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Abstract

Cameras face a fundamental tradeoff between the
spatial and temporal resolution – digital still cameras
can capture images with high spatial resolution, but
most high-speed video cameras suffer from low spatial
resolution. It is hard to overcome this tradeoff with-
out incurring a significant increase in hardware costs.
In this paper, we propose techniques for sampling, rep-
resenting and reconstructing the space-time volume in
order to overcome this tradeoff. Our approach has two
important distinctions compared to previous works: (1)
we achieve sparse representation of videos by learning
an over-complete dictionary on video patches, and (2)
we adhere to practical constraints on sampling scheme
which is imposed by architectures of present image sen-
sor devices. Consequently, our sampling scheme can be
implemented on image sensors by making a straight-
forward modification to the control unit. To demon-
strate the power of our approach, we have implemented
a prototype imaging system with per-pixel coded expo-
sure control using a liquid crystal on silicon (LCoS)
device. Using both simulations and experiments on a
wide range of scenes, we show that our method can ef-
fectively reconstruct a video from a single image main-
taining high spatial resolution.

1. Introduction

Digital cameras face a fundamental tradeoff between
temporal and spatial resolution. As the frame rate in-
creases, spatial resolution decreases. This limitation is
due to hardware factors such as readout and analog-to-
digital (AD) conversion time of sensors. Although it is
possible to increase the throughput by introducing par-
allel AD convertors and frame buffers [1], this requires
more transistors per pixel, thus lowering the fill-factor
and increasing cost. As a compromise, many current
camera manufacturers implement a “thin-out” mode
(i.e., high speed draft mode), which directly trades
off the spatial resolution for higher temporal resolution
and often degrades image quality, as shown in Figure 1.

The goal of our work is to design an imaging system
that can capture videos with both high spatial and
temporal resolutions. In order to overcome the fun-

damental resolution tradeoff, such a system must ex-
ploit the sparsity of natural videos. Recent progress in
the field of compressive sensing has provided a general
framework for efficient capture of sparse signals [2, 3].
In case of capturing videos, however, there are spe-
cific challenges that must be addressed. In particular,
the sampling function is limited by the hardware re-
strictions of image sensors. On the positive side, the
structure of video signals can be used to build efficient
representations which can increase the measurement ef-
ficiency. A practical video capture system must take
into account such domain specific issues in the way it
samples, represents, and reconstructs videos. In this
paper, we focus on two problems: 1) sampling, and
2) representation of space-time volumes for designing
practical compressive video acquisition systems.

First, how to sample space-time volumes while ac-
counting for the restrictions imposed by imaging hard-
ware? For the maximum flexibility in designing sam-
pling schemes, it is important to have pixel-wise ex-
posure control. Fortunately, most CMOS image sen-
sors can provide pixel-wise controllability by making a
straightforward modification to the control unit (Fig-
ure 2(a)). However, pixels on most CMOS image sen-
sors allow only one continuous exposure during one
camera integration time (Figure 2(b))1. This is be-
cause the pixels are “reset” at the end of each expo-
sure bump. Multiple bumps during a single integration
time would require the electrons to be stored, which in
turn requires expensive per-pixel frame buffers. Next,
the sampling function should ensure that the captured
intensities are within the sensor’s dynamic range. Fi-
nally, the sampling function is restricted to binary val-
ues (0 or 1)2. In this paper, we design sampling func-
tions while adhering to these restrictions. Thus, it is
feasible to implement our techniques on real sensors.

Second, how to efficiently represent space-time vol-
umes for sparse reconstruction? General analytical
transforms, such as discrete cosine transform (DCT)
and wavelets often do not provide the desired level of

1CCD image sensors allow multiple bumps within a single
integration time. However, they usually have only global shutter,
and thus do not provide per-pixel exposure control.

2Fractional values can be simulated by fast binary modulation
to achieve reconstructions at low temporal resolutions [4].
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(e) Our result: High spatial resolution, high frame rate video (d) Our input: A single coded 
exposure image

(a) Resolution trade-off (b) Motion blurred image (c)  Thin-out mode: Low spatial resolution, high frame rate
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Figure 1: Overcoming the space-time resolution tradeoff. (a) Digital cameras face a fundamental tradeoff between
spatial and temporal resolution. (b) Digital still cameras have high spatial resolution but low temporal resolution, which
often results in motion blur. (c) Thin-out mode trades off spatial resolution to increase the frame rate. For large frame
rates, the image quality is severely degraded. (d) By capturing a pixel-wise coded exposure image, and learning a sparse
representation of videos, we achieve high-spatial resolution and frame rate video simultaneously (e).

sparsity. Specific motion models, such as periodic mo-
tion [5], locally rigid motion [6], and linear motion [7],
are applicable only to specific scenarios. Instead, we
propose learning an over-complete dictionary from a
large collection of videos, and represent any given video
as a sparse, linear combination of the elements from
the dictionary. Since the dictionary is learned from
video data itself, it captures common video features,
for example, edges shifting in different orientations, as
shown in Figure 5. Additionally, the redundant nature
of these dictionaries leads to highly sparse representa-
tions [8, 9, 10]. We show that using a learned over-
complete dictionary produces a significant improve-
ment in video reconstruction as compared to previously
used sparsity priors.

While we have not yet fabricated a CMOS image
sensor chip with per-pixel exposure control, we con-
structed an emulation imaging system with an LCoS
device to achieve pixel-wise exposure control [11]. We
compared our approach to several existing techniques
via extensive simulations and experiments. We show
video reconstruction results for a variety of motions,
ranging from simple linear translation to complex fluid
motion and muscle deformations. We achieve tempo-
ral up-sampling factors (N) of 9X − 18X. This en-
ables capturing videos with frame-rates of up to 1000
fps with an off-the-shelf 60 fps machine vision cam-
era, while maintaining high spatial resolution. Please
see the project web-page [24] for video results.
These results demonstrate the potential of using a
learned over-complete dictionary based representation
for compressive video sensing. We believe that this will
motivate development of compressive imaging systems
for a variety of other imaging domains.

Figure 2: CMOS image sensor architecture and its

limitations. (a) Current CMOS image sensors have row

addressing capability (black horizontal connections) which

provides row-wise exposure control. Per-pixel exposure con-

trol can be implemented by adding column addressing (red

vertical connections). (b) Most CMOS sensors do not have

per-pixel frame-buffers on chip. Thus, each pixel can have

only a single bump (on-time) during one camera exposure.

The start and end times of the bump can be controlled.

2. Related Work

Efficient Video Capture: Several recent works
have focused on efficient video capturing. Gupta et al.
[12] proposed synthesizing high-resolution videos from
low-resolution videos and a few high-resolution key
frames. Wilburn et al. [13] proposed using camera ar-
rays to capture high speed video. Wakin et al. [4] used
the single-pixel camera for video capturing by using the
sparsity of 3D discrete wavelet transform (DWT) co-
efficients. Other structural features in videos, such as
the temporal coherence among multiple frames, spar-
sity in 2D DWT, and multi-scale representations have
also been used for video reconstruction [7, 14, 6].
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Coded Exposure Photography: An active re-
search area in computational photography is coded ex-
posure photography. Coded global shutter (i.e., flut-
ter shutter) has been used for motion deblurring [15]
and reconstructing periodic high speed motion with
compressive sensing [5]. Agrawal et al. [16] proposed
temporal super resolution by multiplexing the expo-
sure settings of four co-located video cameras. Gu
et al. [17] implemented coded rolling shutter for CMOS
image sensors for high speed imaging, HDR imaging,
and image deblurring. Nayar et al. [18] implemented a
pixel-wise coded exposure camera using a DMD (digital
micro-mirror device) for HDR imaging, feature detec-
tion, and object recognition. Gupta et al. [19] imple-
mented a similar emulation system with a projector for
motion-aware photography. Recently, Reddy et al. [20]
proposed a compressive video acquisition scheme using
per-pixel coded exposure. Since this technique relies
on optical-flow based regularization, it can not faith-
fully reconstruct scenes containing deforming objects,
occlusions and specularities.

In contrast, our method aims at capturing videos
from a single photograph while maintaining high
spatial-resolution. Our method does not rely on an
analytical motion model, and can handle challenging
scenes, including occlusions, deforming objects and
gas and fluid flow. Moreover, unlike previous ap-
proaches [7, 6], our sampling function is designed so
that it is implementable in real hardware.

3. Overview of Our Approach

Let E(x, y, t) denote the space-time volume corre-
sponding to an M × M pixel neighborhood and one
frame integration time of the camera. A conventional
camera captures the projection of this volume along
the time dimension, resulting in M×M measurements.
Suppose we wish to achieve an N times gain in tempo-
ral resolution, i.e., we wish to recover the space-time
volume E at a resolution of M ×M ×N . Let S(x, y, t)
denote the per-pixel shutter function of the camera
within the integration time (S(x, y, t) ∈ {0, 1}). Then,
the captured image I(x, y) is

I(x, y) =
N∑
t=1

S(x, y, t) · E(x, y, t). (1)

For conventional capture, S(x, y, t) = 1 ,∀(x, y, t).
Our goal is to reconstruct the space time volume E
from a single captured image I.

Equation 1 can be written in matrix form as I = SE,
where I (observation) and E (unknowns) are vectors
with M ×M and M ×M ×N elements, respectively.
Clearly, the number of observations is significantly
lower than the number of unknowns, resulting in an
under-determined linear system. Recent advances in

Figure 3: Overview of our approach. There are three
main components of our approach: (1) Coded exposure
sampling and projection of space-time volumes into images,
(2) learning an over-complete dictionary from training video
data, and (3) sparse reconstruction of the captured space-
time volume from a single coded image.

the field of compressive sensing [2, 3] have shown that
this system can be solved faithfully if the signal E has
a sparse representation α using a dictionary D:

E = Dα = α1D1 + · · ·+ αkDk. (2)

where α = [α1, · · · , αk]T are the coefficients, and
D1, · · · ,Dk are the elements in the dictionary D. The
coefficient vector α is sparse, i.e., only a few coefficients
are non-zero. In this paper, the over-complete dictio-
nary D is learned from a random collection of videos.
At capture time, the space-time volume E is sampled
with a coded exposure function S and then projected
along the time dimension, resulting in a coded expo-
sure image I. Given D, S and I, E is estimated using
standard sparse reconstruction techniques, as shown in
Section 5.

Figure 3 shows the flow-chart of our approach. In
the remainder of the paper, we discuss designing the
coded exposure function (Section 4), the dictionary
learning and sparse reconstruction (Section 5), and
our hardware prototype and experimental results (Sec-
tion 6).

4. Designing the Sampling Function

We design sampling functions while adhering to the
following restrictions imposed by imaging architecture:
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• Binary shutter: The sampling function S is bi-
nary i.e., S(x, y, t) ∈ {0, 1}. At any time t, a pixel
is either collecting light (1-on) or not (0-off).

• Single bump exposure: Since CMOS sensors do
not have per-pixel frame buffers on chip, each pixel
can have only one continuous “on” time (i.e., a
single bump) during one camera integration time,
as shown in Figure 2(b).

• Fixed bump length for all pixels: Image sen-
sors have a limited dynamic range. A sampling
function with a large range of bump lengths among
pixels would require a sensor to have a large dy-
namic range. We consider only the sampling func-
tions with a fixed bump length.

We use the following scheme to assign the bump-
start time for all pixels. First, we randomly select the
bump-start time of the pixels within a M ×M patch
on the top left corner of an image sensor (denoted as
p0), such that the union of the “on” time of these M2

pixels will cover the entire camera integration time,
i.e.,

∑
(x,y)∈p0

S(x, y, t) ≥ 1, for t = 1, · · · , N where N

is the number of frames we want to reconstruct from
a coded exposure image. Next, consider the adjacent
M ×M patch p1 to the right of p0. Since there are
M − 1 overlapped columns, we keep the bump-start
times for these overlapped pixels, and randomly assign
the bump-start times for pixels in the new column in p1,
according to the same constraint for p0. This process
iterates until all pixels have been assigned.

We use simulations to find the optimal bump length3

. Codes with a long bump length attenuate high fre-
quencies, while codes with a short bump length col-
lect less light, leading to poor signal-to-noise ratio.
For each code with a given bump length, we simu-
late coded image capture using real high-speed video
data. Signal-independent noise is added to the simu-
lated coded exposure image. From the coded image,
we recover the space-time volume using the proposed
sparse reconstruction technique (Section 5). Table 1
shows the peak signal-to-noise-ratio (PSNR) values as
a function of the bump length and noise level, averaged
over a wide range of scenes. As expected, as the noise
increases, codes with larger bump lengths are favored.
In our experiments, we set the bump length to be 2
(for 9X gain) or 3 (for 18X gain).

4.1. Comparison of Sampling Schemes
We compare our random pixel-wise sampling with

random row-wise sampling [17] using simulations on

3The focus of this paper is not on finding the optimal space-
time sampling scheme. Because of this, we restrict our sampling
design to a 1-D search over only the bump-lengths. The result-
ing sampling functions are not necessarily optimal. Finding the
optimal space-time sampling function would require a rigorous
theoretical analysis, which is beyond the scope of this paper.

Bump Noise standard deviation σ (Grey-levels)
length 0 1 4 8 15 40

1 22.96 22.93 22.88 22.50 21.41 17.92
2 23.23 23.22 23.18 23.06 22.62 20.76
3 23.37 23.37 23.35 23.25 23.03 21.69
4 23.29 23.30 23.25 23.27 22.99 22.08
5 23.25 23.26 23.24 23.19 23.07 22.34
6 23.06 23.10 23.07 23.06 22.85 22.32
7 22.93 22.92 22.89 22.85 22.80 22.29
8 22.80 22.81 22.77 22.78 22.69 22.23
9 22.63 22.62 22.61 22.59 22.53 22.09
10 22.49 22.48 22.50 22.49 22.43 22.06

* The highest PSNR value in each column is highlighted in bold.

Table 1: Evaluating codes with different bump
lengths: For N = 36, we generate codes with bump lengths
from 1 to 10. For each code, we simulate coded expo-
sure image capture using high-speed video data and add
signal-independent noise of varying levels. Peak signal-to-
noise-ratio (PSNR) values are computed by comparing the
reconstructed space-time volume with the ground-truth.

Pixel-wise random exposure

Row-wise random exposure

Exposure pattern 
(1 out of 36)

Captured Coded 
Exposure Image

Reconstructed Frame
(1 out of 36)

Figure 4: Comparison of pixel-wise and row-wise
sampling using simulations. We used the reconstruc-
tion method proposed in this paper for both the sampling
techniques. 36 frames were reconstructed from a single
coded image. Left column: One sub-frame of the expo-
sure pattern. Middle column: Input coded exposure im-
ages. Right column: One sub-frame of the reconstructed
space-time volume. Pixel-wise sampling provides more flex-
ibility compared to row-wise sampling, resulting in higher
quality reconstructions.

high-speed video data. Note that the comparison here
is for the sampling scheme only - we used the same re-
construction method (proposed in this paper) for both
the sampling schemes. Results are shown in Figure 4.
Images in the left column are one sub-frame of the
sampling function S(x, y, t) for t = 1. White implies
S(x, y, t) = 1, and black implies S(x, y, t) = 0. Images
in the middle column are the coded captured images,
and the right column shows one sub-frame of recon-
structed space-time volume E(x, y, t). Reconstruction
using row-wise exposure is of poor quality. Pixel-wise
sampling provides more flexibility compared to row-
wise sampling, resulting in better reconstructions.
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Figure 5: Over-complete dictionary is learned from 20
videos of resolution 384x216, rotated into 8 different ori-
entations and played forward and backward. The frame
rate of the training videos matches the target frame rate
(300 − 1000 fps). The learned dictionary captures various
local features and structures in videos, such as edges shift-
ing in different orientations. Please see the project web-
page [24] for videos of the learned dictionary.

5. Sparse Representation via Learning

In this section, we discuss the details of building
a learned over-complete dictionary based sparse rep-
resentation of videos, and reconstructing videos from
a single coded exposure image. In general, there is a
tradeoff between the generalizability and the compact-
ness of learned dictionary based representations. While
compact representations can be achieved by construct-
ing scene class specific dictionaries (such as sports, out-
doors, indoors), in order to achieve more generalizabil-
ity, we choose to learn a dictionary from videos cov-
ering a wide range of scene, such as racing cars, horse
running, skiing, boating and facial expression.

We model a given video as a sparse, linear com-
bination of the elements from the learned dictionary
(Equation (2)). The over-complete nature of the dic-
tionary, and the fact that the dictionary captures most
common structures and features in videos, results in
highly compact and sparse representations [2, 9, 21].

In our work, we trained an over-complete dictionary
on video patches of size = M × M × N (in our ex-
periments, we chose M = 7, N = 36), derived from a
random selection of videos (20 sequences), using the
K-SVD algorithm [21]. The frame rates of the training
videos are close to our target frame rate (500 ∼ 1000
fps). To add variation, we performed rotations on the
sequences in eight directions, and played the sequences
forward and backward. We learned 5000× 20 = 100K
dictionary elements. Figure 5 shows a part of the

Figure 6: Comparison of different representations.
Learned dictionaries (bottom row) capture the sparsity
in signal more effectively as compared to analytical bases
(top row), resulting in better reconstructions. Increasing
the number of bases (over-complete dictionary) further im-
proves the reconstruction quality. For this comparison,
same sampling scheme (pixel-wise exposure) and sparse re-
construction was used.

learned dictionary. As shown, the dictionary captures
features such as shifting edges in various orientations.
Please refer to the project web-page [24] for the video
of the learned dictionary.

5.1. Sparse Reconstruction
Once we learn the over-complete dictionary, we ap-

ply a standard sparse estimation technique [2] to re-
cover the space-time volume from a single captured im-
age. Combining Equation (1) (for sampling) and Equa-
tion (2) (for sparse representation), we get I = S Dα,
where the captured coded image I, the shutter func-
tion S, and the over-complete dictionary D are known.
We use the orthogonal matching pursuit (OMP) algo-
rithm [22] to recover sparse estimate of the vector α̂:

α̂ = arg min
α

‖α‖0 subject to ‖SDα− I‖22 < ε. (3)

The space-time volume is computed as Ê = Dα̂. We
perform the reconstruction for all the M ×M patches
in the image. Every pixel (x, y) lies in M2 patches
and thus its time-varying appearance E(x, y, t) is re-
constructed M2 times. We average these M2 recon-
structions to obtain the final estimate of E(x, y, t).

5.2. Performance Comparison
Figure 6 shows the performance comparison for dif-

ferent representations. In this comparison, the same
sampling function and reconstruction method was used
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Figure 7: Comparison of video reconstruction techniques using simulations. Left: (a) One frame of original
sequence. (b) Pixel-wise coded exposure image. (c) One sub-frame of the thin-out movie (row-wise exposure). (d) 3D
bilinear interpolation [19]. (e) 3D DCT dictionary and sparse reconstruction. (f) Our result using the learned over-complete
dictionary and sparse reconstruction. In this comparison, 36 frames were reconstructed from a single coded image. Right:
As the number of frames reconstructed from a single image increases, the performance of all the techniques degrades.

for all the representations. The comparisons were per-
formed using simulations on high-speed video data.
The trained over-complete dictionary has higher PSNR
as compared to the analytical bases for the same
number of bases elements. Increasing the number of
bases elements further improves the reconstructed im-
age quality as well as the PSNR values.

Figure 7 shows the comparison of the performance of
video acquisition between our approach (i.e., a learned
over-complete dictionary + sparse reconstruction) and
several previous techniques: the thin-out mode (Fig-
ure 7(c)), the pixel-wise grid exposure and 3D bilinear
interpolation [19](Figure 7(d)), and the pixel-wise ran-
dom exposure and reconstruction using a 3D DCT dic-
tionary (Figure 7(e)). Our result has more details, both
on the moving objects and background. The right side
of Figure 7 shows the PSNR of the reconstructed video
using these techniques, as the target temporal resolu-
tion increases. As expected, the performance degrades
as more frames are reconstructed from a single cap-
tured image. Our approach consistently outperforms
the other methods. Please refer to the project web-
page [24] for more comparison results in videos.

6. Hardware Prototype and Experiments

Our sampling scheme (Section 4) requires fast per-
pixel modulation. We simulate fast per-pixel shutter
using a liquid crystal on silicon (LCoS) device. These
devices have been used as spatial light modulators in
various imaging applications [23, 11], and can display
binary patterns at fast rates (up to 3000Hz.), mak-
ing them ideally suited to our application. Figure 8
illustrates our hardware setup. It consists of an im-
age sensor (Point Grey Grasshopper), an LCoS chip
(Forth Dimension Displays, SXGA-3DM, spatial reso-

Figure 8: Our hardware setup: Optical diagram (top)
and image (bottom) of our setup. Our system emulates fast
per-pixel shutter using a liquid crystal on silicon device.

lution 1280 × 1024), a polarizing beam-splitter, relay
lenses and an objective lens. The scene is first im-
aged on a virtual image plane through the objective
lens, then on the LCoS, and finally on the image sen-
sor. The camera and LCoS are synchronized using a
trigger signal from the LCoS. During a single camera
exposure, the LCoS displays several binary images, cor-
responding to the sampling function. We typically run
the LCoS at 9 ∼ 18 times the frame-rate corresponding
to the integration time of the camera. For example, for
an 18ms camera integration time (55Hz.), we operated
the LCoS at 1000Hz., resulting in 18 video frames from
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Coded Exp. Image (27ms) Reconstructed Frames (3 out of 9)Close-up

Frame 5 Frame 9Frame 1

Coded Exp. Image (27ms) Reconstructed Frames (3 out of 9)Close-up

Frame 5 Frame 9Frame 1

Coded Exp. Image (18ms) Reconstructed Frames (3 out of 18)Close-up

Frame 9 Frame 18Frame 1

Coded Exp. Image (18ms) Reconstructed Frames (3 out of 18)Close-up

Frame 9 Frame 18Frame 1

Figure 9: Experimental results: First column: Input coded exposure images. Numbers in parentheses denote the
camera integration time for the input image. Second column: Close-ups illustrate the coded motion blur. Third-fifth
columns: The reconstructions maintain high spatial resolution despite a significant gain in temporal resolution (9X−18X).
Notice the spatial details inside the eye, on the coin and the table, wing of the plane and the stripe on the ball.

a single coded exposure image.

Experimental Results: Using our hardware proto-
type, we capture and reconstruct scenes comprising of
a wide range of motions. Figure 9 shows the results.
The first example demonstrates the motion of an eye-
lid during blinking. This motion is challenging as it in-
volves occlusion and muscle deformations. The input
frame was captured with an exposure time of 27ms.
Notice the coded motion blur on the input frame. We
recover 9 video frames from the captured image, equiv-
alent to an output frame rate of 333 fps. Please see the
project web-page [24] for the complete video.

The second example shows a coin rotating on a ta-
ble. This motion is challenging due to occlusions; as
the coin rotates, one face of the coin becomes visible to
the camera. The input frame was captured with an ex-
posure time of 27ms. From the single captured image,
9 output frames were reconstructed, while maintaining
high spatial resolution, both on the coin and the table.
The third and the fourth examples consist of rotating
rotor-blades on a toy plane and a ball falling vertically,
respectively. The input frames, captured with an ex-
posure time of 18ms, show large motion blur. In order
to recover the high-speed motion, we performed the
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reconstruction at 1000 fps (18 output frames). Notice
the sharp edges of the blade and the texture on the ball
in the output frames. The spatial detail on the static
wings of the toy-plane are nearly the same as the in-
put image. Please see the project web-page [24]
for more examples, ranging from simple linear
translation to complex fluid motion.

7. Discussion and Limitations

In this paper, we proposed an efficient way of cap-
turing videos from a single photograph using pixel-wise
coded exposure. We incorporated the hardware restric-
tions of existing image sensors into the design of the
sampling schemes, and implemented a hardware proto-
type with an LCoS device that has pixel-wise exposure
control. By using an over-complete dictionary learned
from a large collection of videos, we achieved sparse
representations of space-time volumes for efficient re-
construction. We demonstrated the effectiveness of our
method via extensive simulation and experiments.

The proposed method has several limitations. First,
the maximum temporal resolution of the over-complete
dictionary has to be pre-determined (e.g., 36 frames).
To reconstruct videos at different temporal resolutions,
we have to train different dictionaries. The hardware
setup requires precise alignment of the camera and the
LCoS. Imperfect alignment can cause artifacts (ghost-
ing), as is visible in some results. We believe that
these artifacts will be reduced significantly once per-
pixel coded exposure is implemented on chip.
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