
Constraint Satisfaction by Means of Dynamic
Polyhedra

Miguel A. Salido, Adriana Giret, Federico Barber

Universidad Politécnica de Valencia, 46071, Valencia, Spain

Abstract. Nowadays, many real problems in the Artificial Intelligence
environments, can be efficiently modelled as Constraint Satisfaction Problems
(CSP’s) and can be solved by means of Operational Research techniques. It is well
known that any non-binary CSP can be transformed into an equivalent binary one,
using some of the current techniques. However, this transformation may not be
practical in problems with certain properties. Therefore, it is necessary to manage
these non-binary constraints directly. In this paper, we propose an algorithm
called "HSA≠" that solves non-binary constraint satisfaction problems in a
natural way as an incremental and non-binary CSP solver. This non-binary CSP
solver carries out the search through a polyhedron that maintains in its vertices
those solutions that satisfy all non-binary constraints.

1 Introduction

Nowadays, many researchers are working on combined methods of Artificial
Intelligence and Operational Research (AI/OR) because many real problems can
be modelled as constraint satisfaction problems (CSP's) and can be solved using
linear programming techniques. These include problems from fields such as
artificial intelligence, operational research, expert systems, databases, etc. Most of
these problems can be naturally modelled using non-binary (or n-ary) constraints.
In the constraint satisfaction literature, the need to address issues regarding non-
binary constraints has only recently started to be widely recognised. Researchers
have traditionally focused on binary constraints. The basic reasons were the
simplicity of dealing with binary constraints compared to non-binary ones and the
fact that any non-binary constraint satisfaction problem can be transformed into an
equivalent binary one [5]. However, this transformation has several drawbacks:

• It should be mentioned that transforming a non-binary CSP into a binary one
produces a significant increase in the problems size, so the transformation may
not be practical [2][4].

406 Miguel Salido et al.

• The translation process generates new variables, which may have very large
domains, causing extra memory requirements for algorithms. So, in some
problems, solving the binary formulation can be very inefficient [1].

In any case, this forced binarization generates unnatural formulations, which cause
extra difficulties for constraint solver interfaces with human users [3].

In this paper, we propose an algorithm called "The Hyperpolyhedron Search
Algorithm" (HSA≠) that handles non-binary CSPs by means of OR techniques
where the non-binary constraints (inequalities) are hyperplanes that are intersected
in order to obtain the polyhedron vertices. However, in Artificial Intelligent
framework, traditional CSP techniques obtain the solution by searching
systematically through the possible assignments of values to variables. These AI
techniques increase their complexity exponentially with the domain length and the
number of disequational constraints, so it is necessary to use methods which are
guided by heuristics. By combining AI/OR techniques, we can obtain methods,
like HSA≠, that do not depend on the variable domain length and on the number
of disequational constraints.

Thus, HSA≠ overcomes some of the weaknesses of other techniques. Moreover, it
can manage constraints that can be inserted incrementally into the problem
without needing to solve the entire problem again.

2 Preliminaries

Briefly, the constraint satisfaction problem (CSP) that HSA≠ manages consists of:

• a set of variables },...,{ 1 nxxX = ;

• each variable Xxi ∈ has a continuous set iD of possible values (its domain);

• and a finite collection of constraints },...,{ 1 pccC = restricting the values that

the variables can simultaneously take.

A solution to a CSP is an assignment of a value from its domain to every variable,
such that all constraints are satisfied.

The objective in a CSP may be:

• to determine whether a solution exists,

• to find one solution, with no preference as to which one or to find all solutions,

• to find the variable domains,

• to find an optimal, or a good solution by means of an objective or multi-
objective function defined in terms of some variables.

 Constraint Satisfaction by Means of Dynamic Polyhedra 407

2.1 Notation and definitions

In this section, we summarize the notation that is used in this paper.

Generic: The number of variables in a CSP will be denoted by n. The domain of
the variable xi will be denoted by iD . The constraints will be denoted by c, and all

the constraint have the maximum arity n. We will always use this notation when
analysing the behaviour of the algorithms.

Variables: To represent variables, we will use x with an index, for example x1, xi,
xn.

Domains: The domain of the variable xi will be noted by []iii ulD , = , so the

domain length of the variable xi is ii lu − . It is important to realise that the domain

is continuous.

Constraints: Let },...,{ 1 nxxX = be a set of real-valued variables. Let α be a

polynomial of degree n (i.e., ∑
=

=
n

i
ii xp

1
α) over X and b an integer. A linear

relation over X is an expression of the form αrb where r ∈{<, ≤ , =, ≠, ≥, >}. A
linear disequation over X is an expression of the form α≠b. A linear equality over
X is an expression of the form α=b. The constraints that we are going to manage
are linear relations and linear disequations of the form:

Inequalities: bxp
n

i
ii ≤∑

=1
 (1)

Disequations: linear-non :)(
1

FbxFbxp
n

i
ii ≠∧≠∑

=
 (2)

where ix are variables ranging over continuous intervals []iii ulx , ∈ , b is a real

constant, and 1≥n . Using the above constraints, equalities can be written as
conjunctions of two inequalities. Similarly, strict inequalities can be written as a
conjunction of an inequality and an disequation. Thus, we can manage all possible
combinations: {<, ≤ , =, ≠, ≥, >}.

3 Specification of the Hyperpolyhedron Search
Algorithm

Initially, HSA≠ can be considered as a classic CSP solver, where there is a static
set of constraints that the solutions must satisfy. The graph and pseudo-code

408 Miguel Salido et al.

specification of HSA≠ is presented in Figures 1 and 2, respectively. HSA≠
generates an initial polyhedron (step 1) with 2n vertices created by means of the
Cartesian Product of the variable domain bounds [] [] []() , , , 2211 nn ululul ××× � .

For each (≤) constraint, HSA≠ carries out the consistency check (step 2). If the (≤)
constraint is not consistent, HSA≠ returns not consistent problem, else, HSA≠
determines if the (≤) constraint is not redundant, updating the polyhedron (step 3).
This updating is carried out by Linear Programming techniques. The hyperplane
generated by this (≤) constraint intersects with the polyhedron and thus, this
hyperplane is the new face of the updated polyhedron. Finally, when all (≤)
constraint are analysed and the problem is consistent with these (≤) constraints,
HSA≠ checks the consistency with the (≠) constraints (step 4). The consistency
study with the (≠) constraints does not update the polyhedron. This study only
checks the consistency of the (≠) constraints with the polyhedron vertices.

Thus, solutions to CSP are the all vertices and all the convex combinations
between any two vertices which satisfy all disequational constraints.

Finally, HSA≠ can obtain important results such as: (1) the problem consistency;
(2) one or all solutions; (3) the new variable domains; and (4) the vertex of the
polyhedron that minimises or maximises an objective or multi-objective function.

Furthermore, when HSA≠ finishes its static behaviour (classic CSP solver), new
constraints can be dynamically inserted into the problem, and HSA≠ studies the
consistency check such as an incremental CSP solver.

Fig. 1. General Scheme of the Hyperpolyhedron Search Algorithm.

Polyhedron
Creation

No

No

Yes

Yes

(Step 1)

(Step 2) (Step 3)

Variable Domains
[]iii ulx , ∈

bxp
n

i
ii ≤∑

=1

For each

constraint ≤
Redundant

?
Consistent

?

Polyhedron
Updating

-Consistent Problem
-One or all Solution
-Minimal Domains

No consistent
Problem

Problem Consistency
with (≠)

(Step 4)

 Constraint Satisfaction by Means of Dynamic Polyhedra 409

Fig. 2. Hyperpolyhedron Search Algorithm.

HSA≠ (Dimension, Domains, Constraints≤ , Constraints≠ , Solutions)

Step 1 ListV ← Polyhedron_creation (Dimension, Domains, Constraints≤);

;φ←yesL ; φ←noL

Step 2 For each ∈iC Constraints≤ do:

 {

 ListVvi ∈∀ do:

 {

If Satisfy(Ci, vi) then: // checks if the vi satisfies the constraint Ci

}{ iyesyes vLL ∪← ; // Ci is consistent with the system

else }{ inono vLL ∪← ;

}

 If STOPLyes ⇒= φ ; // Ci is not consistent with the system

 If ⇒= φnoL " Ci is consistent and redundant ";

 else

Step 3 noLv ∈′∀ Polyhedron_Updation (v′ , noyes LL ,);

 }

Step 4 Satisfaction(Constraints≠, yesL , Solutions);

return output; // HSA≠ returns the consistency check, and the extreme solutions

Polyhedron_Updation (v′ , noyes LL ,)

For each adjacent vertex v of v′ do:

HSA obtains the straight line l that unites both vv and ′ points.

HSA intersects l with the polyhedron obtaining the new point v ′′

∪← yesyes LL v ′′

return yesL ;

410 Miguel Salido et al.

4 Analysis of Hyperpolyhedron Search Algorithm

The HSA≠ spatial cost is determined by the number of vertices generated.
Initially, the HSA≠ generates 2n vertices, where n is the number of problem
variables. For each constraint (step 2), HSA≠ might generate n new vertices and
eliminate only one. Thus, the number of polyhedron vertices is 2n+c≤ (n-1) where
c≤ is the number of (≤) constraints. Therefore, the spatial cost is O(c≤ 2

n).

The temporal cost is divided into three steps: initialisation, consistency check and
actualisation. The initialisation cost (step 1) is O(2n) because the algorithm only
generates 2n vertices. For each (≤) constraint (step 2), the consistency check cost
depends linearly on the number of polyhedron vertices, but not on the variable
domains. Therefore the temporal cost is O(2n). Finally, the actualisation cost (step
3) depends on the number of variables O(2n). Also, the algorithm checks the
consistency with each (≠) constraint in O(n).

Thus, the temporal cost is: ())2()()2()2()2(nnnn cOnOcOOcO ≤≠≤ ⇒∗++∗+ .

5 Evaluation of Hyperpolyhedron Search Algorithm

In this section, we compare the performance of HSA≠ with some of the more
current CSP solvers. We have selected Forward-checking (FC) and Real Full
Look-ahead (RFLA) because of they are the most appropriate techniques that are
able to handle this problem typology . To evaluate this performance, the computer
used for the tests was a PIII-800 with 128 Mb. of memory and Windows NT
operating system.

The problems generated to evaluate the performance depended on four parameters
<v,c≤ ,c≠ ,d>, where v was the number of variables, c≤ the number of inequational
constraints, c≠ the number of disequational constraints and d the length of the
variable domains. The problems were randomly generated by modifying the
parameters. The constraints c≤ and c≠ are constraints type (1) and (2) respectively,
with the coefficients pi≠0.

Thus, each of the graphs shown, set three parameters and varied the other one in
order to evaluate the algorithm performance when this last parameter increased.
We tested 100 test cases for each problem and each value of the variable
parameter, and we present the mean CPU time for each technique.

Four graphs are shown in Fig. 3 which correspond to the four significant
parameters. The unsolved problems were assigned a 200-second run time. Thus,
these graphs contain a horizontal asymptote in time=200.

 Constraint Satisfaction by Means of Dynamic Polyhedra 411

Fig. 3. Temporal Cost in problems with different parameters

Each graph in Fig. 3 shows that HSA≠ had better behaviour than FC and RFLA.
The left upper graphic shows that HSA≠ increased it temporal cost later than the
other approaches. The right upper graph summarises that our algorithm had a
lower temporal cost than the others, when the number of inequational constraints
increased. The lower graphs show that HSA≠ did not increase its temporal
complexity when the number of disequational constraints and the domain length
increased. However, FC and RFLA were unable to solve many of these problems.

C≤ = 6 V 3 5 7 9 11

C≠ = 20 RFLA 0 52 54 63 65

D=2000 FC 34 64 72 77 78

V = 11 C≤ 2 4 6 8 10

C≠ = 40 RFLA 10 69 71 77 85

D = 2000 FC 14 52 80 94 96

V = 11 C ≠ 10 20 40 100 200 500

C≤ = 6 RFLA 75 82 86 92 95 100

D = 2000 FC 75 85 86 92 96 100

V = 11 D ± 50 ± 100 ± 500 ± 1000 ± 5000 ± 10000

C≠ = 6 RFLA 66 70 78 82 84 90

D = 2000 FC 62 70 74 76 88 90

Table 1. Number of unsolved problems

Mean CPU time in problems <v,6,20,2000>

0
20
40
60
80

100
120
140
160
180

3 5 7 9 11

Number of Variables

FC

RFLA

HSA 1.1

Mean CPU time in problems <11,6,c,2000>

0

50

100

150

200

10 20 40 100 200 500 1000

Number of disequational constraints

FC

RFLA

HSA 1.1

Mean CPU time in problems <11,c,40,2000>

0

50

100

150

200

2 4 6 8 10

Number of inequational constraints

FC

RFLA

HSA 1.1

Mean CPU time in problems <11,6,40,d>

0

50

100

150

200

50 100 500 1000 5000 10000

Domain length

FC

RFLA

HSA 1.1

412 Miguel Salido et al.

The number of unsolved problems is presented in table 1. HSA≠ was able to
satisfactorily solve all the problems (2200 problems) while FC was unable to
satisfactorily solve 1655 problems and RFLA 1546.

6 Conclusion and Future Works

In this paper, we have proposed an algorithm called HSA≠ as an incremental and
non-binary CSP solver. This proposal carries out the consistency study through a
polyhedron that is updated by means of LP techniques, and maintains (in its
vertices) those values that satisfy all non-binary constraints. We are currently,
working on disjunctive and non-binary constraint satisfaction problems to be
modelled as distributed and incremental CSP solvers. These proposals would work
on a polyhedron whose vertices are also polyhedra, and the disjunctive and non-
binary CSP’s are solved by means of metaheuristics techniques. Also, it is
appropriate to generate algorithms to be configured dynamically depending on the
user’s inputs. This proposal will be composed by HSA≠ as a complete algorithm,
helped by heuristics like OFHH[6] and NFHH[7].

References

[1] Bacchus, F., van Beek, P. (1998) On the conversion between non-binary and binary
constraint satisfaction problems. In proceeding of AAAI-98, 311-318

[2] Bessière, C., Meseguer, P., Freuder, E.C., Larrosa, J. (1999) On Forward Checking for
Non-binary Constraint Satisfaction. In Proc. Principles and Practice of Constraint
Programming (CP-99), 88-102

[3] Bessiere, C. (1999) Non-Binary Constraints. In Proc. Principles and Practice of
Constraint Programming (CP-99), 24-27

[4] Larrosa J. (1998) Algorithms and Heuristics for total and partial Constraint Satisfaction,
Phd Disertation, Barcelona, Spain,

[5] Rossi, F., Petrie, C., Dhar, V. (1990) On the equivalence of constraint satisfaction
problems. In proceeding of European Conference of Artificial Intelligence, ECAI-90,
550-556

[6] Salido, M.A., Giret, A., Barber, F. (2001) A Non-binary Constraint Satisfaction Solver:
The One-face Hyperpolyhedron Heuristic. In book: Research and Development in
Intelligent Systems XVIII. (Ed. Springer Verlag).

[7] Salido, M.A., Giret, A., Barber, F. (2001) A combination of AI and OR methods for
solving Non-binary Constraint Satisfaction problems. In Proceedings of Workshop on
New Results in Planning, Scheduling and Design (PUK2001), 78-88

