Autonomy and Machine Intelligence in Complex Systems: A Tutorial

Kyriakos G. Vamvoudakis®, Member IEEE, Panos J. Antsaklis?, Fellow IEEE,
Warren E. Dixon®, Senior Member IEEE, Jodo P. Hespanhal, Fellow IEEE, Frank L. Lewis?, Fellow IEEE,
Hamidreza Modares*, Student Member IEEE, Bahare Kiumarsi*, Student Member IEEE

Abstract— This tutorial paper will discuss the development
of novel state-of-the-art control approaches and theory for com-
plex systems based on machine intelligence in order to enable
full autonomy. Given the presence of modeling uncertainties, the
unavailability of the model, the possibility of cooperative/non-
cooperative goals and malicious attacks compromising the secu-
rity of teams of complex systems, there is a need for approaches
that respond to situations not programmed or anticipated in
design. Unfortunately, existing schemes for complex systems do
not take into account recent advances of machine intelligence.
We shall discuss on how to be inspired by the human brain
and combine interdisciplinary ideas from different fields, i.e.
computational intelligence, game theory, control theory, and
information theory to develop new self-configuring algorithms
for decision and control given the unavailability of model,
the presence of enemy components and the possibility of
network attacks. Due to the adaptive nature of the algorithms,
the complex systems will be capable of breaking or splitting
into parts that are themselves autonomous and resilient. The
algorithms discussed will be characterized by strong abilities of
learning and adaptivity. As a result, the complex systems will
be fully autonomous, and tolerant to communication failures.

Index Terms— Autonomy, cyber-physical systems, complex
systems, networks, machine intelligence.

I. INTRODUCTION

Autonomous systems have been studied for many years
with the hope of achieving human-like performance in solv-
ing certain problems. There has been a recent resurgence in
the field of machine intelligence and autonomy owing to the
introduction of new topologies, training algorithms and VLSI
implementation techniques. The potential benefits of intelli-
gent systems such as parallel distributed processing, high
computation rates, fault tolerance and adaptive capability,
have lured researchers from different fields to seek solution
to their complicated problems. Autonomy is a capability that
enables a particular action of a system to be automatic or,
within programmed boundaries, i.e. “self-governing”.

1K. G. Vamvoudakis, and J. P. Hespanha are with the Center for Control,
Dynamical-systems and Computation (CCDC), University of California,
Santa Barbara, CA 93106-9560 USA, e-mail: kyriakos@ece.ucsb.edu, hes-
panha@ece.ucsb.edu. This material is based upon work supported by ARO
MURI Grant number W911NF0910553.

2P, J. Antsaklis is with the Electrical Engineering Department, University
of Notre Dame, Notre Dame, IN 46556, USA, e-mail:antsaklis.1 @nd.edu.

3W. E. Dixon is with the Department of Mechanical and Aerospace
Engineering, University of Florida, Gainesville, FL 32611, USA, e-mail:
wdixon@ufl.edu.

4F. L. Lewis, H. Modares, B. Kiumarsi are with The University of Texas
at Arlington Research Institute (UTARI), Ft. Worth, TX 76118, USA, e-mail:
lewis @uta.edu, modares @uta.edu,kiumarsi@uta.edu. This material is based
upon work supported by NSF grant ECCS-1405173, ONR grant N00014-13-
1-0562, ARO grant WO911NF-11-D-0001, China NNSF grant 61120106011,
and China Education Ministry Project 111 (No.B08015).

Decentralization, uncertainty and complexity are several
issues that cannot be handled with classical control methods.
The power of adaptation and machine intelligence, is the
underlying foundation of autonomous technology in order
to enable manpower efficiencies, rapid response in harsh
environments and enable capabilities beyond human limits
and across operational domains. There is a need to integrate
human cognitive models to advance human-agent feedback
loops, optimize trust/transparency and advance data decision
models. Furthermore, networks of autonomous complex sys-
tems must have secure communication protocols while their
operators expand shared perception and problem solving
across multiple agents and advance guidance and control.
Complex systems consisting of cooperating/non-cooperating,
humans and manned/unmanned airborne or ground vehicles,
and their interactions and structure of group communication
protocols, can yield unexpected behaviors.

Cyber-physical systems (CPS) have received much atten-
tion due to their integration and potential application in a
variety of systems such as biological models (e.g. infectious
diseases) [76] and social networks [10], [65], human/robot
interaction systems [41], Internet [26], transportation systems
[45], cyber-security (e.g. malware spreading) [2], [33], [70],
[73], [82], [83], unmanned aerial/underwater vehicles [30],
sensor networks [63], power networks [80] and mobile
robotics [69]. Those systems are large, complex, dynamic,
and highly nonlinear in their global behavior.

Synchronization of all the subsystems interacting through
a communication network, to a leader behavior has been the
main subject of consensus and distributed control algorithms
[19], [37], [62], [68] since the work of [81]. The afore-
mentioned results mostly focus on interacting multi-agent
systems with only single or double-integrator dynamics,
while most of the real applications have general dynamics
that are difficult to model [11], [32].

Due to the highly uncertain and dynamic nature of con-
flict, enabling autonomous agents to gracefully adapt to
mission and environmental changes is a very challenging
task. These capabilities are necessary against insurgencies,
where enemy combatants quickly adapt to new strategies
and tactics. Full autonomy will enable mission tailoring,
reconfigurability of the control to allow for safe recovery,
improved responsiveness and agility, the ability to change
missions without exchanging forces, and general adaptability
to changing environmental conditions. The ability to syn-
chronize activities between humans and machines, provides
an important strategic capability. Teams of humans and

autonomous robots, have common team objectives as well
as individual and adversarial member objectives.

The balance between cooperative goals and adversarial
behavior forms the basis for team and individual decisions
in order to integrate intelligent machines with humans to
maximize mission performance in complex and contested
environments.

Large complex systems [22], [26], [29], [52], [61], [77]
that model the interactions in autonomous systems, are
subject to exhaustive modeling, rely on specific network
structure and offline computations and are fragile to inten-
tional attacks and purposeful removals of important nodes,
hence robustness to uncertainties, random attacks and ran-
dom failures is an important aspect. There is a need to
draw inspiration from recent neuro-physiological studies
of the perception mechanism of the human brain and the
processing pathways of the visual cortex to control complex
systems. Machine learning [79] ideas are being used as
an essential component to address problems in multi-agent
systems with diverse and selfish interests, traditional algo-
rithmic and distributed systems need to be combined with
the understanding of game-theoretic and economic issues
[74]. A lot of applications require cooperation of separate
agents to achieve global objectives and learning is an ideal
approach in the cases where classical optimization techniques
are infeasible [84]. A very good book describing the state of
decision algorithms in complex systems is given in [56].

In networked systems, an agent affects the agents who are
close enough to her. Using a distributed machine learning
approach by allowing agents to exchange what they have
learned, by sparse communication, the team does better
in terms of achieving its goals. However, as these agents
respond by adapting their behavior, more agents will feel
the consequences and eventually the choices made by a
single agent will propagate throughout the entire network
community. It has been shown that in order to combine the
advantages of adaptation through performance improvement,
one has to rely on ideas from an area of machine learning that
is called reinforcement learning [79]. Recently approximate
dynamic programming [16], [66], [88], [94] and game-theory
[12] has been shown to be a powerful tool to solve multi-
agent reinforcement learning problems in an adaptive way
forward in time while simultaneously guaranteeing optimal
performances, [15], [88]. The importance of learning algo-
rithms in real applications has been shown in [1] that pro-
poses applied apprenticeship learning algorithms for learning
control policies to helicopters flying in a very wide range of
highly aerobatics with a performance as close as to a human
expert pilot. There is an extensive research on complex sys-
tems coordination from several scientific societies including
control systems society [55] and computational intelligence
society [91]. The main disadvantages of most of the existing
work though is that it requires complete knowledge of the
system dynamics and in most of the cases cannot provide
any formal optimality guarantees. Two recent surveys are
given in [19] and [15] from the control system and from the
computational intelligence perspective respectively, where

the authors state that distributed multi-agent optimization is
a challenging task due to computational complexity issues
and modeling unavailability.

A survey of existing cyber-threats in multi-agent systems
and models of realistic and rational adversary models are
presented in [17] and [18]. Consensus in the presence of
persistent adversaries has been focused on detecting, identi-
fying and isolating the failing nodes [64]. These algorithms
are computationally expensive and most of the time they
use global information and specific graph connectivity. The
adversaries can easily drive the system unstable and make
the system operate with an undesired behavior. Thus it is
better to fight adversaries in the networks than guard against
them. Most of the cooperative algorithms proposed in the
literature either are not optimizing some performance criteria
[49] or they optimize global ones and solve the problem
offline with complicated Riccati matrix equations [71], [72].
The authors in [13] have evaluated the cost of every agent
by considering constant states for the other agents. In [93]
the authors propose a controller that suppresses the effect of
constant and time varying disturbances by using information
of agent’s and neighbors’ states. In [95] the authors pro-
pose a distributed resilient formation control algorithm that
consists of a formation control block that is adapted online
to minimize a local formation error function and an online
learning block to collect information in real time and update
the estimates of adversaries. The discussion in [34] states
the attack vulnerability of the US electrical grid and how
important is to focus on the development of intelligent and
robust resilient algorithms.

Structure

The remainder of the tutorial paper is structured as follows.
In Section 2 we provide the needed properties to make a
system fully autonomous. The properties are presented with
connections to CPS. Section 3 presents a unified frame-
work to design optimal trackers and regulators for fully au-
tonomous systems based on reinforcement learning. Section
4 builds upon the ideas in the previous two sections and
uses Q-learning based techniques to design model-free opti-
mization approaches to build autonomous complex networks.
The algorithms proposed are resilient and robust while
guaranteeing an optimal performance. Section 5 presents
real experiments of using machine intelligence to build
completely autonomous systems. Specifically it presents an
experiment, of an optimal path planning algorithm with a
Turtlebot. Finally Section 6 concludes and proposes new
future directions.

II. THE QUEST FOR AUTONOMY. ARE WE THERE YET?
ARE CPS A WAY TO BUILD AUTONOMOUS SYSTEMS?

Achieving autonomy has been a dream for many years.
The term autonomous system has had different meanings
depending on who and when it was used. Attempts to
build autonomous vehicles by major corporations and grand
challenges by government funding agencies have captured
the public’s imagination. How much closer to this dream are

we today than we were 25 years ago? The issues surrounding
autonomy together with the needed properties that make a
system autonomous are briefly discussed and put in context.

A. Introduction to Autonomous Systems and Autonomous
Controllers

Systems with ever increasing degrees of autonomy are
more prevalent and important today than ever before. Well
known examples include Unmanned Aerial Vehicles (UAV),
Autonomous Underwater Vehicles (AUV), office and res-
idential buildings that regulate their energy consumption
while adapting to the needs of their inhabitants (smart build-
ings), safety systems and environmentally friendly energy
systems in automobiles (smart cars, smart highways). The
trend towards increased autonomy has been around for cen-
turies. The recent surge is fueled primarily by technological
leaps in hardware and software and successes in integrating
tightly the physical and computer worlds, as in the CPS.
The recent successes in increasing autonomy in engineering
systems are only the beginning of many more to come.

Characteristics that are necessary for high degrees or
high levels of autonomy-yes there are levels or degrees
of autonomy-are emphasized here. As it will be noted,
adaptation and learning, failure diagnosis and identification,
control reconfiguration and planning are some of these
characteristics.

When one considers humans collaborating with engineered
systems, then the overall system that includes humans in the
loop may be considered (fully) autonomous with respect to
a set of goals. Depending on the role of the humans in the
loop and the level of control authority humans exert, the
remaining system, the part without the human operator, will
have different degrees or levels of autonomy. These ideas are
discussed here. It is important to point out that in our dis-
cussion of autonomy, the system under consideration always
has a set of goals to be achieved and a control mechanism
to achieve them. So in our view, every autonomous system
is a control system. It is useful to think of a system as being
surrounded by a boundary separating it from its environment.
The system acts upon its environment through its outputs
and receives inputs in the form of additional information or
disturbances. What the system includes within its boundary,
expressed via the particular system model used, depends of
course on the goals and the characteristics/properties used to
achieve its goals. It is useful to assume as a starting point that
the system may also include a human operator who acts as a
highly able controller. So in an automobile, if the goal is for
example to keep the vehicle inside a lane while traveling with
constant speed, the system may consist of the vehicle and
the driver where the system attains its goals in the presence
of uncertainties/disturbances, such as gust of wind and road
incline.

One can envision an autonomous system consisting of
two subsystems, a (sub-)system to be controlled (the plant,
as it is called in the control literature) and a controller to
be designed. Note that this separation of the plant and the
controller, which is common in the field of control systems

theory, may be somewhat restrictive in autonomous systems,
as the assumption that one can separate the plant from the
controller may not necessarily be true or easy to satisfy in
some cases. However it is a useful concept and it is used
here. The controller may include a human in the loop in
which case it may achieve full autonomy and we will call
such controller autonomous controller (meaning that such
controller is in itself an autonomous system with respect
to a new set of goals, that of providing the right kind or
control policies to the plant; or alternatively, a controller will
be called an autonomous controller if it causes the system
to become autonomous). The controller may achieve only
partial autonomy with or without the human in the loop
(meaning that it may need extra help from humans or other
systems to attain full autonomy), in which case we will
call such controller, controller with high or low degree of
autonomy (or a sub- or a semi-autonomous controller). An
example of an autonomous controller in an automobile is the
system consisting of the human driver and all the control
systems in the car with the plant being the vehicle and the
goals of the autonomous controller being to provide the right
steering and gas pedal commands so the vehicle maintains its
course within a lane and at certain (approximately) constant
speed. If one considers in this case the controller to consist
of just the control systems of the car without the driver then
the controller is not autonomous but semi-autonomous.

Here we present a view of autonomous systems and
autonomous controllers which is based on the report [3]
and earlier work [4]- [6]. One of the issues in the quoted
literature was the connection to and the meaning of the term
“Intelligent Control”. In [7] for example several definitions
of Intelligent Control were presented. The difficulty was,
and still is, the fact that what constitutes intelligence is
not universally agreed upon (today the IQ tests are still
controversial and are not widely used around the world)
and the issue is still debated, as there are many different
strong views. However, throughout [3]- [7] the main point
that was consistently made was that autonomy should be the
property of main interest and if for high degrees of autonomy
methods that are considered intelligent are used then the
name Intelligent Control may be justified. The expression
“Quest for Autonomy” makes this exact point that autonomy
is the property of interest, while the term Intelligent describes
in a eye catching way the methodologies used, not unlike
today’s term “Smart” which is used in many applications,
such as Smart Grid, Smart Phones, Smart Buildings etc. So
autonomy is the goal!

B. Autonomous Systems and Autonomous Controllers

It is important to stress again that in our discussion of
autonomy, the system under consideration always has a set
of goals to be achieved and a control mechanism, a controller,
to achieve them. This implies that every autonomous system
is a control system.

Autonomous means having the ability and authority for
self-government. A system is autonomous with regard to
a set of goals, and with respect to a set of influences

seen as disturbances (by humans or other systems), if
the goals are attained under these disturbances without
external interventions. A regular feedback control system
for example is autonomous with regard to stability goals and
with respect to certain level of external and internal distur-
bances. This is because stability is maintained even when
there are internal system parameter variations and external
disturbances. This robustness is due to feedback closed-
loop mechanism that compensates for uncertainties; on the
other hand, an open-loop system with feed-forward control
has none of these robustness properties and no autonomy
regarding stability with respect to parameter variations and
disturbances.

Alternatively, a perhaps more useful working definition
of an autonomous system is that a system has high or low
degree or level of autonomy regarding a goal. By high
degree/level of autonomy it is meant that the degree/level
of human intervention (or perhaps intervention by other
engineered systems) is low, while by low degree/level of
autonomy, a high degree/level of human intervention is
implied.

Human in the Loop and Adaptive Autonomy: Humans
or other systems may insert themselves at certain levels
of the functional hierarchy [3] that correspond to levels of
autonomy), and take over control functions. For example,
humans may insert themselves to take over planning, FDI,
learning functions Or they may insert themselves to take
over lower control functions e.g. a driver may want to take
over from the ABS system and perform the braking pumping
action herself. As mentioned above, this reference to levels
connects with the hierarchical functional architecture for the
autonomous controller discussed later in this paper.

Autonomous controllers have the ability and authority
for self-governance in the performance of control functions.
They are composed of a collection of hardware and software,
which can perform the necessary control functions, without
external intervention, over extended time periods. Note that
a controller will be called autonomous controller when its
functions make the system of interest an autonomous system.
Alternatively, an autonomous controller can be seen itself
as an autonomous system with goals to apply appropriate
controls that make the system of interest autonomous.

There are several degrees or levels of autonomy. A fully
autonomous controller should perhaps have the ability to
perform even hardware repair, if one of its components fails.
Note that conventional fixed controllers can be considered to
have a low degree of autonomy since they can only tolerate
a restricted class of plant parameter variations and distur-
bances. To achieve a high degree of autonomy, the controller
must be able to perform a number of functions in addition
to the conventional control functions such as tracking and
regulation. These additional functions may include the ability
to accommodate for drastic system failures, to plan and to
learn and operate over extended periods of time.

A hierarchical functional autonomous controller architec-
ture for a future spacecraft is described in [3] and references
therein; it is designed to ensure the autonomous operation

of the control system and it allows interaction with the pi-
lot/ground station and the systems on board the autonomous
vehicle. A command by the pilot or the ground station is
executed by dividing it into appropriate subtasks, which are
then performed by the controller. The controller can deal
with unexpected situations, new control tasks, and failures
within limits. To achieve this, high-level decision-making
techniques for reasoning under uncertainty and taking actions
must be utilized. These techniques, if used by humans,
are attributed to intelligent behavior. Hence, one way to
achieve autonomy, in some applications, is to utilize high-
level decision-making techniques, “intelligent” methods, in
the autonomous controller. Remember that autonomy is the
objective, and “intelligent” or “smart” controllers are one
way to achieve it.

C. Autonomous Controller Functions

Autonomous control systems must perform well under
significant uncertainties in the plant and the environment
for extended periods of time and they must be able to
compensate for system failures without external intervention.

Such autonomous behavior is a very desirable characteris-
tic of advanced systems. An autonomous controller provides
high-level adaptation to changes in the plant and environ-
ment. To achieve autonomy the methods used for control
system design should utilize both:

a) algorithmic-numeric methods, based on the state-of-
the-art conventional control, identification, estimation, and
communication theory, and

b) decision making-symbolic methods, such as the ones
developed in computer science (e.g., automata theory), and
specifically in the field of machine learning and Artificial
Intelligence (AD).

In addition to supervising and tuning the control algo-
rithms, the autonomous controller must also provide a high
degree of tolerance to failures. To ensure system reliability,
failures must first be detected, isolated, and identified (and if
possible contained), and subsequently a new control law must
be designed if it is deemed necessary. The autonomous con-
troller must be capable of planning the necessary sequences
of control actions to be taken to accomplish a complicated
task. It must be able to interface to other systems as well as
with a human operator, and it may need learning capabilities
to enhance its performance while in operation. It is for these
reasons that advanced planning and learning systems, among
others, must work together with conventional control systems
in order to achieve autonomy. The need for quantitative
methods to model and analyze the dynamical behavior of
such autonomous systems presents significant challenges.
The development of autonomous controllers requires signifi-
cant interdisciplinary research effort as it integrates concepts
and methods from areas such as control, identification,
estimation, and communication theory, computer science,
artificial intelligence, and operations research. Autonomous
controllers evolve from existing controllers in a natural way
fueled by actual needs.

D. Design Methodology - History

Conventional control systems are designed using mathe-
matical models of physical systems. A mathematical model,
which captures the dynamical behavior of interest is chosen
and then control design techniques are applied, aided by
software packages, to design the mathematical model of an
appropriate controller. The controller is then realized via
hardware or software and it is used to control the physical
system. The procedure may take several iterations. The
mathematical model of the system must be “simple enough”
so that it can be analyzed with available mathematical
techniques, and “accurate enough” to describe the important
aspects of the relevant dynamical behavior. It approximates
the behavior of a plant in the neighborhood of an operating
point or a region. The first mathematical model to describe
plant behavior for control purposes is attributed to J.C.
Maxwell who in 1868 used differential equations to explain
instability problems encountered with James Watt’s flyball
governor; the governor was introduced in 1769 to regulate
the speed of steam engine vehicles (the first feedback control
mechanism in the historical record is the water clock of
Ktesibios, 3rd century BC).

Control theory made significant strides in the past 150
years, with the use of frequency domain methods and
Laplace transforms in the 1930s and 1940s and the introduc-
tion of the state space analysis in the 1960s. Optimal control
in the 1950s and 1960s, stochastic, robust and adaptive
control methods in the 1960s to today, have made it pos-
sible to control more accurately, significantly more complex
dynamical systems than the original flyball governor. The
control methods and the underlying mathematical theory
were developed to meet the ever-increasing control needs of
our technology. The evolution in the control area was fueled
by three major needs:

a) The need to deal with increasingly complex dynamical
systems.

b) The need to accomplish increasingly more demanding
design requirements.

c) The need to attain these design requirements with less
precise advanced knowledge of the plant and its environment,
that is, the need to control under increased uncertainty.

The need to achieve the demanding control specifications
for increasingly complex dynamical systems has been ad-
dressed by using more complex mathematical models such
as nonlinear and stochastic ones, and by developing more
sophisticated design algorithms for, say, optimal control. The
use of highly complex mathematical models however, can
seriously inhibit our ability to develop control algorithms.
Fortunately, simpler plant models, for example linear models,
can be used in the control design; this is possible because of
the feedback used in control, which can tolerate significant
model uncertainties. Controllers can then be designed to meet
the specifications around an operating point, where the linear
model is valid and then via a scheduler a controller emerges
which can accomplish the control objectives over the whole
operating range. This is, for example, the method typically

used for aircraft flight control. In autonomous control systems
we need to significantly increase the operating range; we
must be able to deal effectively with significant uncertainties
in models of increasingly complex dynamical systems in
addition to increasing the validity range of our control meth-
ods. This will involve the use of intelligent decision-making
processes to generate control actions so that a performance
level is maintained even though there are drastic changes in
the operating conditions.

Figures 1-3 illustrate the evolution of controller towards
higher autonomy. There are needs today that cannot be

r d
Ld \—> E— Ye
Controller Plant
» Y
L4 =] m
Fig. 1. Conventional Fixed Controller for Robust Control.

Decision Identification 4
r
d
» L} P *
Controller Plant
| 4 Yo
u
Fig. 2. Conventional Indirect Adaptive Controller.
Higher Level
r I d
» \—P —p ¥
Controller Plant
L = y-
Fig. 3. Highly Adaptive Controller for Autonomous Control.

successfully addressed with the existing conventional control
theory. They mainly pertain to the area of uncertainty.
Heuristic methods may be needed to tune the parameters of
an adaptive control law. New control laws to perform novel
control functions should be designed while the system is
in operation. Learning from past experience and planning
control actions may be necessary. Failure detection and
identification is needed. Many of these functions have been
performed, in the past, by human operators. 7o increase the
speed of response, to relieve the pilot from mundane tasks,

to protect operators from hazards, autonomy is desired. It
should be pointed out that several functions seen as parts of
an autonomous controller, have been performed in the past
by separate systems; examples include fault trees in chemical
process control for failure diagnosis and hazard analysis,
and control reconfiguration systems in aircrafts, planning the
sequence of order execution in steel mills and setting control
set-points.

III. REINFORCEMENT LEARNING FOR OPTIMAL
TRACKING AND REGULATION: A UNIFIED FRAMEWORK
FOR AUTONOMOUS SYSTEMS

Reinforcement learning (RL) has been widely used to
design feedback controllers for both discrete-time and
continuous-time dynamical systems. This technique allows
for the design of a class of adaptive controllers that learn
optimal control solutions forward in time, and without
knowing the full system dynamics. Integral Reinforcement
Learning (IRL) and off-policy RL algorithms for continuous-
time (CT) systems, and Q-learning and actor-critic structure
for discrete-time (DT) systems have been successfully used
to learn the optimal control solutions, online in real time.
The application of these methods, however, has been mostly
limited to the design of optimal regulators. Nevertheless, in
practice it is often required to force the states or outputs
of the system to track a reference (desired) trajectory. This
section proposes a unified framework for both tracking and
regulation problems to show how we can develop online
model-free RL algorithms to solve the tracking and regu-
lation control problem for both CT and DT systems.

A. Optimal Regulation/Tracking Control of CT Systems

The objective in optimal regulation (tracking) problem is
to make the system states go to zero (track a reference tra-
jectory) in an optimal manner by minimizing a performance
function.

Consider the nonlinear CT system,

w(t) = f(z(t)) + g(x(t))u(t), t =0, (D)
where x(t) € R™ is the state vector, u(t) € R™ is the control
input, f(z(t)) € R"*™ and g(x(t)) € R™*™ are the drift and
the input dynamics respectively.

For the optimal regulation, a general discounted perfor-
mance function for the system (1) can be defined as,

V() - |

t

where (@ > 0, R > 0 are user-defined matrices of appropriate
dimensions and v = 0 is the discount factor. On the other
hand, for the optimal tracking the desired trajectory x4(t) is
assumed to be generated by a command generator function
ha(zq(t)) € R™ such that,

(ﬁd (t) = hd(ICd (t)) .

Define the tracking error as, eq(t) = x(t) — z4(t) and a
general performance index as,

o0

e T (2T Qu 4+ u” Ru)dr,

V@www»=féﬂW%£mwwﬁmm,m
t

where v > 0 for the case of tracking. It is shown in [57],
[58] that by defining the augmented system state as,

X(t) = [ea®)” za()T]" € R>"
and the augmented system dynamics become,
X(t) = F(X(1) + G(X(8))u(t) 3)

with some nonlinear functions F'(X (¢)) and G(X (t)). More-
over, the performance (2) in terms of the tracking error and
the control input becomes,

V(X(t) = Lﬁ e T(XTQrX +u" Ru)dr, (4)

with Qr := I:%z 0

] and 0 a zero matrix of appropriate

dimensions.
The differential equivalent of (4) gives,

VI(F(X)+G(X)u) —yV(X)+ XTQrX +u"Ru =0
(%)

where V, := a\g)((x) . Therefore, the tracking problem is

transformed into a regulation problem with the augmented
system (3) and the performance function (4).Both tracking
and regulation problems are now defined in one framework.
In fact, in both of these problems, the goal is to find a control
input for a system in form (3) by minimizing the general
performance index (4). For the regulation problem in the
system (3), and performance (4), X (t) := x(t) € R™ and for
the tracking problem, X (¢) := [eq(t)” acd(t)T]T e R,

1) IRL Method for Optimal Regulation/Tracking of CT
Systems: IRL [86]- [88] was the first RL algorithm developed
to formulate online optimal adaptive control methods for
continuous-time systems. These methods find the optimal
control solution online in real time without knowing the
system drift dynamics f(z).

The idea is to write the performance function (4) in the
integral reinforcement form as,

t
VX(t—-T)) = J eV (XTQr X + T Ru)dr
t

=T

+e TV (X(1)),

with 7" > 0 a sampling constant. This gives a unified track-
ing/regulation IRL Bellman equation. Using this Bellman
equation, the following IRL-based algorithm can be used
to solve the optimal tracking/regulation problem using only
partial knowledge about the system dynamics.

Algorithm 1: Online IRL algorithm for optimal regula-
tion/tracking control of CT systems

1: procedure
2: Given a control input u;(X), where ¢ € N, find
V;(X) using,
¢
ViX(t—T)) = J e V=D (XTQr X + ul Ru;)dr
t—T

+e V(X (1))

3: Update the control policy using,
1
w1 (X) = —inlaT(X)Vx, (6)

4: t=1+1
5: end procedure

Synchronous policy iteration [85] can also be used to learn
the optimal policy. Algorithm requires the knowledge of the
input dynamics G(X). The off-policy IRL algorithm [38],
[39], [53] can be extended to the discounted optimal control
to avoid requirement of the knowledge of G(X).

2) Off-policy IRL Method for Optimal Regula-
tion/Tracking of CT Systems: Off-policy IRL algorithm
was first presented in [38], [39], [53] to develop optimal
regulators for completely unknown CT systems. Inspired by
[38], [39], [53] the system dynamics (3) is first written as,

X = F(X) + G(X)u; + G(X)(u— ;). (7)

Taking the derivative across the closed-loop trajectories (7)
and using (5) and (6) one has,

Vi = VE(F + Guy) + VEG(u — uy)
=V, = XTQrX — ul Ru; — Qu?HR(u —u;). (8)

Multiplying both sides of (8) by e~ 7("=*) and integrating
both sides yields the following off-policy IRL Bellman
equation,

e TVI(X(t+T)) — Vi(X (1) =

t+T
— f e 1(T=1) (XTQTX + u,iTRui)dT
t
t+T
- f e_W(T_t)uiHR(u — u;)drT.
t

This off-policy regulation/tracking Bellman equation can
be for V; and wu;.; simultaneously without requiring any
knowledge of the system dynamics. The following algorithm
uses this Bellman equation to solve the optimal regula-
tion/tracking problem without requiring any knowledge of
the system dynamics,

Algorithm 2: Online Off-policy RL algorithm for solving
the tracking Hamilton-Jacobi equation

1: procedure
2: Solve the following Bellman equation for V;, and
u;+1 simultaneously,

e TVI(X(t+T)) - Vi(X(t) =

t+T
- J e~ (7=t (XTQTX + uiTRui)dT
¢
t+T
- J e 7Ty R(u — ug)dr
¢

3: Stop if a stopping criterion is met, otherwise set ¢ =
7+ 1 and goto 2.
4: end procedure

B. Optimal Regulation/Tracking of DT Systems
Consider the nonlinear DT system (similarly to (1)) as,

z(k+1) = f(z(k)) + g(x(k))u(k), k € N.

The performance function for the optimal regulation DT
problem can be defined as,

V(a(k) = 3 v (o) Qul) +uli) Ru(i), (9)
1=k

where @ > 0, R > 0 are user-defined matrices of appropriate
dimensions and 0 < v < 1 is a discount factor. Similarly to
the CT systems, for the tracking problem of DT systems,
the desired reference trajectory is produced by the command
generator mode,

r(k+1) = ¢(r(k)).

The performance function (9) for the tracking problem is
written as,

s 8}

V(z(k) = 337" " (e(i)" Qe(i) + u(i)" Ru(i))

i=k
where e(k) := x(k) — r(k) is the tracking error. The aug-
mented system is then defined by following the developments
in [47] as,

X(k+1)=F(X(k) +GX(k)ug,
for some nonlinear functions F'(X (k)), G(X(k)).
By using the augmented system (10), the discounted

performance function for the DT problem can be defined
as,

(10)

V(X(k) = Z 7 HX ()T QX (@) + u(@) Ru(i)) (1)
i=k

C’g g] Now equation (11) can be written as

ellman equation,

where Q1 :=

the following
V(X (k) =9V (X(k+1)) + X (k)T QX (k)

+ u(k)T Ru(k). (12)

Now, both tracking and regulation problems are defined in
one framework. For the regulation problem in the system (10)
and performance (11), we need to set, X (k) = z(k) € R™
and for the tracking X (k) = [e(k)” r(k)T]T € R?". See
[47] and [48] for further developments.

1) Q-learning for Optimal Regulation/Tracking Control of
Linear DT Systems: Following the developments of [48],
[92] we assume that the augmented system (10) is linear
and has the form,

X(k+1) = AX (k) + Bu(k) (13)

with a performance given by (11). Now we should define the
Q-function as,

QX (k), u(k)) = X (k)" QX (k) + u(k)” Ru(k)

+V(X(k +1)). (14)

After substituting the value function V(X(k)) =
X (k)T PX (k) with P the solution to the Riccati equation,
and the system (13) in (14) one has,

Q(X(k),u(k)) =

[X(k) T [Ql +yATPA 4ATPB] [X(k)]

u(k) vBTPA R+~BTPB| | u(k)
=Z(k)'HZ(k), (15)
| X(k) _|Hxx Hxu
where Z(k) = “(k)J and H = Hox Hoo |
Using (14) and (15) for updating the Q-function and the

derivative of the Q-function for finding an improved control
policy, the following algorithm is developed,

Algorithm 3: Policy Iteration solution using the Linear
Quadratic Tracking (LQT) Q-function

1: procedure
2: Policy evaluation,

ZRTH Z(k) = X(B)TQ, X (k)
+ (u(k)) T Ru(k) +~vZ(k +)THI Y Z(k +1)

3: Policy improvement,

w(ky ™ = —(HZN T HI X (k)

uu

4: Stop if a stopping criterion is met, otherwise set j =
J + 1 and goto 2.
5: end procedure

Note that Algorithm 3 does not require any knowledge of
the system dynamics.

2) Actor-Critic Based RL Algorithm for Regula-
tion/Tracking of Nonlinear DT Systems: The actor-critic
[48] structure can be used to solve the optimal control
regulation/tracking problem online for nonlinear DT
systems. The critic network estimates the value function.
The actor represents a control policy and is updated to
minimize the value function.

The critic network: Using (12), the prediction error of
the regulation/tracking Bellman equation is defined as,

ec(k) =YV (X (k) + X (k)" QX (k) = u(k)" Ru(k)
—V(X(k—1)), (16)

where V(X (k)) = WT¢(X(k)) is the critic network with
W, the weight vector and ¢ the activation function. It is
desired to select the weights of the critic network to minimize
the Bellman error (16). The update law for the critic weights
can be performed using least squares or gradient descent
methods.

The actor network: The actor network is written as a
neural network of the form,

a(X (k) = W5 (X (k)),

where W, is the weight vector and ¢ is the activation
function. The actor is updated to minimize the value function.
This can be done by minimizing the error between a target
control input (which is obtained by minimizing the value

function) and the actual control input which is applied to the
system. Let the current estimation of the value function be
V. Then, the target control input is obtained by minimizing
the right-hand-side of (12) which is,

V(X (k+1))
0X(k+1)

However, to obtain the value at time k + 1, the states are
required to be predicted by using a model network. But,
we do not use a model network to predict the future value.
Rather, we store the previous value of the system state and
the state value and try to minimize the error between the
target control input and the actual control input given current
actor and critic estimate weights while the previous stored
state X (k — 1) is used as the input to the actor and critic.
That is to minimize,

6a(k) = ﬂ(X(k - 1)) - ﬂ(k, k— 1)a

where a(k, k—1) := a(X(k—1), Wa(k)) is the output of the
actor network at time k£—1 if the current network weights are
used. It is desired to select the weights of the actor network
to minimize (17). The update law for the actor weights can be
performed using least squares or gradient descent methods.

WX (K) = 5 CX(R)TR™

a7

IV. MODEL-FREE PLUG-N-PLAY OPTIMIZATION
TECHNIQUES TO DESIGN AUTONOMOUS AND RESILIENT
COMPLEX SYSTEMS

This section will build upon the developments in the
previous sections and will show how to use machine intel-
ligence and especially Q-learning based approaches inspired
by the work of [90] to develop model-free approaches. Q-
learning was the first provably convergent direct optimal
adaptive control algorithm and is a model-free reinforcement
learning technique developed primarily for discrete-time sys-
tems [90]. The centralized Q-function in [90] depends on
both states and decision makers (controls) which means that
it already includes the information about the system and
the utility functions. Since it is more difficult to compute
policies from value functions than Q-functions, Q-learning
is preferred to value functions based algorithms (heuristic
dynamic programming [92]). Specifically, Q-learning can
be used to find an optimal action-selection policy based
on measurements of previous state and action observations
controlled using a “non-optimal policy”. It learns an action-
dependent value function that ultimately gives the expected
utility of taking a given action in a given state and following
the optimal policy thereafter. When such an action-dependent
value function is learned, the optimal policy can be computed
easily. The biggest strength of Q-learning is that it does
not require a model of the environment. It has been proven
in [90] that for any finite Markov Decision Process, Q-
learning eventually finds an optimal policy. To guarantee the
convergence of the iterative Q function in [90], the learning
rate sequence of the Q-learning algorithm is constrained to a
special class of positive series, where the sum of the positive
series is infinite and the corresponding quadratic sum is
required to be finite. Because of the strong constraints in

the learning rate sequence, the convergence properties of
the Q-learning algorithms are also constrained. Q-learning
at its simplest uses tables to store data. This very quickly
loses viability with increasing levels of complexity and
dimensionality of the system. This problem can be solved
effectively by using adapted neural networks as universal
approximators. Specifically, Q-learning can be improved
by using the universal function approximation property of
neural networks and especially in the context of approximate
dynamic programming [92] or neuro-dynamic programming
[14] that allows us to solve difficult optimization problems
online and forward in time. It is hence possible to apply the
algorithm to larger problems, even when the state space is
continuous, and infinitely large.

In continuous-time systems, things are harder and most
of the times one has to rely on discretization of the state
and the action space to apply such techniques, and as such
lose important information during discretization. Some early
work on continuous-time systems learning was done in
[9], [27]. The authors in [54] have established connections
between Q-learning and nonlinear control of continuous-time
models with general state and action space by observing
that the Q-function developed in [90] is an extension of
the Hamiltonian that appears in the minimum principle. A
variant of Q-learning that provides a model free approach for
continuous-time system has been proposed in [40] where the
authors have performed a policy iteration algorithm to use
repeatedly state and input information on some small fixed
time intervals. An e-integral Q function has been used to
propose an e-approximate Q-learning framework for solving
the linear quadratic regulator problem of continuous-time
systems in [50] but the authors can guarantee convergence
and uniform-ultimate boundedness stability only when the
initial policy is stabilizing. We note that the Hamilton-Jacobi
equations cannot be solved for complex nonlinear systems
with nonstandard, high performance measures. However,
neural network approximation techniques allow one to solve
these design equations approximately for complex systems
with actuator constraints and high-performance maneuvering.

The below model-free technique can be easily extended to
“single-player” optimization (optimal control), multi-agent
systems without adversaries etc. Here we will showcase
the scenario of uncertain agents in complex systems being
attacked by persistent adversaries. We shall use machine-
learning ideas, i.e. Q-learning based techniques, to find
model-free plug-n-play algorithms.

A. Problem Formulation

We consider a networked-system G, consisting of NV agents
each modeled Vi € N := {1,...,N} by the following
dynamics,

xl(t) = Al‘i(t) + Biui(t) + Di’l)i(t), t>=0, (18)

where z;(t) € R™ is a measurable state vector, u;(t) €
R™i, ¢ € N := {1,...,N} is each control input (or
minimizing player as we shall see later), v;(t) € R, i €
N :={1,...,N} is each adversarial input (or maximizing

player as we shall see later), and A € R"*", B; € R™"*",
D; € R™ 4 e N are the plant, control input and
adversarial input matrices respectively that will be considered
uncertain/unknown. It is assumed that the pairs (A, B;), Vi €
N are controllable. We have a total of 2V players/controllers
that select values for u;(t), t > 0, i € N and v;(t), t >
0, ¢ € N. The agents in the network seek to cooperatively
asymptotically track the state of a leader node/exosystem
with dynamics #g = Axzg, ie. z;(t) — xo(t),Vi € N
while simultaneously satisfying user-defined distributed per-
formances.

Figure 4 shows one such networked system G consisting
of 10 agents with a leader node 0 pinned to node number 6.

Fig. 4. A networked system G with 10 agents and a leader node O pinned
to agent 6.

Now we shall proceed to the design of the user-defined
distributed performances. For that reason, we shall define
the following neighborhood tracking error for every agent,

Z (s — ;) + gi(xi — x0),VieN,
JEN;

(19)

€; 1=

where g; € RT is the pinning gain that shows if an agent is
pinned to the leader node (i.e. g; # 0) and it is nonzero for
at least one node.

The dynamics of (19) are given by,

é; = Ae; + (di + g:)(Biu; + Djvy;)

— Z (BjUj + Djl}j), Vi e N,
JEN;

(20)

with e; € R".

The cost functionals associated to each agent i € N, that
depend on the tracking error e;, the control w;, the controls
in the neighborhood of agent ¢ given as, up, := {u; : j €
N}, the adversarial input v; and the adversarial inputs in the
neighborhood of agent ¢ given as vy, := {v; : j € N;}, have

the following form,

Z(@i(o);ul‘,u./\/'i,'l}i,'l)_/\[i) =
1

oL
3 J (el Hie; + (u] Riju; — viv] v;)
0

+ 2 (ul Riju; —y5v] v))dt, Vie N, (21)
JEN;
with user defined matrices H; > 0, R;; > 0, R;; >0, Vi, j €
N of appropriate dimensions, and 7;;,7;; € R*, Vie N.
Hence, given a strongly connected graph G, we are inter-
ested in finding a graphical Nash equilibrium [12], [84], that
is translated to a saddle point u},v¥, for every agent i € N
in the sense that,

%(ei(O);Uf,UX/i,Ui,Uﬁ[i) < Z(ei(O);uf,u}k\/L_,vf,v/’%)
< Ji(ei(0); ui, uky, v, vis), Yui, v i€ N, (22)

This can be expressed by the following coupled distributed
optimization problems,

\Z(ei(o);ufvuﬁ/ﬂvjvvﬁfi) =
min max J;(e;(0); wi, ux,, vi, vy,), Vie N,
U4 Vi)

given the dynamics in (20).
Thus, the ultimate goal is to find the distributed optimal
value functions V;*, Vi € A defined by,

Vi*(ei(t) =
o 1
min maxf 5 (el Hie; + (u! Riju; — viv] v;)
Ug U4 t
+ > (U] Rijuj —] v)))dt, Vt,Vie N, (23)
JEN;
but without any information of the system matrices A, B;,
D;,¥i € N and pinning gains g;, Vi € N. First we
will define the Hamiltonian associated with each agent’s
neighborhood tracking error (20) and each V;* given in (23)

as follows,
% % T
oV _ oV < Ae;

i i
Hi(eiauiau/\fwv’iav./\/'m 0ei) - 0ei

> (Bju; + Dﬂj))

JEN;

+ (di + gi)(Bsu; + Djv;) —

1 1
+ ieiTHiei +3 <eiTHiei + (uf Riui — vivTv)

+ Z (U?Riju]‘ — ’y%vf’l@)) y Vei, s, v; Vi € N. 24)
JEN;
After employing the stationarity conditions, in the Hamilto-

nian (24) we can find the saddle-point solution, i.e. % =

0, and 67{1[7;) = 0. Hence, the optimal control for each i € N/

can be found to be,

, | ov;
U; (ei) = argnilnHi(eiaui,uNi7Uiav./\fn)
i

aei

*

= —(d; + g;)R;;' BY ov; (25)

Ve;
ael b)) 19

and the worst case adversarial input can be found to be,

. v
v] (e;) = argmax H;(e;, w;, un,, Vi, VA, p)
v; e;
_ Eg)Df i Ve, (26)
Yii oe;

The saddle-point solution (25)-(26) should satisfy the appro-
priate coupled Hamilton-Jacobi equations,

ov*

L)=0,YieN.
661') !

The value functions can be represented as quadratic in the
neighborhood tracking error, i.e. V;*(e;) : R™ — R,

1

§eiTPiei, Ve;,Vie N,
where P; € R"*™ Vi € N are the unique symmetric pos-
itive definite matrices that solve the following complicated
distributed coupled equations,

Hi(ei, u, uy,, v, vi, 27

Vi¥(e) = (28)

1
Vii
_ 1
+ Y (d; + g;)(B;R;;' B] — szDf)PjQJ)
JEN Yii
1
gt

%

T
_ 1
+ Z (d; + 9,)(B;R;;'B] — 72DijT)Pjej) Pe;

JEN (%
+ Z (d; + gj)Qeij(BjR;jTRin;lejT
JEN;

7y

2
i D;iD})Pje;
Jj
1
+ (dz + gz)zezTPl(BlR”BlT — TD,LD;T)PZGZ
Vii

+ el Hie; = 0,Vie N. (29)

By using (28), the optimal control (25) for every agent i € N/
can be written as,

u¥(e;) = —(d; + gi)R;;' Bf Pie;, Ve, (30

and the worst case adversarial input (26) for every agent
i € N can be written as,

® (dz + gi)
Uz (61) 7121
It is important to note that the equations (29), (30), (31),
are highly coupled, difficult to solve due to the cross terms
elTej and require complete knowledge of the system matrix
A, the input matrices B;, D;, ¢ € N and leader connection
information g;. we shall show a new cooperative Q-learning
based approach to solve the graphical Nash game problem
without any information of the system dynamics while atten-
uating persistent adversarial inputs, by adjusting parameters
in an adaptive way.

DT Pe;, Ve;. (31)

B. Q-learning Based Approach

The value functions (28) need to be parameterized as
functions of the neighborhood tracking error e;, the controls
u; and u s, and the adversarial inputs v; and v/, to represent
the distributed Q-function, i.e. cooperative learning, for each
agent in the game. The optimal value given by (28) after
adding the Hamiltonian from (24) can be written as the
following distributed Q-function or action-dependent value
Qi(ei, ui, upr,, Vi, UN;) ¢ Rt e, (mi+) R,

Qi(eiauiauﬂfmviavﬂfi) = sz*(el)

+Hi(61,U1,UNi7U¢,UNi, L)

6ei
ovxT
= ‘/;*(62) + 061 (Ael + (dl + gz)(Bluz + Dlvl)
— > (Bju; + Dﬂ’j))
JEN;

1
+ 3 (e?HZ-eZ- + (u;‘FR”uZ - vi-vgfvi)

+ > (uf Riju; — ijvavj)),
JEN;

veivuivu.f\fmvivv./\/’iv ViEN, (32)
Ay ok
where H;(e;, wi, upns,, Vi, UA %) is given by (24) and the

optimal cost is V;*(e;) = el Pie;,Vi € N. Each agent’s
distributed Q-function (32) can be written in a compact
quadratic in the neighborhood tracking error e;, controls
ui, up;, and adversarial inputs v;, va;, distributed form as in
(33) (next page), where O are zero matrices of appropriate di-
mensions, diag (Rij) N diag (’yl-j)je N, are stacked diag-
onal matrices, col(B] Pi)je./\fi’ col(DT P))
column matrices, and row(PiBj)
stacked row matrices.

In (33), the equivalences of Q?) are straightforward

e, are stacked
PR (PiDj)jeM are

eg Qo = P+ Hi + PA+ ATP. Qq =
(dz + 9:)P; B, ZeiVi = (di + g:)P;D;, 7{1iui Rij.

v = 2 etc. and positive definite matrices Q' €

ViVvi
R(neri +1i +2.75Ni (mj+15))x (”+mi+li+2j6/\/i (mj+1;)) ,Vie N.

A model free formulation of (30) can be found by solving
('Qi(ehuigij\/’ivviavj\/i) — 0 to write,

ul(e;) = argrrg}_n Qi(eq, us, uis, , vi, V)
;

= _(?‘J;Ui)71 Z;_lieie'h VZ EN? (34)
and a model free formulation of (31) can be found by solving
0Qi(ei,u; JUN; Vi UN;)

I = 0 to write,

vi(e;) = argmva_,in(ei, Ui, UNs, 5 Vi, U,
i

= (f/ivi)_l f/;e;e“ VZ eN? (35)

We shall use machine intelligence and especially an ac-
tor/critic framework to find (34)-(35).

The critic NN will approximate the distributed Q-function
(33), the control actor NN will approximate the optimal

controller (34) and the adversarial input actor NN will
approximate the worst-case adversarial input (35) of each
agent i € N. Specifically QF (e;,u,ux., v}, vi;) can be
written as,

1o
Q7 (i, uj ,uy, , v, vi) = —2I'Q'z, Yie N,

5 (36)

or

1
Q7 (eq,uf,uy,, v, vi,) = Evcch(QZ)T(zi ®Zi), Vie N,

T
where, z; := [e] ul ul, ol o]
Now denote the vech (Q*) €

R%(n-&-mi-&-li-&-zjeNi (m; +l,-))(n+mi,+l,;+2j€,\,l (mj+1;)+1)

as a half-vectorization of the matrix @ that returns a
column vector by stacking the elements of the diagonal and
upper triangular part of the symmetric matrix into a vector
where the off-diagonal elements are taken as 2@;1,@2 and ®
denotes the Kronecker product quadratic polynomial basis
vector.

By denoting as Wi := vech(Q’) we can write (36) in a
compact form as,

Q5 (eq,uf,uy,, v, vi,) = Wg(zz@)zz)7 Vie N,

with W;. the ideal weights. Next we should estimate Q7,
uf and v} with the following actual values for the critic NN

with VAViC = vech(Qi),

Qiles, ui, up,, vi,vn,) = WE (i ®2z), YieN, (37
where W;, are the estimated critic weights.
The control actor NN is given as
i(e;) = Whe;, Yie N, (38)

where VAVm € R™*™i are the estimated actor weights, note
also that the neighborhood tracking error, e;, is serving as an
activation function for the action NN. Note that the optimal
value for each control actor NN is given by (34).

Finally for the adversarial actor NN we have

bi(e;) = Whei, Yie N, (39)
where Wid e R™*l are the estimated actor weights, note
also that the neighborhood tracking error, e;, is serving as an
activation function for the action NN. Note that the optimal
value for each adversarial actor NN is given by (35).

By using integral reinforcement learning (see also previous
section), we can write

QF (ex t), (), u, (1), v (1), v (1)
Q*(exlt = T),u(t — T),u, (t = T), vF(t — T), vk (t — T)

K2

1 t
-5 J (el Hie; + (u] Riju; — viv] v;)
t

2)it
+ Z (ujTRijuj — ijvavj))dT, Vie N, (40)
JEN;

where T € Rt is a small fixed time interval that defines
how fast one measures the neighborhood tracking error e;,

1
Qi(ei7ui7uj\/i7vi7v/\fi) = §Z,LT

P, +H;, + P,A+ ATR (dl + gz)PZ‘Bl —I‘OW(PZ'B]) (dl + gZ)PZDZ _rOW(PiDj)jeNj
(dl + gl)BZTPZ R;; 0 0 0
—col (BJ‘TPi)jje N, 0 diag (Rij)je N, 0 0 2
(di + g:)D; P; 0 0 ’yiQZ- 0
—col (DjTPi)jeN,; 0 0 0 diag (ij)jENi
éici éiui éiuNi ’_éivi :DiVNi
%liej fliu; Q’lLljuN’. Q%;Vi fliVN.
Lo | i i i i L 74 .
= 527 upN; €i N U LINALINS UA; Vi UN; VA Zi = 527 QZZ77 VZZ" Vi EN, (33)
-;L/jei ‘i/iui .:I/iu/\/'i -;L/jVj ,z/iVNi
;L/Nie; z/Niui iNiuNi ;L/_,\/ivi iNiVNi
Wic:_aic T 2E;T, V’iEN,
(1 + (Zi(t) ® Zi(t) — Zi(t — T) ® Zi(t — T)> <Zl(t) ® Zl(t) — Zi(t — T) ® Zi(t — T)>>
(41)
with

By = Qilea(t), s(t), i, (1), 04(8), 0 (1)) — Qules(t = T),lt = T), o (¢ = T), 8t — T), i (¢t — T)

2

t

. 1
= Wik (2:(t) ® (1)) + QJ

t=T

- VAVg(zl(t -T)®z(t—T)).

1 R X . R R o
+ *J, (eiTHiei + (uiTR“-ui — %%»viTvi) + Z (u]TRijuj — 'yi?jvavj))dT
t—T

JEN;

(el Hie; + (0] Rigtty — v30] 0;) + Z (ﬂjTRijﬂj - ’Yizjf’jT@j))dT

JEN;

the control u;, the adversarial input v; and the adversarial
inputs and controls in the neighborhood v/, up;.

Now we shall find tuning updates for VAVM, Wm, and
Wia. By following adaptive control techniques as in [36]
we can find the gradient descent estimate of Wic for the
critic weights of each agent, as in (41) (next page), where
aj. € RT is a constant gain that determines the speed of
critic neural network convergence. Similarly, the gradient
descent estimate of W;, for the control actor weights can
be constructed as,

Wia = —ig€; (Wgei + ()i)_1)i

ujuj u;€j

ei)T7 Vi e N7
(42)

where o, € RT is a constant gain that determines the speed
of actor neural network convergence, and finally the gradient
descent estimate of Wid for the adversarial actor weights can
be constructed as,

&
Wia = —aiae; (Wige; —

NPy T .

(z/ivi) irieiei) , Vi EN7
(43)

where o;4 € R™ is a constant gain that determines the speed

of actor neural network convergence.

As one can see in order to enable full autonomy and
resiliency without any offline computations or exhaustive
modeling one can simply plug equations (37), (38), (39),
(41), (42) and (43) in every agent.

V. EXPERIMENTS USING APPROXIMATE OPTIMAL PATH
FOLLOWING WITH CONCURRENT LEARNING

Advances in sensing and computational capabilities have
enabled autonomous mobile robots to become vital assets
across multiple disciplines. This surge of interest over the
last few decades has drawn considerable attention to motion
control of autonomous vehicular systems. As the technology
matures, there is a desire to improve the performance (e.g.,
minimum control effort, time, distance) of such systems to
better achieve their objectives.

Guidance laws for autonomous vehicles are typically
divided into three categories: point regulation, trajectory
tracking, and path-following. Path-following refers to a class
of problems where the control objective is to converge to and
remain on a desired geometric path without the requirement
of temporal constraints (cf. [51], [59], [60]). Path-following
is ideal for applications intolerant of spatial error (e.g., nav-

igating cluttered environments, executing search patterns).
Path-following heuristically yields smoother convergence to
a desired path and reduces the risk of control saturation. A
path-following control structure can also alleviate difficulties
in the control of nonholonomic vehicles (cf. [59] and [23]).

Optimal control techniques have been applied to path-
following to improve path-following performance (cf. [31],
[44], [75], [78]). From a survey of such results, motivation
exists to provide emerging autonomous systems with an
online optimal feedback control approach for path-following
that can incorporates the system’s nonlinear dynamics within
the design to provide stability and performance guarantees.

In a similar manner as in the previous sections, the
optimal path-following problem can be formulated in terms
of the HIB equation using Bellman’s principle of optimality.
Motivated by the desire for optimal path-following, an ADP-
based controller can be developed for a unicycle-type mobile
robot where the optimal policy is parametrized by a neural
network (NN) [89]. Path-following is achieved by tracking a
virtual target placed on the desired path. The motion of the
virtual target is described by a predefined state-dependent
ordinary differential equation (cf. [24], [28], [S1]). The state
associated with the virtual target’s location along the path is
unbounded due to the infinite time horizon of the guidance
law, which presents several challenges related to the use of
a NN.! In addition, the vehicle requires a constant control
effort to remain on the path; therefore, any policy that results
in path-following also results in infinite cost, rendering the
associated control problem ill-defined (as in the tracking
problem discussion in the previous sections).

In this section and the work in [89], the motion of the
virtual target is redefined to facilitate the use of the NN,
and a modified control input is developed to render feasible
optimal policies. The cost function is formulated in terms of
the modified control and redefined virtual target motion, a
unique challenge not addressed in previous ADP literature.
The controller yields uniformly ultimately bounded (UUB)
convergence of the approximate policy to the optimal policy
and the vehicle state to the path while maintaining a desired
speed profile. Simulation results compare the policy obtained
using the developed technique to an offline numerical opti-
mal solution. The proposed method is also experimentally
validated on a differential drive mobile robot.

A. Problem Description

Path-following refers to a class of problems where the
control objective is to converge to and remain on a de-
sired geometric path. The desired path is not necessarily
parametrized by time, but by some convenient parameter
(e.g., path length). The path-following method in this section
utilizes a virtual target that moves along the desired path.
The location of the virtual target is determined by the path
parameter s, € R (e.g., arc length). It is convenient to select

'For an infinite horizon problem, time and hence the virtual target’s
location along the path do not lie on a compact set, and thus can not be
used as an input to a NN.

the arc length as the path parameter for a vehicle, since the
desired speed can be defined as unit length per unit time.
0 = —KSp + W,

For a nonholonomic vehicle moving in a plane, the kine-
matic error dynamics for the path tracking problem can be
expressed as [51], [89]

T = $p(ky—1)+wvcos
Z) =
0 =

(44)
—TKSy +vsing
Wy — KSp

where x, y € R denote the position of the vehicle in the plane,
0 € R denotes the orientation of the vehicle with respect to
a fixed coordinate system, v, w, € R denote the linear and
angular velocity of the vehicle, respectively, and x € R is
the path curvature. The location of the virtual target can be
determined as described in [51], [89] as

Sp £ Uges cos O + kyz, (45)

where v4.s € R is a desired positive, bounded and time-
invariant speed profile, and k; € R is an adjustable positive
gain.

Assumption 1. The desired path is regular and C* contin-
uous; hence, the path curvature r is bounded and continu-
ous. O

To facilitate the subsequent control development, an aux-
iliary function ¢ : R — (—1,1) is defined as

¢ = tanh (k2s,) , (46)

where ko € R is a positive gain. From (45) and (46), the
time derivative of ¢ is

cﬁ = ko (1 — qb2) (Vges cos 0 + kix) . 47)

Note that the path curvature and desired speed profile can
be written as functions of ¢.

Based on (44) and (45), auxiliary control inputs ve, w. € R
are designed as

Ve = v— VUss, (48)

We = Wy — Wss,

where wss £ KVges and Vg5 £ V4.5 are computed based on
the control input required to remain on the path.

Substituting (45) and (48) into (44), and augmenting the
system state with (47), the closed-loop system is

T KYUges €08 0 + k1kxy — k1x + ve cos 0 49)
U = UgesSiNO — Kxvges cos O — ki ka? + v, sin f

0 = Kugos— K (Vdes cos O + k1) + we

é = ko (1 — ¢2) (Vges cos 0 + ki) .

The closed-loop system in (49) can be rewritten in a control
affine form as in the previous sections as

X =F(X)+G(X)u, (50)

where X = [z y 60 ¢]T € R* is the state vector,

u = [Ve We]T € R? is the control vector, and the locally
Lipschitz functions F : R* — R* and G : R* — R**2 are
defined as

KYUges cOS 0 + k1kxy — k1o
Vdes SIN O — KTV es COS O — ki ka2
KUdes — K (Vges cos 0 + ki)
ko (1 — ¢2) (Vges cos 0 + k1)

F(X) 2 EN)

cos (#) 0
G (X) = s1n0(0) (1)
0 0

B. Formulation of the Optimal Control Problem

The cost functional for the optimal path following control
problem considered in this section is defined as

J(X,u) = JT(X (1),u(r))dr, (52)

where 7 : R* — [0, 00) is the local cost defined as
r(X,u) = XTQrX +u” Ru

where Qr and R are introduced in Section III-A. The
infinite-time scalar value function V' : R* — [0, 00) for this
problem can be written as

(53)

o
V(X)= milr}fr(X (1) ,u (7)) dr,
Ue
t

where U is the set of admissible control policies.

The objective of the optimal control problem is to deter-
mine the optimal policy u* that minimizes the cost functional
in (52) subject to the constraints in (50). The Hamiltonian is
defined as

ov

HéT(X,u)+67(F+Gu). (54)

Assuming a minimizing policy exists and the value function
is continuously differentiable, the value function satisfies the
HJB equation given as [46]

ov
0=— +H, 55
a0 (55)
where '}‘t/ = 0 since there exists no explicit dependence on

time. The optimal policy is derived from (55) as

% 1 —1 T v g
u® = 2R G <6X> . (56)

As described in the previous sections, the analytical ex-
pression for the optimal controller in (56) requires knowledge
of the value function which is the solution to the HIB. Given
the kinematics in (51), it is unclear how to determine an
analytical solution to (55); hence, the subsequent develop-
ment focuses on the development of an approximate solution.
Specifically, over any compact domain Yy — R*, the value

function V : R* — [0, 00) can be represented by a single-
layer NN with L neurons as

V(X)=WTs(X)+e(X), (57)

where W € R’ is the ideal weight vector bounded above
by a known positive constant, o : R* > RL is a bounded,
continuously differentiable activation function, and € : R* —
R is the bounded, continuously differentiable function recon-
struction error. From (56) and (57), the optimal policy can
be represented as
1

u* = —iR—lGT ("W +€T), (58)
where o/ € RL*% and ¢ € R'** are partial derivatives
with respect to the state. Based on (57) and (58), the value
function and optimal policy NN approximations are defined
as [42]
(59)

1 R

0= —§R_1GTO'/TW@, (60)
where WC, W, € RL are estimates of the ideal weight vector
W. The weight estimation errors are defined as W, = W —
W, and W, & W — W,. The NN approximation of the
Hamiltonian is given as

H=r(X,a)+%(F+Ga)

by substituting (59) and (60) into (54). The Bellman error
0 € R is defined as the error between the optimal and
approximate Hamiltonian and is given as

§2H—H,

(61)

(62)

where H = 0. Therefore, the Bellman error can be written
in a measurable form as

§=r(X,0)+ W, (63)
where w = o' (F + Ga) € RE.

Assumption 2. There exists a set of sampled data points
{¢j e x|li=1,2,...,N} such that Yt € [0, c0),

N T
Wjws;
rank(gj]>=L,

j=1 bj

(64)

A

where p; = 4 /1 + wfwj denotes the normalization constant,
and w; refers to the expression defined after (63) evaluated

at the specified data point (. O

As discussed in [42], [43], the rank condition in (64)
cannot be guaranteed to hold a priori. However, heuristically,
the condition can be met by sampling redundant data, i.e.,
N >» L. Based on Assumption 2, it can be shown that

wT
SN %% 5 0 such that
J= pj

2 T - ijgr <= 2 4
cléel® <€l | D)= | & <elél’, Ve eR
=1 Pi

even in the absence of persistent excitation (cf. [20] and

[21]).
The adaptive update law for W, in (59) is given by

N
5, e 0 by

WC:_F el T~ — = 3 65
nlawzp N oW, Dj (63)

Jj=1

where 7.1, 7.2 € R are positive adaptation gains, I' € RE*E
is a positive and diagonal weighting matrix, 9(1;5 is the

regressor matrix, and p = /1 + wTw is a normalization
constant. The structure of the concurrent learning-based
adaptive update law in (65) is motivated by the fact that
it yields a —WCT W, in the derivative of the Lyapunov-
function candidate without requiring persistence of excitation
(cf. [42], [43]). The update law for Wa in (60) is given by

Viﬂl = proj {_7](1, (Wa - Wc)})

where 7, € R is a positive gain, and proj{-} is a smooth
projection operator [25]. Using the properties of the projec-
tion operator, the policy NN weight estimation errors are
bounded above by positive constants.

(66)

C. Simulation and Experimental Results

To demonstrate the performance of the developed ADP-
based guidance law, simulation and experimental results are
presented. Simulations allow the developed method to be
compared to other optimal solutions, whereas the experimen-
tal results demonstrate the real-time optimal performance.
For both, the vehicle is commanded to follow a figure eight
path with a desired speed of v4es = 0.25m/s. The virtual
target is initially placed at the position corresponding to an
initial path parameter of s, (0) = Om, and the initial error
state is selected as ¢ (0) = [—0.5m —0.5m 7/2rad]T.
Therefore, the initial augmented state is X (0) =
[—0.5m —0.5m 7/2rad Om] . The sampled data
points are selected on a 5 x 5 x 3 x 3 grid about the origin.

The simulation result uses the kinematic model in (44) as
the simulated mobile robot. Since an analytical solution is not
feasible for this problem, the simulation results are directly
compared to results obtained by an offline optimal solver
GPOPS [67]. Figures 5 and 6 illustrate that the state and
control trajectories (denoted by lines) approach the solution
found using the offline optimal solver (denoted by markers),
and Figure 7 shows the NN critic and actor weight estimates
converge to steady state values®. The true values of the ideal
NN network weights are unknown. However, after the NN
converges to a steady state value, the system trajectories and
control values obtained using the developed method correlate
with the system trajectories and control value of the offline
optimal solver. The overall performance of the controller is
demonstrated in the plot of the vehicle’s planar trajectory in
Figure 8.

21t takes ~125 seconds for the mobile robot to traverse the desired path.
However, all figures with the exception of the vehicle trajectory are plotted
only for 60 seconds to provide clarity on the transient response. The steady-
state response remains the same after the initial transient (~20 seconds).

Error State Trajectory

x (m)

30 40 50 60

0 10 20 30 40 50 60
time (s)

Fig. 5. The error state trajectory generated by the developed method is
shown as solid lines, and the collocation points from GPOPS are shown as
markers.

Control Trajectory

ve (m/s)

we (rad/s)

10 20 30 40 50 60
time (s)

Fig. 6. The control trajectory generated by the developed method is shown
as solid lines, and the collocation points from GPOPS are shown as markers.

Critic Weight Trajectory Actor Weight Trajectory

0.5) , N\ : 0.5)

-0. -0.
0 10 20 30 40 50 60 0 10 20 30 40 50 60

time (s) time (s)

Fig. 7. The estimated NN weight trajectories generated by the developed
method in simulation.

Vehicle Trajectory

Startl
————— Desired Path
4 — Actual Path

E o
>
6 ;
-6 -4 -2 0 2 4 6
x (m)
Fig. 8. The planar trajectory achieved by the developed method in
simulation.
Error State Trajectory
1 T T T
E o
"

0 10 20 30 40 50 60

0 10 20 30 40 50 60

=) E
= :
_2 i i i i i
0 10 20 30 40 50 60
time (s)
Fig. 9. The error state trajectory generated by the developed method

implemented on the Turtlebot.

Experimental results also demonstrate the ability of the
developed controller to perform on real-world hardware. The
ADP-based guidance law is implemented on a Turtlebot
wheeled mobile robot. Computation of the optimal guidance
law takes place on the Turtlebot’s on-board ASUS Eee PC
netbook with 1.8 GHz Intel Atom processor. The Turtlebot is
provided velocity commands from the guidance law where
the Turtlebot’s existing low-level controller minimizes the
velocity tracking error. Figure 9 shows convergences of the
error state to a ball about the origin. Figure 10 shows the
NN critic and actor weight estimates converge to steady state
values that are similar to the simulation result. The ability
of the mobile robot to track the desired path is demonstrated
in Figure 11.

VI. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

This tutorial paper presented different state-of-the-art con-
trol approaches and theory for complex systems based on
machine intelligence in order to enable full autonomy. Given

Critic Weight Trajectory Actor Weight Trajectory

) 10 20 30 40 50 60) 10 20 30 40 50 60
time (s) time (s)

Fig. 10. The estimated NN weight trajectories generated by the developed
method implemented on the Turtlebot.

Vehicle Trajectory

Start I
————— Desired Path
Actual Path

=)
Z o0
>
% ;
-6 -4 -2 0 2 4 6
x (m)
Fig. 11. The planar trajectory achieved by the developed method imple-

mented on the Turtlebot.

the presence of modeling uncertainties, the unavailability
of the model, the possibility of cooperative/non-cooperative
goals and malicious attacks compromising the security of
networked teams, there is a need for approaches that respond
to situations not programmed or anticipated in design. The
integration of machine intelligence and human cognitive
models could advance the human-agent feedback loops while
optimizing performance and advancing data decision models.

There are several open questions that need to be addressed
in order to provide assurance for machine intelligence and
decision-making in complex, uncertain and dynamic envi-
ronments.

i) How do we go about realizing the properties that are
essential to autonomy in a safe, secure manner, to obtain a
resilient system that keeps performing well over the lifetime
of the control system?

ii) Could CPS provide an approach towards building
autonomous systems?

iii) How would autonomous control architectures look
like?

These are important open research problems. Approaches
that use CPS and energy like concepts such as passiv-
ity/dissipativity to preserve properties when subsystems are
interconnected offer some promise [8].

REFERENCES

[1] P. Abbeel, Ad. Coates and A. Y. Ng, “Autonomous Helicopter Aero-
batics through Apprenticeship Learning,” In the International Journal
of Robotics Research (IJRR), vol 29, no 13, 2010

[2] T. Alpcan and T. Basar, “An intrusion detection game with limited ob-
servations,” Proc. 12th Int. Symp. on Dynamic Games and Applications,
2006

[3] P J. Antsaklis, “The Quest for Autonomy
ISIS Technical Report ISIS-2011-004, September
(http://www3.nd.edu/ isis/techreports/isis-2011-005.pdf)

[4] P. J. Antsaklis, K. M. Passino and S. J. Wang, “An Introduction
to Autonomous Control Systems,” IEEE Control Systems Magazine,
vol.11, no.4, pp. 5-13, 1991, Reprinted in Neuro-Control Systems:
Theory and Applications, M.M. Gupta and D.H. Rao Eds., Chapter
4, Part 1, pp. 81-89, IEEE Press 1994

[S] P. J. Antsaklis, “Intelligent Control,” Encyclopedia of Electrical and
Electronics Engineering, Vol.10, pp. 493-503, John Wiley & Sons, Inc.,
1999

[6] P. J. Antsaklis, “Intelligent Learning Control,” Guest Editor’s Intro-
duction, IEEE Control Systems Magazine, vol. 15, no. 3, pp. 5-7,
1995; Special Issue on ’Intelligence and Learning’ of the /EEE Control
Systems Magazine, vol.15, no.3, pp. 5-80, 1995

[7]1 P.J. Antsaklis, “Defining Intelligent Control,” Report of the Task Force
on Intelligent Control, PJ Antsaklis, Chair, IEEE Control Systems
Magazine, pp. 4-5 & 58-66, 1994, Also in “Proceedings of the 1994
International Symposium on Intelligent Control,” pp. (i)-(xvii), Colum-
bus, OH, 1994

[8] P. J. Antsaklis, B. Goodwine, V. Gupta, M. J. McCourt, Y. Wang, P.
Wu, M. Xia, H. Yu, and F. Zhu, “Control of Cyber-Physical Systems

Revisited,”
2011

using Passivity and Dissipativity Based Methods,” European Journal of

Control, vol.19, no. 5, pp. 379-388, 2013

[9] L. C. III Baird, “Reinforcement learning in continuous-time: advantage
updating,” In Proc. of ICNN. vol. 4, pp. 2448-2453, 1994

[10] N. Bailey, The mathematical theory of infectious diseases and its
applications, Charles Griffin and Company Ltd., 1975

[11] A. Barrat, M. Barthelemy, A. Vespignani, Dynamical processes on
complex networks, Cambridge University Press, 2008

[12] T. Basar, G. J. Olsder, Dynamic noncooperative game theory (2nd ed.),
Philadelphia, PA: SIAM, 1999

[13] D. Bauso, L. Giarre, and R. Pesenti, “Mechanism design for optimal
consensus problems,” In Proc. Conference on Desision and Control, pp.
3381-3386, 2006

[14] D. P. Bertsekas, J. N. Tsitsiklis, Neuro-dynamic programming MA:
Athena Scientific, 1996

[15] L. Busoniu, R. Babuska, B. De Schutter, “A Comprehensive Survey of
Multi-Agent Reinforcement Learning,” IEEE Transactions on Systems,
Man, and Cybernetics -Part C: Applications and Reviews, vol. 38, no.
2, pp. 15-172, 2008

[16] L. Busoniu, R. Babuska, B. deSchutter, D. Ernst, Reinforcement
Learning and Dynamic Programming Using Function Approximators,
CRC Press, 2010

[17] A. Cardenas, S. Amin, B. Sinopoli, A. Giani, A. Perrig, and S. Sastry,
“Challenges for securing cyber physical systems,” In Workshop on
Future Directions in Cyberphysical Systems Security, 2009

[18] A. Cardenas, S. Amin, and S. S. Sastry, “Secure control: Towards
survivable cyber-physical systems,” In First International Workshop on
Cyber- Physical Systems (WCPS2008), pp. 495-500, Beijing, China,
2008

[19] Y. Cao, W. Yu, W. Ren and G. Chen, “An overview of recent progress
in the study of distributed multiagent coordination,” IEEE Transactions
on Industrial informatics, vol. 9, no. 1, pp. 427-438, 2013

[20] G. V. Chowdhary and E. N. Johnson, “Theory and flight-test validation
of a concurrent-learning adaptive controller,” J. Guid. Control Dynam.,
vol. 34, no. 2, pp. 592-607, March 2011

[21] G. Chowdhary, T. Yucelen, M. Miihlegg, and E. N. Johnson, “Con-
current learning adaptive control of linear systems with exponentially
convergent bounds,” Int. J. Adapt. Control Signal Process., vol. 27,
no. 4, pp. 280-301, 2013

[22] R. Cohen and S. Havlin, Complex Networks: Structure, Robustness
and Function, Cambridge University Press, 2010

[23] D. Dacic, D. Nesic, and P. Kokotovic, “Path-following for nonlinear
systems with unstable zero dynamics,” IEEE Trans. Autom. Control,
vol. 52, no. 3, pp. 481-487, 2007

[24] W. E. Dixon, D. M. Dawson, E. Zergeroglu, and A. Behal, Nonlinear
Control of Wheeled Mobile Robots, ser. Lecture Notes in Control and
Information Sciences. Springer-Verlag London Ltd, 2000, vol. 262

[25] W. E. Dixon, A. Behal, D. M. Dawson, and S. Nagarkatti, Non-
linear Control of Engineering Systems: A Lyapunov-Based Approach.
Birkhauser: Boston, 2003

[26] S. N. Dorogovtsev, J. F. Mendes, “Evolution of networks: From
biological nets to the Internet and WWW,” Oxford University Press,
2013

[27] K. Doya, “Reinforcement learning in continuous-time and space,”
Neural Computation, vol. 12, pp. 219-245, 2000

[28] M. Egerstedt, X. Hu, and A. Stotsky, “Control of mobile platforms
using a virtual vehicle approach,” IEEE Trans. Autom. Control, vol. 46,
no. 11, pp. 1777-1782, Nov 2001

[29] E. Estrada, The Structure of Complex Networks: Theory and Applica-
tions, Oxford University Press, 2011

[30] J.Fax, R. Murray, “Information flow and cooperative control of vehicle
formations,” IEEE Trans. Autom. Control, vol. 49, no. 9, pp. 1465-1476,
2004

[31] T. Faulwasser and R. Findeisen, “Nonlinear model predictive path-
following control,” in Nonlinear Model Predictive Control, L. Magni,
D. Raimondo, and F. Allgower, Eds. Springer, 2009, vol. 384, pp.
335-343

[32] N. Ganguly, A. Deutsch, and A. Mukherjee, Dynamics On and Of
Complex Networks Applications to Biology, Computer Science, and the
Social Sciences, Springer, 2009

[33] M. Garetto, W. Gong, and D. Towsley, “Modeling malware spreading
dynamics,” Proc. IEEE INFOCOM, vol. 3, pp. 1869-1879, 2003

[34] S. Gorman, “Electricity grid in U.S. penetrated by spies,” The Wall
Street Journal, page Al, April 8th 2009

[35] M. Harmon, E., L. C. Baird, A. H. Klopf, “Reinforcement learning
applied to a differential game,” Adaptive behavior, vol. 4, no. 1, pp.
3-28, 1995

[36] P. A.loannou, B. Fidan, Adaptive Control Tutorial, Advances in design
and control, SIAM (PA), 2006

[37] A. Jadbabaie, J. Lin, A. Morse, “Coordination of groups of mobile
autonomous agents using nearest neighbor rules,” IEEE Trans. Autom.
Control, vol. 48, no. 6, pp. 988-1001, 2003

[38] Y. Jiang, and Z.P. Jiang, “Computational adaptive optimal control for
continuous-time linear systems with completely unknown dynamics,”
Automatica, vol. 48, pp. 2699-2704, 2012

[39] Y. Jiang, and Z.P. Jiang, “Robust adaptive dynamic programming
with an application to power systems,” IEEE Trans. Neural Networks
Learning Syst., vol. 24, no. 7, pp. 1150-1156, 2013

[40] C. Jiang, Y. Chen, K.J.R. Liu, “Distributed Adaptive Networks: A
Graphical Evolutionary Game-Theoretic View,” IEEE Transactions on
Signal Processing, vol. 61, no. 22, pp. 5675-5688, 2013

[41] D. Jin, S. Cho, Y. Sung, K. Cho, K. Um, “Reactive virtual agent
learning for NUI-based HRI applications,” Multimedia Tools and Ap-
plications, pp. 1-14, 2014

[42] R. Kamalapurkar, P. Walters, and W. E. Dixon, “Concurrent learning-
based approximate optimal regulation,” in Proc. IEEE Conf. Decis.
Control, Florence, IT, Dec. 2013, pp. 6256-6261

[43] R. Kamalapurkar, J. Klotz, and W. E. Dixon, “Model-based rein-
forcement learning for on-line feedback-nash equilibrium solution of
n-player nonzero-sum differential games,” in Proc. Am. Control Conf.,
2014, pp. 3000-3005

[44] K. Kanjanawanishkul and A. Zell, “Path following for an omnidirec-
tional mobile robot based on model predictive control,” in Proc. IEEE
Int. Conf. Robot. Autom., 2009, pp. 3341-3346

[45] M. A. Khamis, W. Gomaa, “Adaptive multi-objective reinforcement
learning with hybrid exploration for traffic signal control based on coop-
erative multi-agent framework,” Engineering Applications of Artificial
Intelligence, vol. 29, pp. 134-151, 2014

[46] D. Kirk, Optimal Control Theory: An Introduction. Dover, 2004

[47] B. Kiumarsi, F. L. Lewis, “Actor-critic based optimal tracking for
partially unknown nonlinear discrete-time systems,” in press, [EEE
Trans. Neural Networks Learning Syst, 2014

[48] B. Kiumarsi, F. L. Lewis, H. Modares, A. Karimpour, M.-B. Naghibi-
Sistani, “Reinforcement -learning for optimal tracking control of linear
discrete-time systems with unknown dynamics,” Automatica, vol 50,
no. 4, pp. 1167-1175, 2014

[49] H. J. LeBlanc and X. D. Koutsoukos, “Low complexity resilient
consensus in networked multi-agent systems with adversaries,” In Pro-

ceedings of the 15th ACM international conference on Hybrid Systems:
Computation and Control (HSCC ’12), pp. 5-14, 2012

[50] J. Young Lee, J. Bae Park, Y. Ho Choi, “Integral Q-learning and
explorized policy iteration for adaptive optimal control of continuous-
time linear systems,” Automatica, vol. 48, no. 11, pp. 2850-2859, 2012

[51] L. Lapierre, D. Soetanto, and A. Pascoal, “Non-singular path-following
control of a unicycle in the presence of parametric modeling uncertain-
ties,” Int. J. Robust Nonlinear Control, vol. 16, pp. 485-503, 2003

[52] Y. Y. Liu, J. J. Slotine, A. L. Barabdsi, “Controllability of complex
networks,” Nature, vol. 473, no. 7346, pp. 167-173, 2011

[53] B. Luo, H. N. Wu, and T. Huang, “Off-policy reinforcement learning
for Hoo control design,” in press, IEEE Trans. Cybern., 2014

[54] P. Mehta, S. Meyn, “Q-learning and Pontryagin’s Minimum Principle,”
Proc. IEEE Decision and Control, pp. 3598-3605, 2009

[55] M. Mesbahi, M. Egerstedt, Graph theoretic methods in multiagent
networks, Princeton University Press, 2010

[56] S. P. Meyn, Control Techniques for Complex Networks, Cambridge
University Press, 2007

[57] H. Modares, and F. L. Lewis, “Linear quadratic tracking control of
partially-unknown continuous-time systems using reinforcement learn-
ing,” in press, IEEE Trans. Autom. Control, 2014

[58] H. Modares, and F. L. Lewis, “Optimal tracking control of nonlinear
partially-unknown constrained-input systems using integral reinforce-
ment learning,” Automatica, vol. 50, pp. 1780-1792, 2014

[59] P. Morin and C. Samson, “Motion control of wheeled mobile robots,”
in Springer Handbook of Robotics. Springer Berlin Heidelberg, 2008,
pp. 799-826

[60] A. Morro, A. Sgorbissa, and R. Zaccaria, “Path following for unicycle
robots with an arbitrary path curvature,” IEEE Trans. Robot., vol. 27,
no. 5, pp. 1016-1023, 2011

[61] M. Newman, A.-L. Barabasi, and D.J. Watts, The Structure and
Dynamics of Networks, Princeton University Press, 2006

[62] R. Olfati-Saber, R. M. Murray, “Consensus Problems in Networks
of Agents with Switching Topology and Time-Delays,” IEEE Trans.
Autom. Control, vol. 49, no. 9, pp. 1520-1533, 2004

[63] R. Olfati-Saber, J. S. Shamma, “Consensus filters for sensor networks
and distributed sensor fusion,” Proc. of 44th IEEE Conference on
Decision and Control, and the European Conference, pp. 6698-6703,
2005

[64] F. Pasqualetti, A. Bicchi, and F. Bullo, “Consensus Computation in
Unreliable Networks: A System Theoretic Approach,” IEEE Transac-
tions on Automatic Control, vol. 57, no. 1, pp. 90-104, 2012

[65] S. Phelps, “Emergence of social networks via direct and indirect
reciprocity,” Autonomous agents and multi-agent systems, vol. 27, no.
3, pp. 355-374, 2014

[66] W.B. Powell, Approximate Dynamic Programming: Solving the Curses
of Dimensionality, Wiley Series in Probability and Statistics, 2007

[67] A. V.Rao, D. A. Benson, C. L. Darby, M. A. Patterson, C. Francolin,
and G. T. Huntington, “Algorithm 902: GPOPS, A MATLAB software
for solving multiple-phase optimal control problems using the Gauss
pseudospectral method,” ACM Trans. Math. Softw., vol. 37, no. 2, pp.
1-39, 2010

[68] W. Ren, R. W. Beard, E. M. Atkins, “A survey of consensus problems
in multi-agent coordination,” Proc. American Control Conference, pp.
1859-1864, 2005

[69] W. Ren, “Distributed cooperative attitude synchronization and track-
ing for multiple rigid bodies,” IEEE Transactions on Control System
Technology, vol. 18, no. 2, pp. 383-392, 2010

[70] S. Roy, M. Xue, and S. Das, “Security and discoverability of spread
dynamics in cyber-physical networks,” IEEE Transactions on Parallel
and Distributed Systems, vol. 23, no. 9, pp. 1694-1707, 2012

[71] E. Semsar and K. Khorasani, “Optimal control and game theoretic
approaches to cooperative control of a team of multi-vehicle unmanned
systems,” in Proc. IEEE International Conference on Networking,
Sensing and Control, pp. 628-633, 2007

[72] E. Semsar-Kazerooni, K. Khorasani, “An LMI Approach to Optimal
Consensus Seeking in Multi-Agent Systems,” In Proc. Amer. Control
Conf., pp. 4519-4524, 2009

[73] S. Shahaboddin, A. Patel, N. B. Anuar, M. L. M. Kiah, and A.
Abraham, “Cooperative game theoretic approach using fuzzy Q-learning
for detecting and preventing intrusions in wireless sensor networks,”
Engineering Applications of Artificial Intelligence, vol. 32, pp. 228-
241, 2014

[74] Y.Shoham, K. Leyton-Brown, Multiagent systems: algorithmic, ga-
metheoretic, and logical foundations, Cambridge University Press, 2009

[75] J.da Silva and J. Borges de Sousa, “A dynamic programming approach
for the control of autonomous vehicles on planar motion,” in Int. Conf.
Auton. Intell. Syst., June 2010, pp. 1-6

[76] D. E Sittig, H. Singh, “A new sociotechnical model for studying
health information technology in complex adaptive healthcare systems,”
Quality and Safety in Health Care, vol. 19, no. 3, pp. i68-i74, 2010

[77] S.H. Strogatz, “Exploring Complex Networks,” Nature, vol. 410, pp.
268-276, 2001

[78] P. Sujit, S. Saripalli, and J. Borges Sousa, “Unmanned aerial vehicle
path following: A survey and analysis of algorithms for fixed-wing
unmanned aerial vehicles,” IEEE Control Syst. Mag., vol. 34, no. 1, pp.
42-59, Feb 2014

[79] R. S. Sutton, A. G. Barto, Reinforcement Learning- An Introduction,
MIT Press, Cambridge, Massachusetts, 1998

[80] A. Teixeira, H. Sandberg, and K.H. Johansson, “Networked control
systems under cyber attacks with applications to power networks,” In
Proc. American Control Conf., pp. 3690-3696, 2010

[81] J. Tsitsiklis, “Problems in Decentralized Decision Making and Com-
putation,” Ph.D. dissertation, Dept. Elect. Eng. and Comput. Sci., MIT,
Cambridge, MA, 1984

[82] K. G. Vamvoudakis, J. P. Hespanha, B. Sinopoli, Y. Mo, “Detection
in Adversarial Environments,” IEEE Transactions on Automatic Control
(Special Issue on Control of Cyber-Physical Systems), vol. 59, no. 12,
pp. 3209-3223, 2014

[83] K. G. Vamvoudakis, J. P. Hespanha, R. A. Kemmerer, G. Vigna,
“Formulating Cyber-Security as Convex Optimization Problems,” in
Control of Cyber-Physical Systems, Lecture Notes in Control and
Information Sciences, ed. Danielle Tarraf, Volume 449, pp. 85-100,
Springer-Verlag, Berlin, 2013

[84] K. G. Vamvoudakis, F. L. Lewis, G. R. Hudas, “Multi-Agent Dif-
ferential Graphical Games: Online Adaptive Learning Solution for
Synchronization with Optimality,” Automatica, vol. 48, no. 8, pp. 1598-
1611, 2012

[85] K. G. Vamvoudakis, F. L. Lewis, “Online Actor-Critic Algorithm to
Solve the Continuous-Time Infinite Horizon Optimal Control Problem,”
Automatica, vol. 46, no. 5, pp. 878-888, 2010

[86] D. Vrabie, and F. L. Lewis, “Neural network approach to continuous-
time direct adaptive optimal control for partially unknown nonlinear
systems,” Neural Networks, vol. 22, pp. 237-246, 2009

[87] D. Vrabie, O. Pastravanu, M. Abou-Khalaf, and F.L. Lewis, “Adaptive
optimal control for continuous-time linear systems based on policy
iteration,” Automatica, vol. 45, pp. 477-484, 2009

[88] D. Vrabie, K. G. Vamvoudakis, F. L. Lewis, Optimal Adaptive Control
and Differential Games by Reinforcement Learning Principles, Control
Engineering Series, IET Press, 2012

[89] P. Walters, R. Kamalapurkar, L. Andrews, and W. E. Dixon, “Online
approximate optimal path-following for a mobile robot,” in Proc. IEEE
Conf. Decis. Control, 2014

[90] C.J. C. H. Watkins, P. Dayan, “Q-learning,” Machine Learning, vol.
8, pp. 279-292, 1992

[91] G. Weiss, Multiagent systems: a modern approach to distributed
artificial intelligence, MIT press, 1999

[92] P.J. Werbos, Approximate dynamic programming for real-time control
and neural modeling In D. A. White, D. A. Sofge (Eds.), Handbook of
intelligent control. New York: Van Nostrand Reinhold, 1992

[93] T. Yucelen, M. Egerstedt, “Control of Multiagent Systems under
Persistent Disturbances,” In Proc. Amer. Control. Conf., pp. 5263-5269,
2012

[94] H. Zhang, D. Liu, Y. Luo, D. Wang, Adaptive Dynamic Programming
for Control: Algorithms and Stability, Communications and Control
Engineering, Springer, 2012

[95] M. Zhu, S. Martinez, “Attack-resilient distributed formation control
via online adaptation,” In Proc. CDC-ECE Conf., pp. 6624-6629, 2011

