRAM   
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performance and reduces power consumption 



Tolerating DRAM: Example Techniques 

 Retention-Aware DRAM Refresh: Reducing Refresh Impact 

 

 Refresh Access Parallelization: Reducing Refresh Impact 

 

 Tiered-Latency DRAM: Reducing DRAM Latency 

 

 RowClone: Accelerating Page Copy and Initialization  

 

 Subarray-Level Parallelism: Reducing Bank Conflict Impact 

 

 Linearly Compressed Pages: Efficient Memory Compression 
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Today’s Memory: Bulk Data Copy 

Memory 

 
 
 
 
 
 

 

MC L3 L2 L1 CPU 

1) High latency 

2) High bandwidth utilization 

3) Cache pollution 

4) Unwanted data movement 

49 1046ns, 3.6uJ 



Future: RowClone (In-Memory Copy) 

Memory 

 
 
 
 
 
 

 

MC L3 L2 L1 CPU 

1) Low latency 

2) Low bandwidth utilization 

3) No cache pollution 

4) No unwanted data movement 

50 1046ns, 3.6uJ 90ns, 0.04uJ 



DRAM Subarray Operation (load 

one byte) 

Row Buffer (4 Kbits) 

Data Bus 

8 bits 

DRAM array 

4 Kbits 

Step 1: Activate row 

 

Transfer 

row 

Step 2: Read   

Transfer byte 

onto bus 



RowClone: In-DRAM Row Copy 

(and Initialization) 

Row Buffer (4 Kbits) 

Data Bus 

8 bits 

DRAM array 

4 Kbits 

Step 1: Activate row A 

Transfer 

row 

Step 2: Activate row B 

 

Transfer 

row 
0.01% area cost



RowClone: Latency and Energy Savings 
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53 
Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and 
Initialization of Bulk Data,” MICRO 2013. 



End-to-End System Design 
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 DRAM (RowClone) 

Microarchitecture 

ISA 

Operating System 

Application 
How does the software 
communicate occurrences 
of bulk copy/initialization 
to hardware? 

How to maximize latency 
and energy savings? 

How to ensure cache 
coherence? 

How to handle data reuse? 



RowClone: Overall Performance 
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RowClone: Multi-Core Performance 
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Goal: Ultra-Efficient Processing 

Close to Data 
CPU 
core 

CPU 
core 

CPU 
core 

CPU 
core 

mini-CPU 
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video 
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GPU 
(throughput) 

core 

GPU 
(throughput) 
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GPU 
(throughput) 
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GPU 
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core 

LLC 

Memory Controller 

Specialized 
compute-capability 

in memory 

Memory imaging 
core 

Memory Bus 

Slide credit: Prof. Kayvon Fatahalian, CMU 

Goal: Memory similar to a “conventional” accelerator 



Enabling Ultra-Efficient Search 

 

 

 

 

 

 

▪ What is the right partitioning of computation 

capability? 

▪ What is the right low-cost memory substrate? 

▪ What memory technologies are the best 

enablers? 

▪ How do we rethink/ease (visual) search 

Cache 
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or 
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 Interconnect 

 Memory 

Databa
se   

Query vector 

Results 

Picture credit: Prof. Kayvon Fatahalian, CMU 



Tolerating DRAM: Example Techniques 

 Retention-Aware DRAM Refresh: Reducing Refresh Impact 

 

 Refresh Access Parallelization: Reducing Refresh Impact 

 

 Tiered-Latency DRAM: Reducing DRAM Latency 

 

 RowClone: Accelerating Page Copy and Initialization  

 

 Subarray-Level Parallelism: Reducing Bank Conflict Impact 

 

 Linearly Compressed Pages: Efficient Memory Compression 
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Solution 2: Emerging Memory Technologies 

 Some emerging resistive memory technologies seem more 
scalable than DRAM (and they are non-volatile) 

 

 Example: Phase Change Memory 

 Data stored by changing phase of material  

 Data read by detecting material’s resistance 

 Expected to scale to 9nm (2022 [ITRS]) 

 Prototyped at 20nm (Raoux+, IBM JRD 2008) 

 Expected to be denser than DRAM: can store multiple bits/cell 

 

 But, emerging technologies have (many) shortcomings 

 Can they be enabled to replace/augment/surpass DRAM? 
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Phase Change Memory: Pros and Cons 
 

 Pros over DRAM 

 Better technology scaling (capacity and cost) 

 Non volatility 

 Low idle power (no refresh) 
 

 Cons 

 Higher latencies: ~4-15x DRAM (especially write) 

 Higher active energy: ~2-50x DRAM (especially write) 

 Lower endurance (a cell dies after ~108 writes) 

 

 Challenges in enabling PCM as DRAM replacement/helper: 

 Mitigate PCM shortcomings 

 Find the right way to place PCM in the system 
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PCM-based Main Memory (I) 

 How should PCM-based (main) memory be organized? 

 

 

 

 

 

 
 

 

 Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC’09]:  

 How to partition/migrate data between PCM and DRAM 
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PCM-based Main Memory (II) 

 How should PCM-based (main) memory be organized? 

 

 

 

 

 

 

 

 Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]:  

 How to redesign entire hierarchy (and cores) to overcome 
PCM shortcomings 
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An Initial Study: Replace DRAM with PCM 

 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change 
Memory as a Scalable DRAM Alternative,” ISCA 2009. 

 Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC) 

 Derived “average” PCM parameters for F=90nm 
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Results: Naïve Replacement of DRAM with PCM 

 Replace DRAM with PCM in a 4-core, 4MB L2 system 

 PCM organized the same as DRAM: row buffers, banks, peripherals 

 1.6x delay, 2.2x energy, 500-hour average lifetime 

 

 

 

 

 

 

 

 

 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a 
Scalable DRAM Alternative,” ISCA 2009. 
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Architecting PCM to Mitigate Shortcomings 

 Idea 1: Use multiple narrow row buffers in each PCM chip 

 Reduces array reads/writes  better endurance, latency, energy 

 

 Idea 2: Write into array at 

    cache block or word  

    granularity 

  Reduces unnecessary wear   
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DRAM PCM 



Results: Architected PCM as Main Memory  

 1.2x delay, 1.0x energy, 5.6-year average lifetime 

 Scaling improves energy, endurance, density 

 

 

 

 

 

 

 

 

 Caveat 1: Worst-case lifetime is much shorter (no guarantees) 

 Caveat 2: Intensive applications see large performance and energy hits 

 Caveat 3: Optimistic PCM parameters? 
68 



Hybrid Memory Systems 

 

 

 

 

 

 

 

 

 

 
Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012. 

Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 
2012 Best Paper Award. 
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Ctrl DRAM Phase Change Memory (or Tech. X) 

Hardware/software manage data allocation and movement  
to achieve the best of multiple technologies 



One Option: DRAM as a Cache for PCM 

 PCM is main memory; DRAM caches memory rows/blocks 

 Benefits: Reduced latency on DRAM cache hit; write filtering 

 Memory controller hardware manages the DRAM cache 

 Benefit: Eliminates system software overhead 

 

 Three issues: 

 What data should be placed in DRAM versus kept in PCM? 

 What is the granularity of data movement? 

 How to design a huge (DRAM) cache at low cost? 

 

 Two solutions: 

 Locality-aware data placement [Yoon+ , ICCD 2012] 

 Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012] 
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DRAM vs. PCM: An Observation 

 Row buffers are the same in DRAM and PCM 

 Row buffer hit latency same in DRAM and PCM 

 Row buffer miss latency small in DRAM, large in PCM 

 

 

 

 

 

 

 

 

 Accessing the row buffer in PCM is fast 

 What incurs high latency is the PCM array access  avoid this 
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Row-Locality-Aware Data Placement 

 Idea: Cache in DRAM only those rows that 

 Frequently cause row buffer conflicts  because row-conflict latency 

is smaller in DRAM 

 Are reused many times  to reduce cache pollution and bandwidth 

waste 
 

 Simplified rule of thumb: 

 Streaming accesses: Better to place in PCM  

 Other accesses (with some reuse): Better to place in DRAM 
 

 

 
 

 Yoon et al., “Row Buffer Locality-Aware Data Placement in Hybrid 
Memories,” ICCD 2012 Best Paper Award. 
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Row-Locality-Aware Data Placement: Results 
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Hybrid vs. All-PCM/DRAM 
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31% better performance than all PCM,  
within 29% of all DRAM performance 

31% 

29% 



Aside: STT-MRAM as Main Memory 

 Magnetic Tunnel Junction (MTJ) 

 Reference layer: Fixed 

 Free layer: Parallel or anti-parallel 

 Cell 

 Access transistor, bit/sense lines 

 Read and Write 

 Read: Apply a small voltage across 
bitline and senseline; read the current.  

 Write: Push large current through MTJ.  
Direction of current determines new 
orientation of the free layer. 

 
 Kultursay et al., “Evaluating STT-RAM as an 

Energy-Efficient Main Memory Alternative,” ISPASS 
2013. 
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Aside: STT-MRAM: Pros and Cons 
 

 Pros over DRAM 

 Better technology scaling 

 Non volatility 

 Low idle power (no refresh) 
 

 Cons 

 Higher write latency 

 Higher write energy 

 Reliability? 

 

 Another level of freedom 

 Can trade off non-volatility for lower write latency/energy (by 
reducing the size of the MTJ) 
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Architected STT-MRAM as Main Memory 

 4-core, 4GB main memory, multiprogrammed workloads 

 ~6% performance loss, ~60% energy savings vs. DRAM 
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Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013. 



Agenda 

 Major Trends Affecting Main Memory 

 The Memory Scaling Problem and Solution Directions 

 New Memory Architectures 

 Enabling Emerging Technologies: Hybrid Memory Systems 

 How Can We Do Better? 

 Summary 
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Principles (So Far) 

 Better cooperation between devices and the system 

 Expose more information about devices to upper layers 

 More flexible interfaces 

 

 Better-than-worst-case design 

 Do not optimize for the worst case 

 Worst case should not determine the common case 

 

 Heterogeneity in design 

 Enables a more efficient design (No one size fits all)  
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Other Opportunities with Emerging Technologies 

 Merging of memory and storage 

 e.g., a single interface to manage all data 

 

 New applications 

 e.g., ultra-fast checkpoint and restore 

 

 More robust system design 

 e.g., reducing data loss 

 

 Processing tightly-coupled with memory 

 e.g., enabling efficient search and filtering 
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Coordinated Memory and Storage with NVM (I) 

 The traditional two-level storage model is a bottleneck with NVM 
 Volatile data in memory  a load/store interface 

 Persistent data in storage  a file system interface 

 Problem: Operating system (OS) and file system (FS) code to locate, translate, 
buffer data become performance and energy bottlenecks with fast NVM stores 
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Coordinated Memory and Storage with NVM (II) 

 Goal: Unify memory and storage management in a single unit to 
eliminate wasted work to locate, transfer, and translate data 

 Improves both energy and performance 

 Simplifies programming model as well 
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Unified Memory/Storage 

Processor 
and caches 

Persistent (e.g., Phase-Change) Memory 

Load/Store 

Persistent Memory 
Manager 

Feedback 

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 
Storage and Memory,” WEED 2013. 



The Persistent Memory Manager (PMM) 

 Exposes a load/store interface to access persistent data 

 Applications can directly access persistent memory  no conversion, 

translation, location overhead for persistent data  

 

 Manages data placement, location, persistence, security 

 To get the best of multiple forms of storage 

 

 Manages metadata storage and retrieval 

 This can lead to overheads that need to be managed 

 

 Exposes hooks and interfaces for system software 

 To enable better data placement and management decisions 

 

 Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 
Storage and Memory,” WEED 2013. 
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The Persistent Memory Manager (PMM) 
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PMM uses access and hint information to allocate, locate, migrate 
and access data in the heterogeneous array of devices 

Persistent objects 



Performance Benefits of a Single-Level Store 
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Results for PostMark 

~5X 

~24X 



Energy Benefits of a Single-Level Store 
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Results for PostMark 

~5X 

~16X 



Agenda 

 Major Trends Affecting Main Memory 

 The Memory Scaling Problem and Solution Directions 

 New Memory Architectures 

 Enabling Emerging Technologies: Hybrid Memory Systems 

 How Can We Do Better? 

 Summary 
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Summary: Memory/Storage Scaling 

 Memory/storage scaling problems are a critical bottleneck for 
system performance, efficiency, and usability 
 

 New memory/storage + compute architectures 
 Rethinking DRAM; processing close to data; accelerating bulk operations 
 

 Enabling emerging NVM technologies  
 Hybrid memory systems with automatic data management 

 Coordinated management of memory and storage with NVM 
 

 System-level memory/storage QoS 
 

 Three principles are essential for scaling 

 Software/hardware/device cooperation 

 Better-than-worst-case design 

 Heterogeneity (specialization, asymmetry) 
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Related: Slides, Papers, Videos 

 These slides are a shortened and revised version of the                  
Scalable Memory Systems course at ACACES 2013 

 

 Website for Course Slides, Papers, and Videos 

 http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html 

 http://users.ece.cmu.edu/~omutlu/projects.htm   

 Includes extended lecture notes and readings 

 

 Overview Reading 

 Onur Mutlu, 
"Memory Scaling: A Systems Architecture Perspective" 
Technical talk at MemCon 2013 (MEMCON), Santa Clara, CA, 
August 2013. Slides (pptx) (pdf)  
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http://users.ece.cmu.edu/~omutlu/pub/mutlu_memory-scaling_memcon13_talk.pdf


Thank you. 

Feel free to email me with any questions & feedback 

 

onur@cmu.edu 
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Another Talk: NAND Flash Scaling Challenges 

 Cai+, “Error Patterns in MLC NAND Flash Memory: Measurement, 
Characterization, and Analysis,” DATE 2012. 

 Cai+, “Flash Correct-and-Refresh: Retention-Aware Error 
Management for Increased Flash Memory Lifetime,” ICCD 2012. 

 Cai+, “Threshold Voltage Distribution in MLC NAND Flash 
Memory: Characterization, Analysis and Modeling,” DATE 2013. 

 Cai+, “Error Analysis and Retention-Aware Error Management for 
NAND Flash Memory,” Intel Tech Journal 2013. 

 Cai+, “Program Interference in MLC NAND Flash Memory: 
Characterization, Modeling, and Mitigation,” ICCD 2013. 

 Cai+, “Neighbor-Cell Assisted Error Correction for MLC NAND 
Flash Memories,” SIGMETRICS 2014. 

 

92 


