
International Journal of Computer Applications (0975 – 8887)

Volume 20– No.1, April 2011

42

Simulation and Verification of Self Test 16-Bit Processor

Manoranjan Pradhan

Department of Electronics and Telecommunication Engineering,

VSS University of Technology, Burla, India

ABSTRACT

This paper presents the design and verification of 16 bit

processor. The Booth multiplier and restoring division are

integrated in to the ALU of the proposed processor. The

processor is described in structural level to verify the general

understanding of the system. The processor has 16-bit

instruction based on three different format R-format, I-format

and J-format. The control unit generates all the control signals

needed to control the coordination among the entire component

of the processor. All the modules in the design are coded in

VHDL (very high speed integrated circuit hardware description

language) to ease the description, verification, simulation and

hardware implementation. The design entry, synthesis, and

simulation of processor are done by using Xilinx ISE 10.1

software and implemented on XC2S200-6pq208 Spartan-II

FPGA device.

General Terms

Booth Algorithms, Restoring division Algorithm.

Keywords

Register transfer level, Reduced instruction set computer, Very

high speed integrated circuit hardware description language ,

Arithmetic logic unit, Field programmable gate array.

1. INTRODUCTION
The authors in [1] presented a design methodology of a single

clock cycle Processor using VHDL to ease the description,

verification, simulation and hardware realization. The RISC

processor has fixed-length of 32-bit instructions based on three

different formats: R-format, I-format and J-format, and 32-bit

general-purpose registers with memory word of 32-bit. The

processor is separated into five stages: instruction fetch,

instruction decode, execution, data memory and write back. The

control unit controls the operations performed in these stages.

All the modules in the design are coded in VHDL, as it is very

useful tool with its concept of concurrency to cope with the

parallelism of digital hardware. The authors in [2] proposed a

VHDL based rapid prototyping approach to simulate,

synthesize, and implement a prototype computer system using

commercial CAD tools, a Meta assembler, a C compiler, and

FPGAs in a hardware emulator. The use of VHDL for the design

and implementation of a CPU structure has been presented in

[3]. Initially the CPU is described at the behavioral level. This

description is used by the designer to verify the general

understanding of the system under design. This design phase is

followed by the actual design of the CPU. For this purpose, a

more detailed description of hardware is developed. This

description is at the dataflow level, and includes register and bus

structure details of the hardware.

The authors in [4] proposed a processor which can execute two

instruction sets simultaneously. The processor can execute

VLIW (very long instruction word) instruction set for

multimedia processing. Their processor is based on a VLIW

pipeline. The processor decodes either of the two instruction sets

in its corresponding front end. By these means, they have

successfully united the two processors of different purposes into

one specific processor. As a result, they have reduced hardware

cost, footprint, and power consumption to meet the rising

demands of portable media processing market. The authors in

[5] presented hardware architecture for a thread level parallel

processing processor which exploits the continuance concept

based on the dataflow model and evaluate the performance of

the processor.

The authors have proposed a graph theoretic model of pipelined

processors and develop a systematic approach to path delay fault

testing of such processor cores using the processor instruction

set in [6]. The proposed methodology generates test vectors

under the extracted architectural constraints. These test vectors

can be applied in functional mode of operation. Hence, self-test

becomes possible. Self-test in a functional mode can also be

used for online periodic testing. Their approach uses a graph

model for architectural constraint extraction and path

classification.

In this paper, we have been motivated to integrate Booth

multiplier and restoring division circuit in the design of 16-bit

processor for availing more advantages of flexibility.

2. DESIGN OF 16-BIT PROCESSOR
Usually, all classical design methods involve one or more PCBs

(printed circuit board) that contain many chips together with

other components. Development of these products starts with the

definition of the overall structure. After that the required

integrated circuits chips are selected followed by the PCBs that

house and connect the chips together are designed. Since the

complexity of circuits implemented on individual chips and on

the circuit boards is usually very high, it is very much essential

to make use of Xilinx software [7].

International Journal of Computer Applications (0975 – 8887)

Volume 20– No.1, April 2011

43

Fig.1. Design Method of proposed 16 bit processor

The design method of proposed 16 bit processor is shown in

Fig.1. FPGA devices are software configured and field

programmable. Hence, there is a significant cost saving in

design and productions. Design entry of the processor is carried

out by using VHDL code. Initial synthesis generates an initial

circuit, based on data entered during the design entry stage.

Functional simulation is done to verify the functionality of the

circuit, based on inputs provided by the designer. Logic

synthesis and optimization uses optimization techniques to

derive optimized circuits. Physical design determines how to

implement the optimized circuit in a FPGA chip. Timing

simulation determines the propagation delays that are expected

in the implemented circuit. Chip configuration configures the

actual chip to realize the designed circuit.

3. ARCHITECTURE
The architecture of proposed 16-bit Processor is shown in Fig.2

which consists of processor block and memory block

communicating through data bus, an address bus and a few

control lines [8-10]. The architecture of the 16-bit processor is

designed based on three 16-bit instruction formats R-format, I-

format and J-format. The design of this processor consists of 16-

bit instructions and 16-bit data path. The implementation of

processor performs fetch, decode, and execute operation. The

fetch stage obtains the requested instruction from memory. The

operation of the fetch stage starts when the program counter

(PC) a 16-bit register is sent out to fetch the instruction from

memory into the instruction register (IR) and the PC is

incremented to address the next sequential instruction. The IR is

used to hold the instruction needed on subsequent clock cycles.

Fig.2 Proposed 16-bit Processor Architecture

The processor's 16-bit registers are stored in 'register file' that

contains the register state of the machine. For R-format

instructions, there are three register operands. Two data words

are read from the register file and one data word is written into

the register file for each instruction. The register number inputs

are 4 bits wide to specify one of the 16 registers, whereas the

data input and two data output buses are each 16 bits wide.

When the instruction is fetched from the fetch stage, the

instruction's operation code is sent to the control unit. The

instruction's register address fields are used to address the two-

port register file. The two-port register performs two

independent reads and one write in one clock cycle .In the

decode stage, the instructions are decoded and the register file is

accessed to read the registers. The outputs of the general-

purpose registers are read into two registers, register 1 and

register 2. After the instructions decode stage, the execution

stage performs calculations.

3.1 Data path
There are 16 number of 16 bit registers in register file. So

Register file of data path consists of 4-bit address bus and 16-bit

data bus. This is a two port register file which can perform two

simultaneous read and one write operation. It contains sixteen

16-bit general purpose registers. The registers are named R0

through R15. When the Register Write signal is high, a write

operation is performed to the register indicated by the write

address, otherwise it outputs the value contained in the register

indicated by the read address. The ALU is responsible for all

arithmetic and logic operations that take place within the

processor. These operations can have one operand or two, with

these values coming from either the register file or from the

immediate value from the instruction directly. The output of the

ALU goes either to the memory (in the case where the output is

an address) or through a multiplexer back to the register file.

The ALU has two 16-bit data inputs for two operands and 16-bit

output for result. It can perform Booth multiplication, restoring

division, addition and subtraction functions. The small

multiplexer of the data path has three 16-bit inputs and one 16-

bit output. It selects one of the 16-bit inputs and sends to the

DESIGN ENTRY

SYNTHESIS

PHYSICAL DESIGN

TIMING SIMULATION

CHIP CONFIGURATION

CONTROLLER

PROGRAM

COUNTER

INSTRUCTION

RESISTERR

ALU

RESISTER FILE

MEMORY

CONTROL UNIT DATA PATH

International Journal of Computer Applications (0975 – 8887)

Volume 20– No.1, April 2011

44

output depending on the condition of two-bit multiplexer select

signal.

The multiplier unit has two inputs and one output. The internal

structure consists of four units namely Booth Encoder, Partial

Product generator, Carry Save Adder, and Carry Look Ahead

Adder. The top design of Booth Encoder has one input and three

outputs. The Booth Encoder generates the booth codes to encode

the multiplicand into the partial products. The outputs of the

Booth Encoder are fed to the inputs of the partial product

generator (PPG) module. The PPG module reads the booth code

signals generated from the Booth Encoder to encode the

multiplicand into the partial products. The outputs of the partial

product generators are taken as the inputs of the Wallace tree.

The Wallace tree uses the 3 to 2 carry save adder to implement

the Wallace tree. The outputs of the Wallace tree are fed to the

inputs of the Carry Look Ahead (CLA) adder. The CLA is used

to perform the addition of the final sum and carry vector. After

implementing all the four components of the fast multiplier unit,

the desired multiplication result is obtained.

In restoring division, the divisor is positioned appropriately with

respect to the dividend. Then the divisor is subtracted from the

dividend. If the remainder is zero or positive, a quotient bit of

‘1’ is determined. The remainder is extended by another bit of

the dividend and the divisor is repositioned and another

subtraction is performed. If the remainder is negative, a quotient

bit of ‘0’ is determined and the dividend is restored by adding

back the divisor. Then the divisor is repositioned for another

subtraction.

3.2 Control unit
Control unit composed of controller, program counter,

instruction register, and multiplexer. The controller provides the

necessary signal interaction to make the data flow through the

processor and perform expected function. The 16-bit program

counter indicates the address of the next location where the next

instruction is to be fetched. It has 16-bit program counter input,

16-bit program counter output, and some control signals like

read, write, and clear. The Program Counter (PC) contains the

address of the instruction that will be fetched from the

Instruction Memory during the next clock cycle. Normally the

PC is incremented by one during each clock cycle unless a

branch instruction is executed. When a branch instruction is

encountered, the PC is incremented or decremented by the

amount indicated by the branch offset. The instruction register

(IR) has one 16-bit input and two 16-bit outputs. The instruction

set describes the bit-configurations allowed in the IR .The

instruction consists of operation codes and operand. The

processor support direct, register, registers indirect and

immediate addressing modes. In immediate addressing; the

operand field contains the data itself. In registers addressing, the

operand field contains the address of a data path register in

which the data resides. In registers indirect addressing, the

operand field contains the address of a register, which in turn

contains the address of a memory location in which the data

resides. In direct addressing, the operand field contains the

address of a memory location in which the data resides. In

indirect addressing, the operand field contains the address of a

memory location, which in turn contains the address of a

memory location in which the data resides.

Memories are used for storage of both instructions and data. The

process of storing data into memory is called writing and

retrieving data or operation codes from the memory is called

reading. For reading and writing data, the particular memory

location is identified and then reading or writing is done. There

are 256 number of 16-bit memory locations. It has 8-bit address

and 16-bit word.

4. SIMULATION AND DISCUSSION
We have synthesized and simulated the VHDL code of the

proposed processor using Xilinx Integrated Software

Environment tool (Version 10.1). The synthesis results and

simulation results of processor are presented for justification.

The proposed 16 bit RISC processor is coded with VHDL (very

high speed integrated circuit hardware description language).

Using Xilinx ISE 10.1 software the code is tested and checked

for error. When there is no error, the code is synthesized and

simulated using Xilinx ISE 10.1 software. The synthesis and

simulation results are compared with the theoretical results.

Before the start of simulation, the memory is loaded by writing

the instructions and data into the memory. The completed

processor with memory is tested for addition, subtraction,

multiplication, and division program. When the VHDL code is

100% synthesized, and then the code is downloaded to the

Spartan FPGA device. After downloading the code, the

functionality of 16 bit RISC processor is compared with

theoretical result.

Fig.3. Simulation of proposed 16 bit processor

The simulation result of the proposed 16 bit RISC processor is

shown in Fig.4. The two input 16 bit operand to the processor

are 7 and 5.They can be either in register location, memory

location, or given as immediate values. The two 16 bit outputs

from processor are cpu_out (15:0) and memory_add (15:0).The

cpu_out (15:0) and memory_add (15:0) represent arithmetic

logic unit result and memory address respectively. Initially ‘7’

decimal equivalent of 16 bit operand is copied into register

address R1.Similarly ‘5’ is copied into register address R2.The

contents of R1 that is 7 is copied in memory address

‘19’.Similarly contents of R2 is stored in memory address ‘20’.

Now ‘7’ contents of R1 is added with ‘5’ contents of R2 to

produce result ‘12’ and is stored in R1.The addition result in R1

is copied in memory address ‘21’. Similarly ‘5’ contents of R2 is

subtracted from ‘12’ modified contents of R1 to produce result

‘7’ and is stored in R1.The subtraction result in R1 is copied in

memory address ‘22’. Likewise ‘7’ modified contents of R1 is

multiplied with ‘5’ contents of R2 to produce result ‘35’ and is

International Journal of Computer Applications (0975 – 8887)

Volume 20– No.1, April 2011

45

stored in R1.The multiplication result in R1 is copied in memory

address ‘23’. Then ‘35’ modified contents of R1 is divided with

‘5’ contents of R2 to produce result ‘12’ and is stored in R1.The

division result in R1 is copied in memory address ‘24’.

5. CONCLUSION
We tested our processor architecture by running addition,

subtraction, booth multiplication, and restoring division

programs created using Xilinx Software. We have compared the

simulated output results with the expected results. From

synthesis report, the minimum clock period that can be achieved

in this proposed architecture is 31.641 ns (31.605 MHz). The

booth multiplier unit is tested and the functionality is found

correct. Similarly, the functionality of restoring division circuit

is tested and found correct. Finally, the performance of the

processor is tested for addition, subtraction, booth

multiplication, and restoring division programs and the

functionality is found correct.

6. ACKNOWLEDGMENTS
Our thanks to the experts who have contributed towards

development of the template.

7. REFERENCES
[1] Mamun B., Shabiul I. and Sulaiman S. 2002. A Single

Clock Cycle MIPS RISC Processor Design using VHDL.
Penang, Malaysia, pp.199- 203, 2002.

[2] Hamblen J. Using Synthesis, Simulation, and Hardware

Emulation to Prototype a Pipelined RISC Computer
System. Atlanta, Georgia.

[3] Zainalabedin N. Using VHDL for Modeling and Design of
Processing Units. Pp.315- 326, Boston, Massachusetts.

[4] Outline of OROCHI. 2007. A Multiple Instruction Set

Executable SMT Processor., International Workshop on

Innovative Architecture for Future generation Processors
and Systems.

[5] Takanori M., Satoshi A., and Masaaki I. 2005. A Multi-

thread Processor Architecture Based on the Continuation

Model. Proceedings of the Innovative Architecture for

Future Generation High-Performance Processors and
Systems. Kasuga-Koen, Kasuga, Fukuoka,Japan.

[6] Virendra S. and Michiko I. 2006. Instruction-Based Self-

Testing of Delay Faults in Pipelined Processors., IEEE
Transaction on VLSI systems, vol. 14, no.11,pp.1203-1215.

[7] Hamacher V. and Zaky. 2002. Computer Organization.

McGraw-Hill Companies, New York, 5th edition.

[8] Frank V. and Tony G. 1999. Embedded System Design, A

Unified Hardware/Software Approach., Department of

Computer Science and Engineering University of
California, Draft version.

[9] Patterson A. and Hennessy J. 1999. Computer Organization
& Design., Morgan Kaufmann Publishers.

[10] Weijun Z. 2001. VHDL Tutorial, Learn by Example.

[11] Data sheet of Spartan-II 2.5 FPGA Family. 2003. XILINX,
DS001-2 (V2.2).

