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Abstract

In this work we apply methods from cryptography to enable any number of mutually
distrusting players to implement broad classes of mediated equilibria of strategic games
without the need for trusted mediation.

Our implementation makes use of a (standard) pre-play “cheap talk” phase, in which
players engage in free and non-binding communication prior to playing in the original game.
In our cheap talk phase, the players execute a secure multi-party computation protocol
to sample an action profile from an equilibrium of a “cryptographically blinded” version
of the original game, in which actions are encrypted. The essence of our approach is to
exploit the power of encryption to selectively restrict the information available to players
about sampled action profiles, such that these desirable equilibria can be stably achieved.
In contrast to previous applications of cryptography to game theory, this work is the first to
employ the paradigm of using encryption to allow players to benefit from hiding information
from themselves, rather than from others; and we stress that rational players would choose
to hide the information from themselves.

Keywords. Cheap talk, encryption, mediated equilibria, multi-party computation.

1 Introduction

Nash equilibrium |[Nas50| and correlated equilibrium [Aum74| are important solution concepts
that have been extensively studied in both traditional and computational game-theoretic con-
texts. Coarse correlated equilibrium [MV78] is a closely related concept that was proposed as
a generalization of correlated equilibrium, which can be more powerful in some settings such as
potential games.

In this work we construct protocols for mutually distrusting players to implement any coarse
correlated equilibrium (and therefore any correlated equilibrium) of a strategic game without
trusted mediation, via cryptographic cheap talk protocols. Our approach draws upon cryp-
tography in two ways: first, we introduce an intermediate, “cryptographically blinded” game
from which the players sample according to the desired equilibrium; and second, this sampling
is achieved using a secure multi-party computation protocol. Our results address both the
computational and perfect (information-theoretic) settings.

This is a working paper, of which an extended abstract appeared in the 15th ACM Conference on
Economics and Computation (EC 2014).



Correlated equilibrium. Suppose a mediator samples an action profile a from a known
distribution «, and gives as “advice” to each player ¢ his action a; in a. The distribution « is a
correlated equilibrium if, having seen his advice, and believing that all other players will follow
their advice, no player has incentive to unilaterally deviate from the advice profile. [Aum74]
showed that correlated equilibria can achieve higher expected payoffs than Nash equilibria.

Coarse correlated equilibrium. Coarse correlated equilibria are a generalization of cor-
related equilibria which invokes a notion of commitment. In the mediated scenario described
above, « is a coarse correlated equilibrium if no player has incentive not to “promise” or “com-
mit” in advance — before seeing his advice a; — to play according to the advice, as long as he
believes that all other players will commit to do the same. Note that if a player does not com-
mit, then he will not see the advice at all, and must therefore play an independent strategy:
this is in contrast to correlated equilibria, where deviations may depend on the received advice.

[MRG13] showed that there is a class of potential games in which the Nash equilibrium
payoffs can be improved upon by coarse correlated equilibria but not by correlated equilibria
(e.g. the Cournot duopoly and public good provision games).

Example 1.1. Let us give a brief example to illustrate the gap between the two types of
equilibria. Suppose Alice plays a game I" where she has a “safe strategy” for which her payoff
is always zero. Let « be a distribution over action profiles of I', and suppose Alice’s expected
payoff from « is very high, say, a million dollars — however, some action profiles from « will
give her negative payoff. Now, when Alice receives her advice from the mediator, she might be
able to deduce that her payoff in the advised action profile will be negative. If this is the case,
she will choose to deviate to her safe strategy, so « is not a correlated equilibrium. However, «
may still be a coarse correlated equilibrium if Alice can commit before seeing her advice; and
importantly, & may be very desirable from Alice’s (risk-neutral) point of view, since expected
payoff is high.

1.1 Our results

In this work we address the following question:

How can the players of a strategic game implement any coarse correlated equilibrium via
(cryptographic) pre-play communication without trusting each other or a mediator?

In the computational setting, we give an implementation for general strategic games, in
the form of an extended game comprising a cryptographic protocol in the pre-play phase, which
securely samples an action profile for a “cryptographically blinded” version of the original game,
followed by play in the original game. The blinded game’s action space consists of encryptions
of the original game’s actions.

Our implementation has the strong property that any computational coarse correlated equi-
librium of the original game corresponds to a payoff-equivalent Nash equilibrium of the ex-
tended game. Furthermore, it achieves strategic equivalence to the original game, in that every
computational Nash equilibrium of the extended game corresponds to a computational coarse
correlated equilibrium of the original game. Pre-play communication is via broadcast, as is
standard in the cheap talk literature.

In the information-theoretic setting, we give an implementation for strategic games with four
or more players, using a similar format of a cryptographically blinded pre-play phase followed
by (simultaneous) play in the original game, given private pairwise communication channels
between players. As in the computational setting, we achieve strategic equivalence. Both the



restriction to four or more players and the need for a stronger communication model than
broadcast are unavoidable, as shown by impossibility results of [Bar92; AHO3| which will be
discussed in more detail in the next section.

None of our constructions require trusted mediation. After the pre-play phase is complete,
there is a single step in which the players invoke a verifiable prory to play the original game
according to their instructions. Verifiable parties were introduced in [ILM11], and will be
detailed further in Section No trust need be placed in the verifiable proxy, because anyone
can check whether ir has acted correctly; and we stress that unlike the usual mediator for coarse
correlated equilibria, the verifiable proxy does not communicate anything to the players which
may affect their strategies in the game. Informally, it simply performs a “translation” of a
player’s chosen strategy from one form into another.

Finally, our constructions require no physical assumptions and can be executed entirely
over a distributed network. This contrasts with a number of previous works such as [LMPS04;
ILM11| which require “physical envelopes”.

1.2 Relation to prior work

Cheap talk. The pre-play literature considers the general problem of implementing equilibria
without mediation, as follows: given an abstract game I', the aim is to devise a concrete com-
munication game I'” having an equilibrium that is payoff-equivalent to a desirable equilibrium
in I', where the concrete game may have a pre-play cheap talk phase in which players engage
in communication that is neither costly nor binding, and has no impact on players’ payoffs
except insofar as it may influence future actions. In the literature there has been much focus
on implementing correlated equilibria [Bar92; BP98; AHO3]|.

Power of commitment. It has long been recognized that the possibility to commit to
strategies in advance can increase the payoffs achievable in a game, starting with the work
of [vS34], who proposed a leader/follower structure to games where the leader moves first (and
thereby “commits” to his strategy). [SZ10] showed that transforming a strategic game into a
leader/follower form allows the leader (i.e. the committer) to do at least as well as in the Nash
and correlated equilibria of the strategic game. Moreover, they show that coarse correlated
equilibria, with their arguably stronger notion of commitment, can yield higher payoffs than
the leader/follower transformation. More recently, [LKC12] studied the advantage of commit-
ment from a quantitative perspective and showed that the extremal “value of commitment” is
in fact unbounded in many classes of games.

In this work, we achieve the payoffs of coarse correlated equilibria without resorting to the
assumption of binding contracts: instead, we use the power of encryption to hide information
that, if known to the players, could render the situation unstable. We stress that the players
are given the choice, rather than forced, to hide information from themselves — and we find that
it is in their rational interest to do so since coarse correlated equilibria can offer high payoffs.

Cryptographic cheap talk and computational equilibria. [DHRO0| introduced the idea
of cryptographic cheap talk, in which players execute a cryptographic protocol during the pre-
play phase; and they defined computational equilibria, which are solution concepts stable for
computationally bounded (probabilistic polynomial time) players who are indifferent to negligi-
ble gains. Their cryptographic cheap talk protocols efficiently implement some computational
correlated equilibria of two-player games. Moreover, their notion of computational equilibria
suffers from empty threats (Deﬁnition, which cause instability for sequentially rational play-
ers in the pre-play game. This was partially addressed by a new solution concept of [GLR10];



however, [HNR13] subsequently showed that in general, correlated equilibria cannot be achieved
without empty threats by (cryptographic) cheap talk.

Our results in the computational setting use the equilibrium definitions of [DHRO0|; however,
in our “cryptographically blinded” games, empty threats cannot occur. By converting games
into blinded games, our constructions implement all coarse correlated equilibria without empty
threats: this comes at the cost of a single mediated “translation” step using a third party,
discussed in the next paragraph. We consider this step to be a “necessary” and mild requirement
given that the impossibility result of [HNR13] renders some additional assumption necessary to
achieve all (coarse) correlated equilibria without empty threats.

Removing trusted mediation. Removing the need to trust a mediator in the implemen-
tation of equilibria and mechanisms has long been a subject of interest in game theory and
cryptography. The notion of verifiable mediation was introduced by [ILM11], who highlighted
the difference between the usual concept of a trusted mediator, and the weaker concept of a
verifiable mediator who performs actions in a publicly verifiable way and without possessing
any information that should be kept secret. Recent applications of verifiable mediation include
the strong correlated equilibrium implementation of [ILM11], and the rational secret sharing
scheme of [MS09).

In this paper, we introduce the new notion of a verifiable proxy. As in verifiable mediation,
the actions of a verifiable proxy are publicly verifiable. However, our notion is incomparable to
[ILM11]’s verifiable mediation, because:

e a verifiable proxy for a strategic game does not give the players any information that
affects their strategic choices in the game; and

e a verifiable proxy may possess information that should be kept secret.

More discussion about the merits of these definitions is given in Section

As a simple illustration, consider a sealed-bid auction: much more trust is placed in a
mediator who collects all the players’ bids and just announces the winner, than in a mediator who
collects the bids, opens them publicly, and allows everyone to compute the outcome themselves.

In our setting, the verifiable proxy performs a single “translation” step on behalf of the
players, at the end of the pre-play phase, in which it takes strategies submitted by the players
and “translates” them into a different format. In particular, the proxy acts independently and
identically with respect to each player, and therefore is not implementing the correlation aspect.

Strategic equivalence property. An important concern in implementation theory is the
strategic equivalence of an implementation to the underlying game: it is desirable that im-
plementations have the “same” equilibria as the underlying game, and in particular do not
introduce new ones. This was first considered by the full implementation concept of [Mas99],
and extended by subsequent works such as [ILM11] who proposed a stronger notion of perfect
implementation for certain games. Although this literature is not directly applicable to the
present work (as our results lie in the pre-play realm), we extend these ideas and find that the
cheap talk extensions of our cryptographically blinded games achieve “best possible” strategic
equivalence in that their Nash equilibria correspond exactly to the coarse correlated equilibria
of their underlying games. This strategic equivalence notion is “best possible” in the sense that
in the pre-play setting, the possibility of arbitrary communication in the pre-play phase inher-
ently introduces the possibility of additional equilibria compared to the simpler one-shot game.
Interestingly, Alwen et al. |[Alw+09] showed that a very strong notion of strategic equivalence
can be achieved if communication in the pre-play is restricted in such a way that players cannot



communicate directly with each other, but only through a mediator who may “censor” some of
the communication.

Computationally unbounded setting. To our knowledge, existing work in applying cryp-
tographic tools to game theory has focused overwhelmingly on the setting of computationally
bounded players and computational equilibria. In contrast, we consider the computationally
unbounded setting too. Our result for the computational setting is stronger and more efficient
than our information-theoretic solution: in particular, the computational result holds for games
with any number of players, and requires only a broadcast channel for communication between
players.

In the computationally unbounded setting it was proven by [Bar92] that correlated equilibria
cannot be achieved by cheap talk between fewer than four players, and indeed, this fits neatly
with a more general result of [BGW88; (CCD88] in the context of secure protocols. Accordingly,
our information-theoretic results only apply for games of four or more players; however, improv-
ing on the protocols of [Bar92|, we achieve not only correlated equilibria but coarse correlated
equilibria for all games of this type.

Furthermore, in the computationally unbounded setting it has been proven |[AHO03| that com-
munication by broadcast alone is insufficient to achieve (non-trivial) correlated equilibria by
cheap talk, so our result is of interest notwithstanding its stronger requirement of private com-
munication channels between players. Indeed, the private-channels model has been extensively
studied in both distributed computing (e.g. [FLP85; KDGO03|) and multi-party computation
(e.g. |[BGWSS; |[CCD8g|) as an interesting strengthening of the communication model that al-
lows for much stronger and/or more efficient protocols than the broadcast model. We therefore
consider it natural and compelling to apply this model in the game-theoretical setting.

1.3 Organization

In Sections[2] and [3| we provide game-theoretical and cryptographic background. In Section [d] we
introduce cryptographically blinded games. These are the essential building block for the cheap
talk protocols detailed in Section [5| that implement all coarse correlated equilibria of general
strategic games. At the end of Section [5| we discuss the efficiency of our protocols.

1.4 Notation

For n € N, let [n] denote the set {1,2,...,n}. For a set S, let P(S) denote the powerset of S,
and let A(S) denote the set of all distributions over S. Let s < S denote that s is a random
element of S. Let U denote the disjoint union operation. We write PPT to mean probabilistic
polynomial time, and we call distributions that can be sampled in probabilistic polynomial time
“ppT-samplable”. Let negl denote a negligible function (which tends to zero faster than any
inverse polynomial).

2 Game-theoretic background

Definition 2.1 (Finite strategic game). A finite strategic game I' = (N, (A;), (w;)) is defined
by a finite set N of players, and for each player i € N, a non-empty set of possible actions A;
and a utility function u; : X;enA; — R.

We refer to an action profile a = (a;)jen of a game as an outcome, and denote by A the set
of outcomes X ey A;. For a given outcome a, we write a_; to denote (a;);en j2i, that is, the



profile of actions of all players other than i; and we use (a},a—;) to denote the action profile
where player i’s action is a, and all other players’ actions are as in a.

2.1 Equilibrium concepts

Definition 2.2 (Nash equilibrium). A Nash equilibrium of strategic game I' = (N, (A;), (u;))
is a product distribution o € X jenA(A;j) such that for every player i € N and for all a} € A;
E [ui(a)] =2 E [ui(a;,a—)].
a‘—o a‘—o
Definition 2.3 (Correlated equilibrium). A correlated equilibrium of strategic game T' =
(N, (A;), (u)) is a probability distribution o € A(XjenAj) such that for every player i € N,
and for all b;,a € A; satisfying Prqcqola; = b;] > 0,
aEa[Ui(a)!az‘ =b;| > aEa[ui(af,a_i)|ai = b;].
Definition 2.4 (Coarse correlated equilibrium). A coarse correlated equilibrium of strategic
game I' = (N, (A;), (u;)) is a probability distribution o € A(X jenA;j) such that for every player
i € N and for all a € A;
E [ui(a)] = E [ui(a;,a—)].
a<—o a<—o

The model of coarse correlated equilibrium allows the players either to “commit in advance”
to play according to the mediator’s advice (no matter what it turns out to be), or to play
an independent strategy without learning the advice. A probability distribution is a coarse
correlated equilibrium if no player has an incentive to not commit to play according to the
mediator’s advice.

Because of linearity of expectation, it is sufficient for these equilibrium definitions to consider
only deviations to pure strategies. Note that any Nash equilibrium is a correlated equilibrium,
and any correlated equilibrium is a coarse correlated equilibrium.

2.2 Computational equilibrium concepts

The following definitions of computational equilibria extend those introduced by [DHRO0]. In
the computational setting a strategic game induces a family of games parametrized by the secu-
rity parameter, i.e. I' = {(N, (Al(k)), (ugk)»}keN. Hence, the corresponding solution concepts are
ensembles of probability distributions, and the security parameter captures the intuition that
players are limited to efficiently computable (PPT) strategies and indifferent to gains negligible

in k.

Definition 2.5 (Computational Nash equilibrium). A computational Nash equilibrium of com-

putational strategic game I' = {(N, (A(k)), (ugk)»}keN is a PPT-samplable ensemble of product

distributions o = {aF) = xjeNa§-k)}k€N on {xjeNAgk)}keN such that for all players i € N and

every PPT-samplable ensemble &; = {olz(.k)}keN on {Agk)}keN, there exists a negligible €(-) such
that for all large enough k € N it holds that

W@]> B [, a)] - (k).

(2
a<—a(k) (l(—a(k),di(—olgk)

Definition 2.6 (Computational correlated equilibrium). A computational correlated equilib-
rium of computational strategic game I' = {(N, (Agk)), (ugk)»}keN is a PPT-samplable proba-

bility ensemble a = {a®} ey on {xjeNAg-k)}keN such that for all players i € N and every
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pPPT-samplable ensemble &; = {dgk)}keN on {Agk)}keN there exists a negligible e(-) such that for
all large enough k € N 4t holds that

uf (a)] = E [l (a5, a_;)] — (k).

i
a+a(k) aea(k),diedgk)(ai)

Definition 2.7 (Computational coarse correlated equilibrium). A computational coarse cor-
related equilibrium of computational strategic game T' = {(N, (Agk)),(ugk)»}keN is a PPT-
samplable probability ensemble o = {a®} e on {xjeNAg»k)}keN such that for all playersi € N

and every PPT-samplable ensemble &; = {dz(-k)}keN on {Agk)}keN, there exists a negligible (-)
such that for all large enough k € N it holds that

W@ > B [u (@) - e(k).

i i
a+a(®) a(—a(k>,di<—d§k)

Note that in the above definition of computational coarse correlated equilibrium the output
of dz(»k) is independent of a;, unlike in the definition of computational correlated equilibrium.
Remark. In later sections we apply the above computational solution concepts in a straightfor-
ward way to classical strategic games. For a finite strategic game I' = (N, (4;), (u;)) we consider
the computational version {I‘(k)}keN, where T®) = T for all £k € N. The action space and the
utility function do not change with the security parameter in this computational version of I';

however, the players are limited to efficient (PPT) strategies.

Remark. In the classical setting, it is implicit that the players of a game have oracle access
to the utility functions u;, that is, players can query u; on any action profile in constant time{ﬂ
Our results apply to all strategic games in the classical setting: hence the requirement that the
security parameter be polynomial in the size of the game (i.e. we ensure that players are able
to perform the standard task of reading the payoff matrix). With computationally bounded
players, however, it seems very natural to consider the case in which computing u; takes more
time. To our knowledge, this difference has been recognized (e.g., [DHRO00]) but not much
analyzed in the literature; however, it is an important underlying idea of the present work.

2.3 Extensive games

Definitions of extensive form games and subgames are given in Appendix [A] along with corre-
sponding equilibrium concepts for the standard and computational settings.

3 Cryptographic background

3.1 Encryption schemes

Our constructions will make use of secret-key and public-key encryption schemes, which are
defined below. Note that encryption schemes are parametrized by a security parameter k that
determines the “security level” of the scheme.

Definition 3.1 (Secret-key encryption scheme). A secret-key encryption scheme over a message
space M is a tuple of PPT algorithms ¥ = (SGen, SEnc, SDec) satisfying the following. Let the
ciphertext space be the codomain of SEnc and be denoted by C.

1Other parameters of the original game, such as the correlated equilibrium distribution, are also assumed to
be computable in constant time.



o The key generation algorithm SGen takes no input and outputs a secret key sk according
to some distribution (inherent to X). This is denoted by sk < SGen().

e The encryption algorithm SEnc takes as input a message m € M and a secret key sk, and
outputs a ciphertext ¢ € C. This is denoted by ¢ +— SEncg(m).

o The decryption algorithm SDec is a deterministic algorithm that takes as input a ciphertext
¢ and a secret key sk, and outputs a decryption m' € M. This is denoted by m' =
SDecgi(c).

o The decryption is always correct, i.e. for every security parameter k, and every sk <
SGen() it holds for every m € M that SDecg,(SEncg,(m)) = m.

Definition 3.2 (Public-key encryption scheme). A public-key encryption scheme over a mes-
sage space M is a tuple of PPT algorithms II = (PGen, PEnc, PDec) satisfying the following. Let
the ciphertext space be the codomain of PEnc and be denoted by C.

e The key generation algorithm PGen takes input 1%, where k is the security parameter, and
outputs a public key and secret key pair (pk, sk).

o The encryption algorithm PEnc takes as input a message m € M and a public key pk and
outputs a ciphertext c € C.

o The decryption algorithm PDec is a deterministic algorithm that takes as input a ciphertext
c and a secret key sk, and outputs a decryption m' € M.

e The decryption is always correct, i.e. for every security parameter k, and every (pk, sk) <
PGen(1%) it holds for every m € M that PDecg,(PEncyr(m)) = m.

3.2 Security definitions

Here we define the following two standard security notions: perfect (information-theoretic)
security, and computational security against chosen-ciphertext attacks. The latter is commonly
referred to as CCA-security, and is the de facto standard for security of public-key encryption;
the former is canonical in the information-theoretic setting.

Remark. Our constructions make use of perfectly secure secret-key encryption and CCA-secure
public-key encryption. For convenience, therefore, the security definitions given below refer
to secret- and public-key schemes respectively. However, both security definitions may be
straightforwardly adapted to apply to both types of encryption (although it is well known
that perfect security is impossible in the public-key setting).

Definition 3.3 (Perfectly secure secret-key encryption). A secret-key encryption scheme ¥ =
(SGen, SEnc, SDec) is perfectly secure if for all messages mg,mi € M and ciphertexts ¢ € C, it
holds that Pr[SDec(SEnc(myg)) = mo] =1 and

P Dec, = = P Dec, = .
sk(—Séen()[S & k(C) mO] sk(—Séen()[S & k(C) ml]

An alternative and equivalent definition is that a perfectly secure encryption scheme pro-
duces ciphertexts that are independent of the messages that they encrypt.

Next, we shall define CCA-security for public-key encryption schemes. The security definition
is based on the following experiment, which may be considered to be a game played between a
malicious adversary A and an honest challenger.



The CCA indistinguishability experiment Pu bKi?H (k):

—_

The challenger generates a key pair (pk, sk) < PGen(1¥), and sends (1*, pk) to A.
A has oracle access to PDecgy, and outputs messages mg, m; € M of the same length.
The challenger samples b <— {0, 1}, then computes ¢ <— PEncpi(ms), and sends ¢ to A.

A still has oracle access to PDecg, but cannot query PDecg(c). A now outputs a bit o'.

AN B Y

The output of the experiment is 1 if ¥’ = b, and 0 otherwise.

Informally, the adversary “wins the game” if he guesses correctly which of the two messages
was encrypted. Clearly, he can win with probability 1/2 by random guessing. The definition of
CCA-security formalizes the intuition that he should not be able to do better than that.

Definition 3.4 (CCA-secure public-key encryption). A public-key encryption scheme I1 =
(PGen, PEnc, PDec) is CCA-secure (i.e. secure against chosen-ciphertext attacks), if for all PPT
adversaries A, Pr[PubKEﬁ%(kz) =1] <1/2+ (k) for some negligible .

3.3 Non-malleable encryption

Non-malleable encryption was introduced by [DDNO0] in the computational setting, and ex-
tended to the information-theoretic setting by [HSHI02|. Informally, non-malleability requires
that given a ciphertext ¢, an adversary (who does not know the secret key or the message en-
crypted by ¢) cannot generate a different ciphertext ¢’ such that the respective messages are
related by some known relation R.

We begin with the simpler information-theoretic definition. Note that [HSHIO2| also give a
construction of perfectly non-malleable secret-key encryption.

Definition 3.5 (Perfect non-malleability). A secret-key encryption scheme ¥ = (SGen, SEnc, SDec)
is perfectly non-malleable if for all ¢,c/,c" € C such that ¢ # ¢ # " and all relations

R: MxM —{0,1},

/ /!
sk{_lgéen()[R(SDec(c),SDec(c ) =1] = Sm_lgéeno[R(SDec(c),SDec(c ) =1].

Observe that perfect non-malleability implies perfect security (but not vice versa).

The computational definition of non-malleability is more involved, using an indistinguisha-
bility experiment similar to that of the CCA-security definition. It formalizes the same idea, that
an attacker must be unable (with more than negligible advantage) to modify ciphertexts such
that the new decryption satisfies a known relation with the original decryption. The definition
of non-malleability for (public-key) encryption schemes is based on the following experiment.

The NM indistinguishability experiment PubKﬁ"vﬁ(k):
1. The challenger generates a key pair (pk, sk) < PGen(1¥) and sends (1%, pk) to A.

2. A has oracle access to PDecg, and outputs (a description of) an efficiently samplable distri-
bution M on the message space M (which must give non-zero probability only to strings of a
given length).




3. The challenger samples a message m <— M, and sends ciphertext ¢ = PEncp,(m) to A.

4. A still has oracle access to PDecgy, but cannot query PDecg(c). A outputs a ciphertext ¢/
and (a description of) an efficiently computable relation R : M x M — {0,1}.

5. The output of the experiment is 1 if ¢ # ¢ and R(m, PDecs(c’)) is true, and 0 otherwise.

Define PubKﬁ'\fﬁ(k) to be identical to PubKﬁ"\ﬁ(k), except that item 3 is replaced by:

3’. The challenger samples independent messages m,m < M, and sends ¢ = PEnc,;(m) to A.

Definition 3.6 (Computationally non-malleable encryption). A public-key encryption scheme
IT = (PGen, PEnc, PDec) is NM-CCA-secure (that is, non-malleable against chosen ciphertext
attacks), if for all PPT adversaries A there exists a negligible function negl such that

‘Pr[PubKﬁF{'T(k) — 1] — Pr[PubK\"5 (k) = 1]‘ < negl(k).

In our settingﬂ CCA-security is equivalent to computational non-malleability, as stated in
Claim For the proof, we refer the reader to [BDPR9S].

Claim 3.7. An encryption scheme is CCA-secure (Definition if and only if it satisfies
computational non-malleability (Definition @)

3.4 Secure multi-party computation

Consider N players, each with an input value z; for ¢ € N, who wish to jointly compute a
function f on their inputs: f(z1,- - ,zn) = (y1,...,yn). These players do not trust each
other: they want each player i to receive his output value y; at the end of the computation, but
they also want a guarantee that no player ¢ can learn any information beyond his designated
output y; (even if he “cheats”). Multi-party computation gives interactive N-party protocols
to solve this problem, with security and correctness guarantees even when some players may
maliciously deviate from the protocol.

Definition 3.8 (Secure multi-party computation). An N-party computation protocol is said to
be perfectly secure (for up tot < N corruptions) if it satisfies the following properties, against
any adversary who corrupts up tot playerﬂ:

e Correctness: The output of the computation is equal to f(x1, - ,zN).

e Privacy: No adversary can obtain any information about the honest parties’ inputs, other
than what can be deduced from the corrupted players’ input and output values {x;,y; }ics
(where S denotes the set of corrupt players).

The protocol is said to be computationally secure if it satisfies the above properties with all
but negligible probability (in a security parameter k) against PPT adversaries.

2When considering security notions other than CCA, standard indistinguishability-based security does not
imply non-malleability. In this work we only use CCA-secure schemes.
3The corrupted players may be thought of as “dishonest” players trying to sabotage the protocol.
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The following are general possibility results for multi-party computation that are relevant
to this work. For proofs, we refer the reader to the original papersE]

Theorem 3.9 ([BGWS88; (CCD88|). Any circuit can be evaluated by an N-party protocol with
perfect security against t < N/3 corruptions. Moreover, the bound of t < N/3 is tight.

Theorem 3.10 ([GMWS8T7; AL11|). Any circuit can be evaluated by an N-party protocol with
computational security against up to t = N — 1 corruptions.

An additional desirable property of multi-party computation protocols, other than correct-
ness and privacy, is guaranteed output delivery: the property that every honest (non-corrupt)
player is guaranteed to receive her correct output, even in the presence of an adversary. This
property is known to be achievable if and only if ¢ < N/2 (that is, a majority of the players are
honest) [GMWS8T; (Cle86].

3.5 Secret sharing

A secret sharing scheme specifies a method for a special party (the “dealer”) to share a secret s
among NN players so that only large enough subsets of players can reconstruct the secret value
s. The dealer gives privately a share s; to each player 7, so that any set of up to ¢ — 1 shares
contains no information about s; however, it can efficiently be reconstructed given any ¢ or more
shares. The formal definition is given below.

Definition 3.11 (Secret sharing scheme [Sha79]). A t-out-of-N secret sharing scheme is a pair
of algorithms (Share, Reconstruct) as follows. Share takes as input a secret value s and outputs
a set of shares S = {s1,...,sn} such that the following two properties hold.

e Correctness: For any subset 8" C S of size |S’| > t, it holds that Reconstruct(S’) = s, and

e Privacy: For any subset S" C S of size |S'| < t, it holds that H(s) = H(s|S"), where H
denotes the binary entropy function.

Reconstruct takes as input a (sub)set S” of shares and outputs:

1L oaf |9 <t

Reconstruct(S’) = '
econstruct(5') {5 if 39 st S'CS and Share(s) = S and |S'| >t

4 Cryptographically blinded games

Now we define “cryptographically blinded” games I'” whose actions are encryptions of the actions
of an underlying game I'. Payoffs from corresponding action profiles of I" and I are the same.
These blinded games will be an essential tool for our pre-play protocols, which will be detailed
in Section [l

The following supporting definition formalizes the intuitive notion that two strategic games
are equivalent up to renaming of actions or deletion of redundant actions.
Definition 4.1. For any strategic game I’ = (N, (A;), (u;)), a strategic gameI” = (N, (A}), (u}))
is said to be super-equivalent to I' if there ewist surjective renaming functions p; : A, —
A; such that for all i € N, for all af € Al,....dy € A, it holds that uj(a),...,dy) =
ui(pi(al),...,pn(ay)). In this case, we write " >, T.

“Dodis and Rabin [DRO7] provide and extended summary of the multi-party computation results with emphasis
on the use in the game theoretical context.
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Notation. For a renaming function p, let pi_l : A; — P(A]) be defined by pi_l(ai) =
{d}|p(a}) = a;}. To simplify notation, we define p : Ay x --- x Ay — A} x --- x A to be
plai,...,an) = (pi(ai),...,pn(an)), and let p~! be defined similarly. For a distribution +’ on
action profiles of TV, p(+’) denotes the distribution on action profiles of I that corresponds to
sampling a’ € A" according to 7/ and outputting p(a’).

Lemma 4.2. Let T be a strategic game. Then for any I with I >, T it holds that: (1) for any
coarse correlated equilibrium « of T, there exists a coarse correlated equilibrium o' of T such
that p(a’) = a; and (2) for any coarse correlated equilibrium o' of T”, p() is a coarse correlated
equilibrium of T'.

Proof. To show item (1), consider the distribution o on action profiles of I obtained by sam-
pling an action profile a from a and outputting a random a’ € p~!(a). Note that p(a/) = a by
construction. We need to show that for all i € N and all ] € A,
E [uj(d)] = E [uj(a],a ;)].
a’'<—a’ a’'<—a’
The above can be rewritten, due to the construction of o’ and definition of I', as Eqc p(o)[ui(a)] >
Eq«p(o)[ui(pi(aj),a—;)]. This holds for every p;(a;) € A; since a = p(a’) is a coarse correlated

equilibrium of T'. Ttem (2) follows similarly, since p(a’) is a distribution on action profiles of T’
and o is a coarse correlated equilibrium. ]

The interesting case of the seemingly straightforward definition of super-equivalence arises
when the renaming function p is not invertible by the players.

We now define cryptographically blinded games. Let I' = (N, (A;), (u;)) be a strategic game,
where players have oracle access to the utility functions wu;.

Definition 4.3 (Secret-key blinded game). Let ¥ = (SGen, SEnc,SDec) be a secret-key en-
cryption scheme, and let I' = (N, (4;), (u;)) be a strategic game. Define the blinded game
I = (N, (A)), (u;)') of T to be the game such that sk < SGen() is generated and

e for each player i € N the action space is A, = A; LI {SEncg(a;)|a; € A;}

o for each player i € N the utility for all ' € x jen A’ is uj(a’) = u;(a), where for all j € N

0 = OL;- ifa;EAj,
! SDecsi(a})  otherwise.

Definition 4.4 (Public-key blinded game). Let II = (PGen, PEnc,PDec) be a public-key en-
cryption scheme, and let T' = (N, (A;), (u;)) be a strategic game. Define the computational

blinded game T = {(N, (A;.(k)), (u;(k)»}keN of I' to be the computational game such that for
every security parameter k € N a corresponding key pair (pk, sk) < PGen(1%) is generated and

e for each player i € N the action space is A;(k) = {PEncyi(ai)|a; € As}

e for each player i € N the utility for all a’ € xieNAg(k) is ul-(k)(a’) = u;(PDecgi(a)).

)

If ' and T'* are blinded games of the game T', then we say that I' is the underlying game
of I'l and I'*.

Observe that the blinded games I''' and I'* are super-equivalent to the underlying game T,
with respect to renaming functions p = PDecg or p = SDecgy (respectively).
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Remark. In these contexts, players do not have knowledge of the secret key sk, as is standard
and necessary when employing encryption schemes. Therefore, expectations “from the point
of view of the player” are taken over a secret key sk < SGen() or (pk,sk) < PGen(1¥), where
secret- or public-key encryption schemes are used, respectively.

It is assumed to be infeasible for players of a game I' to efficiently compute the utility
functions u; on arbitrary action profiles in I'> or ', since they cannot (efficiently) decrypt
ciphertexts in the corresponding encryption schemes. However, our applications require players
to be able to pick actions in A} for which they know the corresponding expected utility. In
fact, if the players cannot do this, then the games become meaningless in that any distribution
on A is an equilibrium. In the public-key case, this property is achieved as players can simply
compute the encryption of some a; € A; for which the utility is known. In the secret-key case,
A; is contained in A} for exactly this purpose.

Security parameter for public-key games. Public-key blinded games have an implicit
security parameter k due to the underlying encryption scheme. When applying computational
equilibrium concepts (which have a security parameter k' of their own) to such games, there
must be a fixed relation between k£ and &’ in order to have a meaningful definition of security
for a computational equilibrium of a blinded game. In our setting, both parameters represent
the same quantity: the computational boundedness of the players of a game. Therefore, we let
k = k' and refer to a single security parameter k.

4.1 Correspondence of equilibria in blinded games

Lemma 4.5. Let ¥ = (SGen, SEnc, SDec) be a perfectly non-malleable and verifiably decryptable
secret-key encryption scheme. Then for any strategic game I', it holds that for any coarse
correlated equilibrium o of T' there exists a correlated equilibrium o of T> that achieves the
same utility profile as a.

Proof. Let o be the probability distribution on x;en A} that corresponds to sampling an
action profile a = (a1,...,an) € X;enA; according to a and outputting an action profile
a = ncsp(al), ... ncsk(an)), where sk is the secret key generate en. Note that «
"= (SE (a1),...,SE (an)), wh k is th t key g ted by SGen. Note that o
achieves the same utility profile as a by construction.

To show that such o’ constitutes a correlated equilibrium of I'*, we need to verify that the
conditions from Definition are satisfied, i.e. for every player ¢ and for all ¥}, a; € A it must
hold that

[wi(a")]a; = bi] > E [ui (a5, a”;)|a; = bj]. (1)
sk<+SGen(),a’ <o’ sk<+SGen(),a’+a’

Since ¥ is perfectly secure, it follows from Definition [3.3| that for any ag,a} € A,

[ui(a’)]a; = ap] = E [wi(a)|aj = a3].
sk<+SGen(),a’«+a’ sk<«SGen(),a’+a’

Thus, for any player 7, the expected utility from the distribution o’ is independent of the ad-
vice a;. Moreover, since the underlying encryption scheme is perfectly non-malleable (Definition
, no player i can generate (with any advantag@ a deviation a} satisfying R(a,a;) for any
known relation R. It follows that we need only to consider deviations a; that are independent
of the received advice a;. Therefore, equation [1| can be rewritten as the following: for every
player i and for all a; € A} independent of a,

[ui(a")] = E [uj(a5, a”;)],

sk«+SGen(),a’+a’ ’ T sk«SGen(),a’ o’

5 . . . . .
°More precisely, no player can generate such a deviation a; with more success than by random guessing.
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which holds because o is by Lemma a coarse correlated equilibrium of I'*. O

Lemma 4.6. Let II = (PGen, PEnc, PDec) be a CCA-secure public-key encryption scheme. Then
for any strategic game I', it holds that for any computational coarse correlated equilibrium o
of T there exists a computational correlated equilibrium o' of T that achieves the same utility
profile as «.

Proof. For each security parameter k € N, let (pk, sk) be the corresponding key pair generated
by PGen(1%). Consider the following probability ensemble o/ = {a/(®)},cn on {xjeNA;(k)}keN
that corresponds for each k € N to sampling an action profile a = (ai,...,an) € X;enA;
according to a®) and outputting an action profile a’ = (PEncyk(a1), ..., PEncy(an)). Note
that o/ achieves the same utility profile as a by construction.

Assume that o is not a computational correlated equilibrium of I'" (Definition , ie.
there exist a player ¢ € N, a PPT-samplable ensemble &) = {d;(k)}keN on {A;(k)}keN, and a
non-negligible function 6(-) such that for every k € N

E ™ ()] < E M (@, a,)] = 5(k). 2)
(pk,sk)+PGen(1%), (pk,sk)«+PGen(1F),
a/+a/ (k) a’ea’(m,d’ied;(k) (a})

We show that one can use such a deviation &, to construct a PPT adversary that contradicts
the computational non-malleability of the encryption scheme II (Definition .

Let A be the adversary that for each security parameter & € N behaves as follows. A receives
a public key pk from the challenger and sends back M = a%) as the message distribution. Upon
receiving the challenge ciphertext ¢ the adversary A samples ¢ + d;(k)(c) and sends ¢ to the
challenger together with the relation

R(b,b) =

o 1 wp. 5 (Boeamwlui(b,a_i)|a; = b] — Eqqm[ui(as, a_i)|a; = b] + 1),
0 otherwise.
We can assume without loss of generality that all the utilities of all the players in I" are between 0
and 1 (the corresponding linear transformation of the game matrix does not change the strategic
properties of the game), hence the above expression defining the probability that R(b, l;) holds
is between 0 and 1. Note that M is efficiently samplable and that the relation R is efficiently
computable.
Consider the success probability of A in the experiment PubKﬁ'}ﬁ(k:), ie.

Pr[PubK¥M (k) = 1] = Pr [a; # PEncgx(a;) A R(ai, PDecg(a;))]
’ (pk,sk)«+PGen(1F)
aa® 4! (PEnc,y (a;))

1 1K) A 1(k
-5( IR N TN A CO RRYE
(pk,sk)+PGen(1*), (pk,sk)+PGen(1*),
a’ea’(k),&;e&;(k)(ag) a/+a'(®)

Note that the scaling needed for relation R is done by some finite factor, since the game matrix
of I' does not depend on the security parameter k. Therefore, it follows from equation [2] that
this probability is larger than §’(k) for some non-negligible function §’(-).
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On the other hand, the success probability of A in the experiment PubKﬁ'}ﬁ&;(k), ie.

Pr{PubKE (k) = 1] = Pr 6, # PEncyg(a;) A R(d;, PDecgy ()]
’ (pk,sk)<«PGen(1F)

a,d—a®) &l ") (PEnc,y (a;))

1 1(k) /A 1(k
-5( W) - B )+,
(pk,sk)<«PGen(1%), (pk,sk)«PGen(1%),
a’(—a’“),&;ed;(k) a o' (F)

can be at most €(k) for some negligible function e. This follows from the fact that « is a
computational coarse correlated equilibrium, and no independent deviation can yield a non-
negligible improvement in expectation on the utility of any player i.

Putting the above two observations together we conclude that for some non-negligible §*(-)

Pr[PubKMy (k) = 1] — Pr[PubK'{i* (k) = 1]| > 6*(k),

a contradiction to computational non-malleability of II. O

4.2 What can I do with an encrypted action?

We employ blinded games as a tool to achieve equilibria in the underlying game. The pre-play
protocols in the next section will issue “advice” to the players as encrypted actions, that is,
actions in the blinded game. In this section we address how an action of the blinded game can
be “used” to take a corresponding action in the underlying game.

We return to the concept of verifiability of mediation, introduced in Section Since the
players do not know the secret key associated with a blinded game, they cannot decrypt an
encrypted action (and indeed, this is an essential property upon which the pre-play protocols
will depend). The players therefore invoke a third party who plays the underlying game on
their behalf. The third party will act in a way which can be publicly verified, so no trust
need be placed in him to perform actions correctly: if he misbehaves, then the misconduct will
be detected and he can be held accountable. This is in contrast to the usual idea of trusted
mediation for implementation of equilibria.

The importance of reducing the trust placed in mediators has long been recognized in the
literature, and the first formal definition of a verifiable but not trusted form of mediation was
given in [ILM11], which introduced the concept of verifiable mediator.

Definition 4.7 (Verifiable mediator [ILM11]). A verifiable mediator is a mediator which per-
forms all actions in a publicly verifiable way, and does not use any information that must be
kept secret.

We introduce the new concept of a verifiable proxy, which is used in our construction. Note
that the new concept is incomparable to the verifiable mediator of [ILM11].

Definition 4.8 (Verifiable proxy). A verifiable proxy is a mediator which performs all actions
i a publicly verifiable way, and does not give the players any information that affects their
strategic choices in the underlying strategic game.

In our setting, the (only) action that the verifiable proxy performs for the players is to
translate the action from an encrypted form to the original form. It is well known that decryption
can be done verifiably (see Appendix [B| for details). Importantly, the verifiable proxy acts
independently for each player: the correlation between players’ strategies is achieved by the
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players themselves with no external help, and the verifiable proxy acts simply as a proxy or
interface so that the players may use encrypted actions to play in the underlying game.

We believe that (in contrast to general trusted mediators), verifiable proxies are a very
realistic and mild requirement in many scenarios, since many games are already “set up” by
some entity (e.g. the stock exchange or an online games company), which could easily set up
instead a version of the game incorporating encrypted actions. Moreover, the impossibility result
of [HNR13| shows that without any mediation, even correlated equilibria cannot in general be
achieved by cheap talk: so some weak notion of mediation is necessary in order to bypass this
result and give useful correlated equilibrium implementations.

Example 4.9. More concretely, we provide a toy example involving the well-known “Battle of
the Sexes” game (Figure , where two friends are deciding on a joint activity, and they have
opposing preferences but would rather be together than apart:

Bach (B) Stravinsky (5)
Bach (B) 2,5 0,0
Stravinsky (.5) 0,0 52

Figure 1: “Battle of the Sexes” game

It is a correlated equilibrium to randomize over (B, B) and (S,S). In this scenario, the
“encrypted advice” could be an order to an online ticket vendor for either a Bach or Stravinsky
concert, encrypted under the public key of the vendor. The set-up assumption here would be
that the online vendor has published a public key and accepts encrypted orders. Since accepting
orders in a variety of formats desirable to customers is in the vendor’s interest, we consider this
to be a very feasible scenario.

Note that as this particular example is a correlated equilibrium, it is unnecessary to encrypt
advice (e.g. since the protocol of [DHRO00] applies). However, the example serves to illustrate
that verifiable translation can be a highly realistic and mild assumption.

5 Our Protocols

In this section we give cryptographic protocols (in the computational and information-theoretic
settings) that achieve the utility profile of any coarse correlated equilibrium.

5.1 Cryptographic cheap talk

Definition 5.1 (Cheap talk extension). For a strategic game T', the cheap talk extension r
1s defined as an extensive game consisting of a pre-play phase in which the players exchange
messages, followed by the play in the original strategic game. The communication is non-binding
(unlike in signaling games) in that it does not directly affect players’ utilities in the underlying
game, that is, players’ utilities in the cheap talk extension depend only on actions taken in the
strategic game. The cryptographic cheap talk extension is defined exactly like the cheap talk
extension, except that the players exchange messages during a polynomially bounded number of
rounds prior to the play in the original game T'.

We follow the pre-play paradigm of [Bar92|, where the mediator is replaced by “cheap talk”
communication prior to game play. We construct protocols to be run during pre-play, which
implement any (computational) coarse correlated equilibrium of blinded games as a (computa-
tional) Nash equilibrium of the (computational) cheap talk extension.
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5.2 Protocol for computationally bounded players

In this protocol, the players run a computationally secure multi-party computation to sample
an action profile from any computational correlated equilibrium of the blinded game.

Protocol 1. Implementing any computational correlated equilibrium o’ of T'™:

Let 1T = (PGen,PEnc,PDec) be a CCA-secure public-key encryption scheme and let
(pk, sk) + PGen(1¥) with pk known to all players. Communication is via broadcast.

1. The players run a computationally secure multi-party computation protocol (secure
against ¢ < N — 1 corruptions) to implement the function that samples an action
profile a’ «— o/, and outputs to each player ¢ his action al.

2. Every player takes a) as its action in T I

We show that rational computationally bounded players will follow the above protocol, so
they can use it to implement any computational correlated equilibrium. Then, by combining
the above with our results from Section 4] about correspondence of coarse correlated equilibria in
the underlying game and correlated equilibria in its blinded version, we obtain that the protocol
can moreover be used to implement any computational coarse correlated equilibrium.

Note that it is necessary to treat the two-player case somewhat differently from the case with
three or more players, because of the problem of guaranteed output delivery in the two-player
case (which was described in Section . We begin by presenting the simpler Theorem
which states that Protocol [I] can be directly used by three or more players to implement any
computational coarse correlated equilibrium. Then, we give Theorems and which show
that by running a slightly modified version of Protocol[l] it is possible for any number of players
to implement any computational coarse correlated equilibrium.

Theorem 5.2. Let IT = (PGen, PEnc, PDec) be a CCA-secure public-key encryption scheme, and
let T' be any finite strategic game with three or more players. For any computational coarse cor-
related equilibrium o of T', there exists a computational Nash equilibrium a of the computational

cheap talk extension Tl that achieves the same utility profile as .

Proof. Let o be the computational correlated equilibrium of ' from Lemma that achieves
the same utility profile as a. We show that using Protocolin order to implement o’ constitutes

a computational Nash equilibrium in the cryptographic cheap talk extension I'l. Note that it
is payoff-equivalent to « by construction.

By the privacy guarantee of the secure multi-party computation protocol, we have that no
player can learn any (non-negligible amount of) information that cannot be deduced from his
intended output in the first place, even if he deviates from the protocol arbitrarily. Moreover,
since there are three or more players and we consider only unilaterallﬂ deviations (as implied by
the definition of Nash equilibrium), the protocol has the property of guaranteed output deliverg,ﬂ

5That is, we only consider deviations from the protocol by a single (malicious) player, rather than by coalitions
of multiple colluding players.

"We remark that in fact, the slightly weaker property of fairness is sufficient: that is, the property that if any
player receives his output in the protocol, then every honest player will receive her correct output too. However,
in the settings we consider, the stronger property of guaranteed output delivery is known to hold, hence we refer
to the latter property in order to slightly simplify the proof.
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therefore, the deviation of any player ¢ cannot prevent any other player j from receiving her
correct output a;.

We have shown that for any player, there is no deviation during the protocol phase that
is profitable by more than negligible amount. Hence, we consider only the case where each
player i receives his correct output a. Since ¢ is, by Lemma a computational correlated
equilibrium of T, no player has an incentive to deviate from the prescribed advice, and thus
the players will play according to the sampled action profile a’. Therefore, to follow Protocol
is the computational Nash equilibrium & of I''I payoff-equivalent to «. O

5.2.1 Dealing with the two-player case

In the two-player case, the additional complication stems from the fact that in this setting we
do not have guaranteed output delivery: hence, it is necessary to consider that a player may be
incentivized to cause a protocol execution to terminate prematurely. In order to disincentivize
such behavior, we introduce an additional “punishment” condition to the protocol, as follows.

Protocol 2. Implementing any computational correlated equilibrium o’ of T'™:

Let IT = (PGen,PEnc,PDec) be a CCA-secure public-key encryption scheme and let
(pk, sk) + PGen(1¥) with pk known to all players. Communication is via broadcast.

e The players run Protocol[I]as long as no player is detected to deviate from the protocol.

e If any player i is detected to deviate from the protocol, then all (other) players adopt
the strategies (in T'!) corresponding to the worst Nash equilibrium o for player i.

Using Protocol |2| we obtain the following theorem that applies for any number of players.

Theorem 5.3. Let II = (PGen, PEnc,PDec) be a CCA-secure public-key encryption scheme,
and let I' be any finite strategic game. For any computational coarse correlated equilibrium o of
I" that for each player achieves at least as high utility as the worst Nash equilibrium, there exists

a computational Nash equilibrium & of the computational cheap talk extension 'l that achieves
the same utility profile as .

Proof. Let o/ be the computational correlated equilibrium of I''' from Lemma that achieves
the same utility profile as c. We show that using Protocol 2] in order to implement g\’/ constitutes

a computational Nash equilibrium in the cryptographic cheap talk extension I'l. For any
security parameter k, the following events may occur during the run of the protocol:

1. a player learns its advice before the other players;
2. a player deviates from the protocol and the deviation is detected by the other players; or
3. a player deviates from the protocol and it is unnoticed.

Addressing ([1)): it follows from CCA-security of the public-key encryption scheme II (Defini-
tion that each player is indifferent (up to a negligible improvement in utility) between any
advice he may receive, and thus gains no advantage from learning his advice first. In particular,
he has no incentive to abort the protocol and prevent others from learning their advice. Ad-
dressing : the expectation of any player i in the default Nash equilibrium o is at most the
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expectation of player 7 in a. Addressing : the security of the multi-party computation pro-
tocol ensures that players can cheat without being caught with at most negligible probability.
Thus, the increase in utility from any cheating strategy is at most negligible.

There is no deviation during the protocol phase profitable by more than negligible amount.
Consider the case that every player ¢ received his advice a. Since o' is, by Lemma a
computational correlated equilibrium of T''!, no player has an incentive to deviate from the
prescribed advice, and the players will play according to the sampled action profile a’. Therefore,

to follow Protocol [2|is the computational Nash equilibrium & of I'! payoff-equivalent to a. [

It is possible to eliminate the condition (from Theorem [5.3)) that the implemented coarse
correlated equilibrium does at least as well as the respective worst Nash equilibrium for each
player, thereby obtaining a yet more general theorem as follows.

Theorem 5.4. Let I = (PGen, PEnc,PDec) be a CCA-secure public-key encryption scheme,
and let I' be any finite strategic game. For any coarse correlated equilibrium o of I', there exists
a computational Nash equilibrium & of the computational cheap talk extension 'l that achieves
the same utility profile as .

The proof of Theorem makes use of another variant of Protocol [I] The details of this
variant protocol (Protocol |4)) are given in Appendix |C|along with the proof of the theorem.

We remark that Protocol |2/ has certain more desirable properties than Protocol [4;: in partic-
ular, Protocol 2 is free of empty threats, which ensures that Nash equilibria in the protocol are
stable even when players may change strategy adaptively during protocol execution (a formal
definition of empty threats may be found in Appendix @[) Ultimately, notwithstanding the
restriction on the class of achieved coarse correlated equilibria, we consider Theorem to be
the much stronger result compared to Theorem for the following reasons:

e all coarse correlated equilibria that players might rationally wish to implement by cheap
talk do dominate all Nash equilibria (otherwise, they could achieve a better payoff from
a Nash equilibrium without the hassle of a pre-play protocol); and

e unlike Protocol [d] Protocol [2]is free of empty threats; and

e the expected payoff even when the protocol is aborted and the default strategy invoked is
higher in Protocol 2] than in Protocol

Strategic equivalence. Lemma below, proves the strategic equivalence of the crypto-
graphic cheap talk extension I''! to the underlying game T

Lemma 5.5. Let II = (PGen, PEnc, PDec) be a CCA-secure public-key encryption scheme, and
let ' be any finite strategic game. For any computational Nash equilibrium a of the cryptographic
cheap talk extension T, there exists a computational coarse correlated equilibrium o of T’ that
achieves the same utility profile as a.

Proof. We show that the probability ensemble « induced by & on action profiles of I is a
computational coarse correlated equilibrium of T'.

Assume that « is not a computational coarse correlated equilibrium, i.e. there exists a player
i that has a pPpT-samplable unilateral deviation to « that improves his expectation for every
k € N by d(k) for some non-negligible §(-). However, such deviation can be used by player ¢
also against & to gain a non-negligible improvement in his expectation in I’ II " a contradiction
to the fact that & is a computational Nash equilibrium of I'!L ]
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Corollary 5.6. For any finite strategic game I, the cryptographic cheap talk extension T s

strategically equivalent to T, that is, for every Nash equilibrium & of I'>, there exists a coarse
correlated equilibrium of I' that achieves the same utility profile as &, and vice versa.

Proof. Follows immediately from Lemma and Theorem (or Theorem for the case of
three or more players). O

5.3 Protocol for computationally unbounded players

An alternative protocol using secret-key encryption implements all coarse correlated equilibria
— not just computational ones — for all strategic games with four or more players. As discussed
in Section (I} the condition of four or more players is unavoidable. In this (more traditional)
setting, the players are computationally unbounded.

Protocol 3. Implementing any correlated equilibrium o/ of I'*:

Let 3 = (SGen, SEnc, SDec) be a perfectly non-malleable and verifiably decryptable secret-
key encryption scheme and let sk <— SGen. Let each player i possess a distinct share sk;
of an (N — 1)-out-of-N secret-sharing {ski, ..., skn} of sk. Communication is via pairwise
channels.

1. The players run a perfectly secure multi-party computation to implement the function
that samples a profile @’ < o/, and outputs to each ¢ his action a}.

2. Every player takes a as its action in I'*.

Theorem 5.7. Let ¥ = (SGen, SEnc, SDec) be a perfectly non-malleable and verifiably decrypt-
able secret-key encryption scheme, and let I' be any finite strategic game with four or more
players. For any coarse correlated equilibrium o of I' there exists a Nash equilibrium o of the

cheap talk extension I'> that achieves the same utility profile as .

Proof. Let o/ be the correlated equilibrium of I'> from Lemmathat achieves the same utility
profile as a. We show that to follow Protocol |3|in order to implement o’ constitutes the Nash

equilibrium « in the cryptographic cheap talk extension I'* that achieves the same utility profile
as .

First note that since the players are using a perfectly secure protocol with output guarantee
(see Section [3.4]) to implement sampling from o/, no player can prevent the others from learning
their advice by a unilateral deviation during the multi-party computation phase. Moreover,
even if a single player ¢ withholds its share sk; the remaining players hold N — 1 shares of the
secret key sk that are sufficient to reconstruct the secret key and sample an action profile from
o'. Hence, any unilateral deviation does not influence the distribution on actions taken by the
other players. Assume that there exists a unilateral deviation for some player 7 in I'* that
allows him to gain a higher utility than by playing according to a. This contradicts o/ being a
correlated equilibrium of T'*, since it could be used as a unilateral profitable deviation against
o in T as well. O
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Strategic equivalence. Lemma 5.8 below, proves the strategic equivalence of the cheap talk
extension I'* to the underlying game T.

Lemma 5.8. Let ¥ = (SGen, SEnc, SDec) be a perfectly non-malleable and verifiably decryptable
secret-key encryption scheme, and let I' be any finite strategic game with four or more players.

For any Nash equilibrium & of the cheap talk extension T'*, there exists a coarse correlated
equilibrium o of I' that achieves the same utility profile as .

Proof. We show that the distribution « induced by & on action profiles of I is a coarse correlated
equilibrium of I'. Suppose « is not a coarse correlated equilibrium, i.e. there exists a player ¢ that
has a deviation to o which improves his expectation. However, such a deviation contradicts the
fact that & is a Nash equilibrium of I'>, since it is also a profitable unilateral deviation against
ain =, O

Corollary 5.9. For any game L', it holds that the cheap talk extension IS s strategically

equivalent to T, that is, for every Nash equilibrium & of I'>, there ewists a coarse correlated
equilibrium of T' that achieves the same utility profile as &, and vice versa.

Proof. Follows immediately from Theorem and Lemma [5.8 O

Sequential equilibrium. We also show that the equilibrium from Theorem [5.7]is a sequential
equilibrium (relevant formal definitions are given in Appendix |A)): informally, we show that by
following the prescribed strategy, the players are making optimal decisions at all points in the
game tree. Our proof relies on perfect security for multi-party computation protocols in the
presence of one actively corrupted and one passively corrupted party which can be achieved only
for six or more players (as shown by Fitzi, Hirt and Maurer [FHM98|, see Section . Hence,
the statement of the following theorem is less general than the statement of Theorem

Theorem 5.10. Let ¥ = (SGen,SEnc,SDec) be a perfectly non-malleable and verifiably de-
cryptable secret-key encryption scheme, and let I' be any finite strategic game with six or more
players. For any coarse correlated equilibrium « of I' there exists a sequential equilibrium (a, p)

of the cheap talk extension I'> that achieves the same utility profile as «.

Proof. We assume without loss of generality that the multi-party computation protocol has
the canonical structure where at each round a single player receives a message from one of the
other players (i.e. the information sets in the extensive game correspond to histories consistent
with the received message). Since there is at least six players, we can assume that multi-party
computation is secure in the presence of one static and one active corruption. Consider the
behavioral strategy profile a corresponding to following Protocol |3 at each history where a
player receives a message from some other player (in particular this corresponds to ignoring all
received messages after termination of the multi-party computation).

First, we specify the belief system p of players at any information set. The beliefs at any
information set on the equilibrium path are derived from the behavioral strategy & by Bayes’
rule, and for any information set I that lies off the equilibrium path (i.e. an information set
corresponding to receiving a message out of the scope of the protocol), let (1) be the uniform
distribution on all histories in I. To show that (&, 1) is a sequential equilibrium, we must show
that (o, p) is both sequentially rational and consistent.

Since & is a Nash equilibrium (as shown in Theorem , the behavioral strategy to follow
a is optimal for any information set on the equilibrium path. Hence, to conclude that (a, p)
is sequentially rational, we just need to show that « is also optimal off the equilibrium path,
given the beliefs of . Let I be an information set of player ¢ at some point off the equilibrium
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path that corresponds to receiving a message from player j. Note that even if j sends to i its
complete view of the protocol up to this point player ¢ cannot use such information to produce
a profitable deviation, since such deviation would imply an adversary corrupting actively player
i and statically player j able to break the perfect security of the multi-party computation
protocol. Now consider any history off the equilibrium path after the termination of the multi-
party computation, and assume that player ¢ receives the private advice of some other player.
There cannot exist a profitable deviation of player 4, since such a deviation would contradict
security of the secret key encryption scheme.

To show that (3, u) is consistent we use the “trembling-hand” approach. Consider the
sequence of assessments {(3(™), u()}2° | where each 3(™) assigns non-zero probability €™ to
all actions that are taken with zero probability in 5, such that e goes to zero as n — o0,
and the belief system p(™ is derived from 8™ using Bayes’ rule. First note that the sequence
{(B™) (™) oo, converges to (8, 1). The sequence of behavioral strategy profiles {ﬁ(”)}%o:l
converges to 3 by construction. Since x(™ is derived from 5 by the Bayes’ rule, u(™) converges
to p for every information set on the equilibrium path. For every information set I off the
equilibrium path, the distribution u(”)(I ) is equal to p(I). Finally, B™ is completely mixed for
all n, hence (3, 1) is consistent. O

5.4 Remarks on efficiency of multi-party computation

Computational setting. With recent advances in efficiency, computationally secure multi-
party computation protocols are now being considered for practical use in various settings.
Its first large-scale deployment was to compute market clearing prices for Danish sugar beet
contracts in 2008 [Bog+09|. Subsequent advances include [IPS09; DO10|. Indeed, numer-
ous multi-party computation implementations are available online, such as VIFF (viff.dk)
[IDGKNO9].

In the common “pre-processing model”, where pre-processing time is available before the
main computation, yet faster protocols are possible: [DPSZ12] achieves secure 3-party 64-bit
multiplication in 0.05 ms. This could be a very reasonable model when the same N players play
multiple or repeated games.

We note that there has been a line of work starting with [DHROO0|, on designing multi-
party computation protocols specifically for sampling from correlated equilibrium distributions.
However, these address the two-party setting, and have not taken into account the most recent
advances in general multi-party computation techniques, so we do not consider them to be of
great relevance here.

Perfect setting. In the perfect setting, known protocols are less efficient; and perfectly secure
encryption is relatively inefficient due to inherently large key sizes. Nonetheless, substantial
progress has been made: the best known protocol [BTHO8| achieves O(N) communication
complexity per multiplicationlf—]7 improving on previous protocols by Q(N?).

We consider our information-theoretic results to be of interest primarily as proofs of possibil-
ity, and a novel application of cryptographic techniques to game theory without computational
restrictions. Certainly, for efficiency in practice and strength of results, our computational
protocols are the ones of interest.

8The circuit that the parties want to compute is usually represented as addition and multiplication gates, and
the multiplication gates have been found to be the bottleneck for multi-party computation.
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6 Conclusion

In this work we use standard cryptographic tools — namely, encryption schemes — to introduce
the concept of blinded games: strategic games in which players take encrypted actions, and in
particular have the possibility to take actions they know nothing about. Moreover, we provide
cryptographic protocols that enable the players to not rely on trusted mediators in order to
achieve equilibrium payoffs.

Our approach suggest new interesting uses of cryptographic methods in game theory. We
show that our blinded games offer a viable and appealing alternative to solution concepts based
on commitment, and a particularly promising direction for future work is to apply the paradigm
of leveraging players’ lack of knowledge in order to avoid commitment, in broader settings.
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Appendix

A Extensive Games

Here we recall the standard definition of extensive games.

Definition A.1 (Extensive game). An extensive game I' = (N, H, P, A, Z, (u;)) is defined by:

e a finite set N of players,

e a set H of all possible history sequences (with the subset of all terminal histories denoted

by Z),

a player function P : H\ Z — N that assigns a player to every non-terminal history,

a function A that assigns to every non-terminal history h € H \ Z a finite set of actions

A(h) ={a: (h,a) € H} available to player P(h) at h,

for each player i € N, a partition Z; of {h € H : P(h) = i} such that A(h) = A(I)

whenever h and b’ are in the same I; € I;,

e for each player i € N, a utility function u; : Z — R,
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If the partition Z; is trivial and each I; € Z; contains a single history for every player ¢
then we say that the extensive game is with perfect information (i.e., every player is perfectly
informed of all actions taken by every other player). A strategy profile o of an extensive game
I" with perfect information specifies the actions of every player at every history, i.e., for every
h € H it specifies a probability distribution on A(h) for player i = P(h).

The solution concept relevant to this work in the context of extensive games with perfect
information is Nash equilibrium.

Definition A.2 (Nash equilibrium of extensive game). Let I' = (N, H, P, A, (u;)) be an exten-
siwe game with perfect information. We say that strategy profile o is a Nash equilibrium of I if
for every player i € N and for every strategy o) of player i:

E[ui(0)] > Elui(0j, 0-4)],

where the expectations are taken over terminal histories sampled from the corresponding strategy
profile.

Definition A.3 (Computational Nash equilibrium of extensive game). A computational Nash
equilibrium of extensive game I' = (N, H, P, A, (u;)) is a PPT-samplable family of strategy pro-
files {O'(k)}keN for T if for every player i € N and for every PPT-samplable strategy o) of player
i it holds for all large enough k that

Elui(0\”)] = Elui(0}, o)) - e(k),

where the expectations are taken over terminal histories sampled from the corresponding strategy
profile, and ¢ is a negligible function.

In extensive games with imperfect information, the players are not informed about all the
actions taken by their opponents. A profile of behavioral strategies specifies a probability distri-
butions on actions available to every player ¢ € N at every information set I; € Z;. The solution
concept of Nash equilibrium in behavioral strategies is defined similarly to Definition

When reasoning about Nash equilibrium in games with imperfect information we need to
take into account also the beliefs of players about the past play at any information set. This
gives rise to the notion of assessment.

Definition A.4 (Assessment). An assessment in an extensive game is a pair (5, p), where (3
is a profile of behavioral strategies and p is a funcion that assigns to every information set a
probability distribution on the histories in the information set.

The following solution concept aims to circumvent the instability of Nash equilibrium of
extensive games with imperfect information.

Definition A.5 (Sequential equilibrium). Let I' = (N, H, P, A,Z, (u;)) be an extensive game.
The assessment (3, 1) is a sequential equilibrium if it is

1. sequentially rational - for every i € N, for every information set I; € Z;, and every 3,
E(ui(8, p)|Li] = Elui((B-i, 57), w)|1i].
2. consistent - there exists a sequence {(ﬂ(”),u(”))};’f:l of assessments that converges to

(B, 1), B is completely mized for all n € N, and p™ is derived from 8™ by Bayes’
rule.
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B Verifiable Decryption

The following is the standard procedure for a prover to convince a verifier that he has correctly
decrypted a ciphertext. Upon decrypting, the prover obtains the un-encrypted action and the
randomness that was used during encryption, and presents the verifier with these two items.
Then the verifier can run the encryption algorithm for herself, and check that the resulting
ciphertexts are the same as the ones that they submitted for decryption. By the security of
the encryption scheme, it would be (computationally) infeasible for the prover to come up with
(decryption, randomness) pairs that pass this check, except by running the decryption algorithm
with the correct secret key. Hence, the verifier may be assured that the prover has decrypted
correctly.

Note that this verifiable decryption procedure requires that the encryption scheme, in addi-
tion to being secureﬂ has the following property, which is very common among existing schemes:

e Recoverable randomness. By running the decryption algorithm on a ciphertext ¢ = Enc(m)
with a correct secret key, the decryptor must be able to recover the randomness used for
encryption. More precisely, for any given keypair (pk, sk), we require that a decryptor
possessing a correct secret key can efficiently compute some randomness r that, when in-
putted along with the correct message to the encryption algorithm, outputs the ciphertext
in question, i.e. Encp,(m;r) = ¢; and moreover, the decryptor cannot (with non-negligible
probability) compute a randomness that, when inputted along with an incorrect message
m’ to the encryption algorithm, outputs the ciphertext in question, i.e. it is infeasible to
find 7’ such that Encpi(m';7’) = c.

We say that encryption schemes satisfying this property are verifiably decryptable.

C Implementation of Any CCE with Any Number of Players

Protocol 4. Implementing any computational correlated equilibrium o’ of T'™:

Let II = (PGen,PEnc,PDec) be a CCA-secure public-key encryption scheme and let
(pk, sk) < PGen(1¥) with pk known to all players. Communication is via broadcast.

e The players run Protocol[l|as long as no player is detected to deviate from the protocol.

e If any player i is detected to deviate from the protocol, then all (other) players adopt
joint min-max strategy (in I'") with the worst possible outcome for player 4.

Theorem Let IT = (PGen, PEnc, PDec) be a CCA-secure public-key encryption scheme,
and let I be any finite strategic game. For any coarse correlated equilibrium « of I', there
exists a computational Nash equilibrium & of the computational cheap talk extension I'l that
achieves the same utility profile as a.

Proof (sketch). The players run Protocol in which — by construction — adhering to the protocol
yields at least as much utility as deviation, for any given player. The full proof follows exactly
the same structure as the proof of Theorem 1 of [DHRO00], and we refer the reader to their paper
for details. O

9CPA security suffices.
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As discussed briefly in Section [5.2.1] implementation via Protocol [] has the disadvantage
(compared to Protocol [2) of empty threats: these are the subject of Appendix @

D Protocol [2|is Free of Empty Threats

We start with an informal definition and discussion of empty threats, then proceed to a full
definition and proof of empty-threat-freeness of Protocol 2]

Definition D.1 (Empty threat (informal)). An empty threat posed by a player in an extensive
game is a strategy of the threatening player at a history off the equilibrium path which is not
rational from his perspective. A threatened player can demonstrate the existence of such an
empty threat by taking a beneficial deviation that would make the threatening player refrain
from following through with the announced threat.

A consequence of empty threats in a Nash equilibrium is that a strategy profile containing
empty threats is not sequentially stable, that is, players that adapt their strategies during the
game would not follow such a strategy profile. One approach to avoid empty threats is to require
subgame perfect equilibrium. However, as addressed by |GLR10], there is no obvious way to
define subgame perfection in the computational setting. Therefore, we use the computational
solution concept of [GLR10| and show that Protocol |2 is free of empty threats.

Now, we give the definition of empty-threat-free Nash equilibrium in extensive games (cf.
[GLR10] for details and computational version). The definition uses the following notion of set
of continuations of a strategy profile at a given history. For a history h € H, a strategy o, and
a distribution 7 = 7(h) on A(h), let

Cont(h,o,7) = {7 : (m differs from o only on the subgame h)&(w(h) = 7(h))}.

Definition D.2 (Empty threat). Let I' = (N, H, P, A, (u);) be an extensive game, and let o be
a strategy profile. Then:

o For any history h € Z, no player faces an empty threat at h with respect to o.

e Player i faces an empty threat at history h € H \ Z with respect to o if i = P(h)
and there exists a distribution T = T(h) over A(h) that satisfies the following: for all
7 € Cont(h,o,7) and " € Cont(h,o,0) for which no player faces an empty threat at any
h' € H below h, it holds that

E[uz(ﬂ')] > E[’LL@(TFI)]

A strategy profile o is empty-threat-free on h if for all B # 0 satisfying (h,h') € H no player
faces an empty threat at (h,h') with respect to o.

Definition D.3 (Empty-threat-free Nash equilibrium). Let I' = (N, H, P, A, (u);) be an exten-
sive game. Strateqy profile o is an empty-threat-free Nash equilibrium if:

e 0 is a Nash equilibrium of I, and
e for any h € H\ Z, player P(h) does not face an empty threat at h with respect to o.

Remark. The above definitions readily apply to extensive games with n > 2 players, even
though they were originally intended for games with two players. As noted by [GLRI10], a
potential shortcoming of applying this definition in games with more than two players is that it
does not take into account collusions between players. However, we accept that the definition
addresses only unilateral deviations as is standard in Nash equilibrium.
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Theorem D.4. Let o be the computational Nash equilibrim@voff’\ﬁ from Theorem E Then

& is an empty-threat-free computational Nash equilibrium of T,

Proof (sketch). Recall that the computational Nash equilibrium « is payoff-equivalent to some
computational coarse correlated equilibrium « of T' (Theorem , and that « achieves at least
as high utility for each player i as his worst Nash equilibrium o’ of I to which the players
default in case any deviation of player ¢ is detected during the protocol phase.

For every security parameter k, we need to show that at any history no player is facing
an empty threat (see Definition , i.e. we need to show that there is no history h with a
deviation 7 such that every empty-threat-free continuation of 7 improves over every empty-
threat-free continuation of & at A by more than negligible amount.

It follows from Lemma, that the expectation of any player after receiving the encrypted
advice is the same as the expectation of playing & without knowing the advice. Thus, the
expectation from following the protocol is the same at any history of the cheap talk extension.

We will use the following claim that follows immediately from & being a computational Nash
equilibrium.

Claim D.5. Any deviation during the protocol phase that goes unnoticed can give the player at
most negligible advantage.

Since any observed deviation corresponds to a history in which players default to the Nash
equilibrium o, no player is facing an empty threat with respect to a at such histories, since o
is a Nash equilibrium.

By the definition of empty threat (Definition , no player is facing an empty threat at
the final round where players take simultaneous actions in the strategic game, and in particular
it is an empty-threat-free strategy to play according to the received advice a) at the terminal
history. By Claim any unobserved deviation in the protocol phase can yield at most
negligible improvement in player’s utility, thus we get by induction that to follow & is an
empty-threat-free continuation at any history.

Finally, Claim also gives that no continuation (in particular no empty-threat-free contin-
uation) of any deviation at any history h can improve by more than negligible amount over the
continuation induced at h by following a. Therefore, & is an empty-threat-free computational
Nash equilibrium of T'™. ]
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