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Abstract. Nowadays, many real problems in the Artificial Intelligence 
environments, can be efficiently modelled as Constraint Satisfaction Problems 
(CSP’s) and can be solved by means of Operational Research techniques. It is well 
known that any non-binary CSP can be transformed into an equivalent binary one, 
using some of the current techniques. However, this transformation may not be 
practical in problems with certain properties. Therefore, it is necessary to manage 
these non-binary constraints directly. In this paper, we propose an algorithm 
called "HSA≠" that solves non-binary constraint satisfaction problems in a 
natural way as an incremental and non-binary CSP solver. This non-binary CSP 
solver carries out the search through a polyhedron that maintains in its vertices 
those solutions that satisfy all non-binary constraints. 

1 Introduction 

Nowadays, many researchers are working on combined methods of Artificial 
Intelligence and Operational Research (AI/OR) because many real problems can 
be modelled as constraint satisfaction problems (CSP's) and can be solved using 
linear programming techniques. These include problems from fields such as 
artificial intelligence, operational research, expert systems, databases, etc. Most of 
these problems can be naturally modelled using non-binary (or n-ary) constraints. 
In the constraint satisfaction literature, the need to address issues regarding non-
binary constraints has only recently started to be widely recognised. Researchers 
have traditionally focused on binary constraints. The basic reasons were the 
simplicity of dealing with binary constraints compared to non-binary ones and the 
fact that any non-binary constraint satisfaction problem can be transformed into an 
equivalent binary one [5]. However, this transformation has several drawbacks:  

• It should be mentioned that transforming a non-binary CSP into a binary one 
produces a significant increase in the problems size, so the transformation may 
not be practical [2][4]. 
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• The translation process generates new variables, which may have very large 
domains, causing extra memory requirements for algorithms. So, in some 
problems, solving the binary formulation can be very inefficient [1]. 

In any case, this forced binarization generates unnatural formulations, which cause 
extra difficulties for constraint solver interfaces with human users [3].  

In this paper, we propose an algorithm called "The Hyperpolyhedron Search 
Algorithm" (HSA≠) that handles non-binary CSPs by means of OR techniques 
where the non-binary constraints (inequalities) are hyperplanes that are intersected 
in order to obtain the polyhedron vertices. However, in Artificial Intelligent 
framework, traditional CSP techniques obtain the solution by searching 
systematically through the possible assignments of values to variables. These AI 
techniques increase their complexity exponentially with the domain length and the 
number of disequational constraints, so it is necessary to use methods which are 
guided by heuristics. By combining AI/OR techniques, we can obtain methods, 
like HSA≠, that do not depend on the variable domain length and on the number 
of disequational constraints. 

Thus, HSA≠ overcomes some of the weaknesses of other techniques. Moreover, it 
can manage constraints that can be inserted incrementally into the problem 
without needing to solve the entire problem again.  

2 Preliminaries 

Briefly, the constraint satisfaction problem (CSP) that HSA≠ manages consists of: 

• a set of variables },...,{ 1 nxxX = ; 

• each variable Xxi ∈  has a continuous set iD  of possible values (its domain); 

• and a finite collection of constraints },...,{ 1 pccC =  restricting the values that 

the variables can simultaneously take.  

A solution to a CSP is an assignment of a value from its domain to every variable, 
such that all constraints are satisfied.  

The objective in a CSP may be: 

• to determine whether a solution exists, 

• to find one solution, with no preference as to which one or to find all solutions, 

• to find the variable domains, 

• to find an optimal, or a good solution by means of an objective or multi-
objective function defined in terms of some variables. 
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2.1 Notation and definitions 

In this section, we summarize the notation that is used in this paper. 

Generic: The number of variables in a CSP will be denoted by n. The domain of 
the variable xi will be denoted by iD . The constraints will be denoted by c, and all 

the constraint have the maximum arity n. We will always use this notation when 
analysing the behaviour of the algorithms. 

Variables: To represent variables, we will use x with an index, for example x1, xi, 
xn. 

Domains: The domain of the variable xi will be noted by [ ]iii ulD , = , so the 

domain length of the variable xi is ii lu − . It is important to realise that the domain 

is continuous. 

Constraints: Let },...,{ 1 nxxX =  be a set of real-valued variables. Let α be a 

polynomial of degree n (i.e., ∑
=

=
n

i
ii xp

1
α ) over X and b an integer. A linear 

relation over X is an expression of the form αrb where r ∈{<, ≤ , =, ≠, ≥, >}. A 
linear disequation over X is an expression of the form α≠b. A linear equality over 
X is an expression of the form α=b. The constraints that we are going to manage 
are linear relations and linear disequations of the form: 

Inequalities: bxp
n

i
ii ≤∑

=1
 (1) 

Disequations: linear-non :)(
1

FbxFbxp
n

i
ii ≠∧≠∑

=
 (2) 

where ix  are variables ranging over continuous intervals [ ]iii ulx , ∈ , b is a real 

constant, and 1≥n . Using the above constraints, equalities can be written as 
conjunctions of two inequalities. Similarly, strict inequalities can be written as a 
conjunction of an inequality and an disequation. Thus, we can manage all possible 
combinations: {<, ≤ , =, ≠, ≥, >}. 

3 Specification of the Hyperpolyhedron Search 
Algorithm 

Initially, HSA≠ can be considered as a classic CSP solver, where there is a static 
set of constraints that the solutions must satisfy. The graph and pseudo-code 
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specification of HSA≠ is presented in Figures 1 and 2, respectively. HSA≠ 
generates an initial polyhedron (step 1) with 2n vertices created by means of the 
Cartesian Product of the variable domain bounds [ ] [ ] [ ]( ) , , ,  2211 nn ululul ××× � .  

For each (≤) constraint, HSA≠ carries out the consistency check (step 2). If the (≤) 
constraint is not consistent, HSA≠ returns not consistent problem, else, HSA≠ 
determines if the (≤) constraint is not redundant, updating the polyhedron (step 3). 
This updating is carried out by Linear Programming techniques. The hyperplane 
generated by this (≤) constraint intersects with the polyhedron and thus, this 
hyperplane is the new face of the updated polyhedron. Finally, when all (≤) 
constraint are analysed and the problem is consistent with these (≤) constraints, 
HSA≠ checks the consistency with the (≠) constraints (step 4). The consistency 
study with the (≠) constraints does not update the polyhedron. This study only 
checks the consistency of the (≠) constraints with the polyhedron vertices. 

Thus, solutions to CSP are the all vertices and all the convex combinations 
between any two vertices which satisfy all disequational constraints. 

Finally, HSA≠ can obtain important results such as: (1) the problem consistency; 
(2) one or all solutions; (3) the new variable domains; and (4) the vertex of the 
polyhedron that minimises or maximises an objective or multi-objective function. 

Furthermore, when HSA≠ finishes its static behaviour (classic CSP solver), new 
constraints can be dynamically inserted into the problem, and HSA≠ studies the 
consistency check such as an incremental CSP solver. 

Fig. 1. General Scheme of the Hyperpolyhedron Search Algorithm. 
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Fig. 2.  Hyperpolyhedron Search Algorithm. 

HSA≠ ( Dimension,  Domains,  Constraints≤  ,  Constraints≠ ,  Solutions ) 

Step 1 ListV  ← Polyhedron_creation (Dimension, Domains, Constraints≤ ); 

;φ←yesL ; φ←noL  

Step 2  For each ∈iC Constraints≤   do: 

   { 

   ListVvi ∈∀ do: 

 { 

If Satisfy(Ci, vi) then:         // checks if the vi satisfies the constraint Ci 

}{ iyesyes vLL ∪← ;  // Ci  is consistent with the system 

else }{ inono vLL ∪← ; 

} 

   If STOPLyes ⇒= φ ;                    // Ci is not consistent with the system  

   If ⇒= φnoL " Ci is consistent and redundant "; 

   else  

Step 3 noLv ∈′∀  Polyhedron_Updation ( v′ , noyes LL , ); 

   } 

Step 4  Satisfaction(Constraints≠, yesL , Solutions);  

return output;  // HSA≠ returns the consistency check, and the extreme solutions 

 

Polyhedron_Updation ( v′ , noyes LL , ) 

For each adjacent vertex v of v′  do: 

HSA obtains the straight line l  that unites both vv  and ′  points. 

HSA intersects l  with the polyhedron obtaining the new point v ′′  

∪← yesyes LL v ′′  

return yesL ; 
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4 Analysis of Hyperpolyhedron Search Algorithm 

The HSA≠ spatial cost is determined by the number of vertices generated. 
Initially, the HSA≠ generates 2n vertices, where n is the number of problem 
variables. For each constraint (step 2), HSA≠ might generate n new vertices and 
eliminate only one. Thus, the number of polyhedron vertices is 2n+c≤ (n-1) where 
c≤  is the number of (≤) constraints. Therefore, the spatial cost is O(c≤ 2

n).  

The temporal cost is divided into three steps: initialisation, consistency check and 
actualisation. The initialisation cost (step 1) is O(2n) because the algorithm only 
generates 2n vertices. For each (≤) constraint (step 2), the consistency check cost 
depends linearly on the number of polyhedron vertices, but not on the variable 
domains. Therefore the temporal cost is O(2n). Finally, the actualisation cost (step 
3) depends on the number of variables O(2n). Also, the algorithm checks the 
consistency with each (≠) constraint in O(n). 

Thus, the temporal cost is: ( ) )2()()2()2()2( nnnn cOnOcOOcO ≤≠≤ ⇒∗++∗+ . 

5 Evaluation of Hyperpolyhedron Search Algorithm 

In this section, we compare the performance of HSA≠ with some of the more 
current CSP solvers. We have selected Forward-checking (FC) and Real Full 
Look-ahead (RFLA) because of they are the most appropriate techniques that are 
able to handle this problem typology . To evaluate this performance, the computer 
used for the tests was a PIII-800 with 128 Mb. of memory and Windows NT 
operating system. 

The problems generated to evaluate the performance depended on four parameters 
<v,c≤ ,c≠ ,d>, where v was the number of variables, c≤  the number of inequational 
constraints, c≠ the number of disequational constraints and d the length of the 
variable domains. The problems were randomly generated by modifying the 
parameters. The constraints c≤  and c≠  are constraints type (1) and (2) respectively, 
with the coefficients pi≠0.  

Thus, each of the graphs shown, set three parameters and varied the other one in 
order to evaluate the algorithm performance when this last parameter increased. 
We tested 100 test cases for each problem and each value of the variable 
parameter, and we present the mean CPU time for each technique. 

Four graphs are shown in Fig. 3 which correspond to the four significant 
parameters. The unsolved problems were assigned a 200-second run time. Thus, 
these graphs contain a horizontal asymptote in time=200. 
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Fig. 3. Temporal Cost in problems with different parameters 

Each graph in Fig. 3 shows that HSA≠ had better behaviour than FC and RFLA. 
The left upper graphic shows that HSA≠ increased it temporal cost later than the 
other approaches. The right upper graph summarises that our algorithm had a 
lower temporal cost than the others, when the number of inequational constraints 
increased. The lower graphs show that HSA≠ did not increase its temporal 
complexity when the number of disequational constraints and the domain length 
increased. However, FC and RFLA were unable to solve many of these problems. 

 

C≤ = 6 V 3 5 7 9 11 

C≠ = 20 RFLA 0 52 54 63 65 

D=2000 FC 34 64 72 77 78 

V = 11 C≤ 2 4 6 8 10 

C≠ = 40 RFLA 10 69 71 77 85 

D = 2000 FC 14 52 80 94 96 

V = 11 C ≠ 10 20 40 100 200 500 

C≤ = 6 RFLA 75 82 86 92 95 100 

D = 2000 FC 75 85 86 92 96 100 

V = 11 D ±  50 ±  100 ±  500 ±  1000 ± 5000 ± 10000 

C≠ = 6 RFLA 66 70 78 82 84 90 

D = 2000 FC 62 70 74 76 88 90 

Table 1. Number of unsolved problems 
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The number of unsolved problems is presented in table 1. HSA≠ was able to 
satisfactorily solve all the problems (2200 problems) while FC was unable to 
satisfactorily solve 1655 problems and RFLA 1546. 

6 Conclusion and Future Works 

In this paper, we have proposed an algorithm called HSA≠ as an incremental and 
non-binary CSP solver. This proposal carries out the consistency study through a 
polyhedron that is updated by means of LP techniques, and maintains (in its 
vertices) those values that satisfy all non-binary constraints. We are currently, 
working on disjunctive and non-binary constraint satisfaction problems to be 
modelled as distributed and incremental CSP solvers. These proposals would work 
on a polyhedron whose vertices are also polyhedra, and the disjunctive and non-
binary CSP’s are solved by means of metaheuristics techniques. Also, it is 
appropriate to generate algorithms to be configured dynamically depending on the 
user’s inputs. This proposal will be composed by HSA≠ as a complete algorithm, 
helped by heuristics like OFHH[6] and NFHH[7]. 
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