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This article aims to further improve previously developed design for Acrobot walking based on partial exact
feedback linearisation of order 3. Namely, such an exact system transformation leads to an almost linear system
where error dynamics along trajectory to be tracked is a 4-dimensional linear time-varying system having three
time-varying entries only, the remaining entries being either zero or one. In such a way, exponentially stable
tracking can be obtained by quadratically stabilising a linear system with polytopic uncertainty. The current
improvement is based on applying linear matrix inequalities (LMI) methods to solve this problem numerically.
This careful analysis significantly improves previously known approaches. Numerical simulations of Acrobot
walking based on the above-mentioned LMI design are demonstrated as well.
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1. Introduction

Efficient control of underactuated mechanical systems

constitutes one of the most challenging problems of

recent decades, see Fantoni and Lozano (2002),

Zikmund and Moog (2006) and references therein.

Reliable and economic walking is a typical example of

studies involving both control and robotic communi-

ties. One of the simplest underactuated mechanical

systems is the Acrobot. Despite being a seemingly

simple system, the Acrobot comprises many important

features of underactuated walking robots having

degree of underactuation equal to one. Following

ideas of Spong (1998) and Grizzle, Moog, and

Chevallereau (2005) one can show that any n-link

having n� 1 actuators between its links can be

decomposed into a fully actuated system and an

Acrobot-like underactuated system ‘disturbed’ by

some variables from that fully actuated (and therefore

fully exact feedback linearisable) subsystem. In other

words, control strategies developed for Acrobot only

could be actually straightforwardly generalised to the

case of any n-link having n� 1 actuators between its

links. As a consequence, effective control of the

Acrobot is an important step on the route to under-

actuated walking. Recently, numerous papers have

addressed stabilisation of its inverted position, extend-

ing its domain of attraction (Hauser and Murray 1990;

Furuta, Yamakita, and Kobayashi 1991; Bortoff and

Spong 1992; Wiklund, Kristenson, and Åström 1993),

or even stable walking-like movement (Čelikovský and

Zikmund 2007; Zikmund, Čelikovský, and Moog 2007;

Čelikovský, Zikmund, and Moog 2008).
This article is a continuation of the research

initiated in Čelikovský and Zikmund (2007),
Zikmund et al. (2007), Čelikovský et al. (2008).
In Čelikovský et al. (2008), the asymptotical tracking
of a suitable target trajectory generated by an
open-loop reference control was obtained. As might
have been expected, asymptotical tracking constitutes a
principally more complicated problem than stabilisa-
tion since the corresponding error dynamics has a more
complex structure than the Acrobot model itself.
In particular, designed tracking feedback could
handle limited initial tracking error only and its
performance was limited to the case when the
Acrobot walking-like movement was very slow. This
was caused by a specific analytic method to stabilise
tracking error dynamics. Despite removing the key
drawback of slow velocity in the analytical design in
Anderle and Čelikovský (2009) using special transfor-
mation of the error dynamics, the resulting feedback
still imposes unrealistically high torques. Therefore, a
natural idea is to involve more precise, though
numerical only, design based on linear matrix inequal-
ities (LMI) optimisation of the feedback gains to
significantly improve previous limited results.
Recently, the first attempt to involve numerical LMI
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based approach was made in Anderle, Čelikovský,
Henrion, and Zikmund (2009). Nevertheless, results
presented there use quite rough polytopic estimates for
tracked walking-like trajectory which results into
unrealistically high control efforts.

The purpose of this article is to improve these results
using two strategies. First, tighter polytopic estimates of
the tracked trajectory may be used. Secondly, addi-
tional criterion for LMI optimisation can be imposed
that would directly or indirectly impose limits on the
level of the control action. As will be shown in the
sequel, these strategies are successful and significantly
improve the results of Anderle et al. (2009) and
Anderle and Čelikovský (2009).

The rest of the article is organised as follows. The
next section briefly presents the model of the Acrobot
together with the main theoretical prerequisites neces-
sary for further problem analysis. Section 3 describes
the essence of the LMI approach while numerical
optimisation results and subsequent simulations of
Acrobot walking are presented in Section 4. The final
section draws briefly some conclusions and discusses
some open future research outlooks towards efficient
underactuated walking.

2. Acrobot

The Acrobot depicted in Figure 1 is a special case of an
n-link chain with n� 1 actuators attached by one of its
ends to a pivot point through an unactuated rotary
joint. Such a system can be modelled by the usual
Lagrangian approach, see Greiner (2003). The corre-
sponding Lagrangian is as follows:

Lðq, _qÞ ¼ K� V ¼
1

2
_qTDðqÞ _q� VðqÞ, ð1Þ

where q denotes an n-dimensional vector on the
configuration manifold Q and D(q) is the inertia
matrix, K is the kinetic energy and V is the potential
energy of the system. The resulting Euler–Lagrange
equation is

d

dt

@L

@ _q1
�
@L

@q1
d

dt

@L

@ _q2
�
@L

@q2

..

.

d

dt

@L

@ _qn
�
@L

@qn

2
66666666664

3
77777777775
¼

0

�2

..

.

�n

2
66664

3
77775 ¼ u, ð2Þ

where u stands for the vector of external controlled
forces. System (2) is a so-called underactuated mechan-
ical system having degree of underactuation equal to
one, see Spong (1998). Moreover, the underactuated
angle is at the pivot point. Equation (2) leads to a
dynamic equation of the form

DðqÞ €qþ Cðq, _qÞ _qþ GðqÞ ¼ u, ð3Þ

where D(q) is the inertia matrix, Cðq, _qÞ contains
Coriolis and centrifugal terms, G(q) contains gravity
terms and u stands for the vector of external forces.

For the Acrobot, these computations lead to a
second-order non-holonomic constraint and a kinetic
symmetry, i.e. the inertia matrix depends only on the
second variable q2:

DðqÞ ¼
�1 þ �2 þ 2�3 cos q2 �2 þ �3 cos q2
�2 þ �3 cos q2 �2

� �
, ð4Þ

and the other systems matrices are given by

Cðq, _qÞ ¼
��3 sin q2 _q2 �ð _q2 þ _q1Þ�3 sin q2

�3 sin q2 _q1 0

� �
, ð5Þ

GðqÞ ¼
��4g sin q1 � �5g sin ðq1 þ q2Þ

��5g sin ðq1 þ q2Þ

� �
, ð6Þ

where the 2-dimensional configuration vector (q1, q2)
consists of angles defined on Figure 1 and

�1 ¼ ðm1 þm2Þl
2
1 þ I1, �2 ¼ m2l

2
2 þ I2,

�3 ¼ m2l1l2, �4 ¼ ðm1 þm2Þl1, �5 ¼ m2l2:
ð7Þ

The partial exact feedback linearisationmethod is based
on a system transformation into a new system of
coordinates that display linear dependence between an
output and a new input, see Isidori (1996). From a
theoretical point of view, the mechanical system
dynamics is described by an n-dimensional state-space
equation. Static state-feedback linearisation using a
suitable output function of relative degree r yields a
linear subsystem of dimension r. In other words,Figure 1. Acrobot.
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the maximal feedback linearisation problem consists in
finding a linearising function with maximal relative
degree. In Grizzle et al. (2005) it was shown that if the
generalised momentum conjugate to the cyclic variable
is not conserved (as it is the case of the Acrobot)
then there exists a set of outputs that defines
one-dimensional exponentially stable zero dynamics.
In the case of the Acrobot it means that it is possible to
find a function yðq, _qÞ with relative degree 3 that
transforms the original system (3) by a local coordinate
transformation z ¼ T ðq, _qÞ, namely

z1 ¼ y, z2 ¼ _y, z3 ¼ €y, z4 ¼ f ðq, _qÞ, ð8Þ

into a new input/output linear system with one-
dimensional nonlinear zero dynamics:

_z1 ¼ z2, _z2 ¼ z3, _z3 ¼ �ðq, _qÞ�2 þ �ðq, _qÞ ¼ w,

_z4 ¼  1ðq, _qÞ þ  2ðq, _qÞ�2: ð9Þ

In the case of the Acrobot there are two independent
functions with relative degree 3 transforming the
system into the desired form1 (9), namely

� ¼
@L

@ _q1
¼ ð�1 þ �2 þ 2�3 cos q2Þ _q1 þ ð�2 þ �3 cos q2Þ _q2,

ð10Þ

p ¼ q1 þ
q2
2

þ
2�2 � �1 � �2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�1 þ �2Þ

2
� 4�23

q arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1 þ �2 � 2�3
�1 þ �2 þ 2�3

s
tan

q2
2

 !
:

ð11Þ

The zero dynamics is used to investigate internal
stability when the corresponding output is forced to
zero. For the simplest cases y ¼ Cp or y ¼ C� the
resulting zero dynamics is only critically stable.
However, considering the output function y ¼
C1pðqÞ þ C2�ðq, _qÞ one gets the following zero dynam-
ics _pþ C1½C2d11ðq2Þ�

�1p ¼ 0 which is asymptotically
stable whenever C1/C2 is positive, d11(q2) being the
corresponding part of the inertia matrix D in (3).
Unfortunately, the corresponding transformations
have a complex set of singularities, unless C1 is very
small, which is not suitable for practical purposes.

In Čelikovský et al. (2008), it was shown that the
above functions p, � having maximal relative degree 3
can be used in a slightly different way. Namely, the
following transformation can be defined:

�1 ¼ p, �2 ¼ �, �3 ¼ _�, �4 ¼ €�: ð12Þ

Notice that by (10), (11) and some straightforward but
laborious computations the following relation holds:

_p ¼ d11ðq2Þ
�1�, ð13Þ

where d11(q2)¼ (�1þ �2þ 2�3 cos q2) is the correspond-

ing element of the inertia matrix D in (3). Applying

(12), (13) to (3) we obtain Acrobot dynamics in partial

exact linearised form

_�1 ¼ d11ðq2Þ
�1�2, _�2 ¼ �3, _�3 ¼ �4,

_�4 ¼ �ðqÞ�2 þ �ðq, _qÞ ¼ w, ð14Þ

with new coordinates � and input w being well defined

whenever �(q)�1 6¼ 0. An important feature here is that

the set of possible singularities where �(q)�1¼ 0

depends only on positions, not on velocities, and it

has favourable properties, as will be shown in detail

later.
To determine the region where such a transforma-

tion can be applied, let us express it explicitly. Namely,

straightforward computations show that

� ¼

�1

�2

�3

�4

2
6664

3
7775 ¼ Tðq1, q2, _q1, _q2Þ :¼

T1

T2

T3

T4

2
6664

3
7775, ð15Þ

T1

T3

T2

T4

2
6664

3
7775 ¼

pðq1, q2Þ

�4g sin q1 þ �5g sinðq1 þ q2Þ

�2ðq1, q2Þ
_q1

_q2

� �
2
6664

3
7775, ð16Þ

where p, � are given by (10,11) and �2 by (21) later on.

Further, denote

� ¼
�1ð�1, �3Þ

�2ð�1, �3Þ

� �
, ð17Þ

such that

T1ð�1ð�1,�3Þ,�2ð�1,�3ÞÞ ¼ �1, T3ð�1ð�1,�3Þ,�2ð�1,�3ÞÞ ¼ �3:

ð18Þ

It holds by (15)–(16) that

@ ½�1, �3, �2, �4�
>

@ ½q>, _q>�>
¼

�1ðq1, q2Þ 0

�3ðq, _qÞ �2ðq1, q2Þ

� �
, ð19Þ

where q :¼ [q1, q2]
>,�3ðq, _qÞ is a certain (2� 2) matrix

of smooth functions while

�1ðq1,q2Þ

¼
1

�2þ �3 cosq2
�1þ �2þ2�3 cosq2

�4gcosq1þ �5gcosðq1þq2Þ �5gcosðq1þq2Þ

2
4

3
5,
ð20Þ

�2ðq1, q2Þ

¼
�1 þ �2 þ 2�3 cos q2 �2 þ �3 cos q2

�4g cos q1 þ �5g cosðq1 þ q2Þ �5g cosðq1 þ q2Þ

� �
:

ð21Þ
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Further, it obviously holds for (17), (18) that

@�ð�1,�3Þ

@ ½�1,�3�
>

¼��11 ðq1,q2Þ

¼
1

sðqÞ

�5gcosðq1þq2Þ
��2� �3 cosq2

�1þ �2þ2�3 cosq2
��4gcosq1

� �5gcosðq1þq2Þ

� �
1

2
664

3
775,
ð22Þ

sðqÞ :¼ det�1 ¼
det�2

d11ðqÞ

¼ g

ð�1 þ �3 cos q2Þ�5 cosðq1 þ q2Þ

� ð�2 þ �3 cos q2Þ�4 cos q1

� �
d11ðqÞ

: ð23Þ

Moreover, the coordinate change (15), (16) is locally
invertible at each point where

sðqÞ 6¼ 0: ð24Þ

Indeed, D(q)4 0 and the above �ðq, _qÞ, �ðq, _qÞ
from (14) are given as

�ðq, _qÞ ¼
det�2

detDðqÞ
,

0
�ðq, _qÞ

� �
¼ �3ðq, _qÞ _q, ð25Þ

where �2 is given by (21). By virtue of Čelikovský
(1994) and the references therein, the coordinate
change (16) is globally invertible on any open set
where (24) holds and which is both connected and
simply connected. In other words, the Acrobot model
is state and feedback equivalent to system (14) on any
such set. Figure 2 depicts some of these sets. Moreover,
for possible walking application, the following lemma
is useful, see Čelikovský et al. (2008).

Lemma 2.1: Relation (24) holds if the Acrobot centre
of mass is strictly above the surface and

ðm1 þm2Þl
2
1 þ I1 4m2l1l2,

m2l
2
2 þ I2 4m2l1l2,

q1 2 ð�	=2,	=2Þ, q1 þ q2 2 ð3	=2,	=2Þ:

Proof: Instead of performing tedious computations,
let us give the following mechanics motivated proof.
First, notice that (24) means that matrix (21) is regular.
Secondly, one can easily see that the first assumption
of Lemma 2.1 is equivalent to �14 �3, �24 �3, cf. (7),
therefore the entries of the first row of matrix (21) are
always strictly positive. At the same time, the first
entry of the second row of matrix (21) is the overall
Acrobot potential energy with respect to the ground
surface while the second entry of the second row is the
potential energy of the second link only with respect to

the actuated joint position. Notice that q12 (�	/2,	/2)
means that the first link points upwards while

q1þ q22 (3	/2,	/2) means that the second link points

downwards. Therefore, the first entry of the second
row of matrix (21) is positive, while its second entry is

negative. Taking into account, as shown above, that

the entries of the first row of the matrix (21) are strictly

positive, one concludes that both rows of that matrix
are always linearly independent, i.e. matrix (21) is

regular and therefore s(q) 6¼ 0. œ

Remark 1: Notice that the condition of Lemma 2.1

specifying that q12 (�	/2,	/2) and q1þ q22 (3	/2,	/2)
is quite natural in the case of walking-like movement of
the Acrobot. Indeed, its violation means that either the

stance leg is below or fully lying on the walking

surface, or the swing leg points horizontally or upward.
Apparently, such configurations are not likely or

should be avoided during walking. Moreover, the

remaining conditions of Lemma 2.1 obviously hold

for almost any reasonable combination of lengths and
masses, e.g. it holds for l1¼ l2 and, by continuity

arguments, for sufficiently small jl1� l2j as well. The

last feature may be used to shorten slightly the swing
leg during a step, to prevent hitting the ground. Again,

walking robots having very different leg link lengths

are unrealistic for many other practical reasons.
The situation is well demonstrated in Figure 2,

where full lines show singularities s(q)¼ 0 while dashed

lines denote the configurations with centre of mass

lying on the walking surface. Proof of Lemma 2.1

applies within the crosshatched area and any

Figure 2. Singularities and possible regular set of coordinate
change (16). Here s(q) is given by (23), while yCOM(q) stands
for the vertical distance of the Acrobot centre of mass from
the ground. Notice that in real application this distance
should obviously be significantly bigger than zero.

1644 M. Anderle et al.
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reasonable walking takes place even deep inside this

crosshatched area.

In the sequel we will therefore concentrate our-

selves on the study of system (14). This system is

almost linear, but there is a nonlinearity d11(q2)
�1 in

the first row that depends on q2 only. Instead of

expressing this nonlinearity in coordinates � and trying

to study its exact influence, one can use some favour-

able qualitative properties. Namely, one can easily

see that

amin � d11ðq2Þ
�1
� amax, ð26Þ

with

amin ¼
1

m2ðl1 þ l2Þ
2
þm1l

2
1 þ I1 þ I2

, ð27Þ

and

amax ¼
1

m2ðl1 � l2Þ
2
þm1l

2
1 þ I1 þ I2

: ð28Þ

Notice that the quantity

amax � amin ¼
4l1l2m2ðm2ðl1 þ l2Þ

2
þm1l

2
1 þ I1 þ I2Þ

�1

ðm2ðl1 � l2Þ
2
þm1l

2
1 þ I1 þ I2Þ

ð29Þ

is quite small and therefore the nonlinearity d11(q2)
�1 is

actually varying in a quite narrow range. Therefore, its

derivative also evolves in a favourable way, namely

@ ½d11ðq2Þ
�1
�

@q2
¼ ð2�3 sin q2Þd11ðq2Þ

�2, ð30Þ

@ ½d�111 �

@q2

����
���� � 2�3a

2
max: ð31Þ

The above favourable properties of Acrobot partial

linearisation will be used in the sequel for a feedback

design ensuring exponentially tracking of a given

walking-like trajectory.
Assume that an open-loop control generating a

suitable single step reference trajectory is given on the

time interval [0,T ] in partial exact linearised coordi-

nates (14). Therefore, our task is to track the following

reference system

_�ref1 ¼ d�111 ðq
ref
2 Þ�

ref
2 , _�ref2 ¼ �

ref
3 , _�ref3 ¼ �

ref
4 , _�ref4 ¼wref:

ð32Þ

The following theorem gives a constructive and ana-

lytical way to asymptotically track reference

system (32).

Theorem 2.2: Consider system (14) with the following

feedback:

w ¼ wref þ�3K1e1 þ�3K2e2 þ�2K3e3 þ�K4e4,

e ¼: � � �ref: ð33Þ

Further, let K15 0 and K2,3,4 be such that the polyno-
mial 
3þK4


2
þK3
þK2 is Hurwitz. Then there exist

�4 0, R4 0, B4 0 such that for all reference trajec-
tories given by (32) and satisfying

8t � 0 jsð�2ð�
refÞðtÞÞj � B4 0, ð34Þ

j�ref2 ðtÞj � R, 8t � 0, ð35Þ

where �2 is given by (17), (18) and s(q) by (23). It follows
that e(t)! 0 locally exponentially when t!1.

The above theorem is proved in Čelikovský et al.
(2008). It is based on a certain specific adaptation of
high-gain technique, enabling to produce an exact
mathematical proof of stability.

Notice the role of two positive constants defined
by (34), (35). The first constant B expresses how close
the trajectory gets to singularity of the exact linearising
transformation and does not constitute a serious
drawback due to Lemma 2.1 and Remark 1.
Nevertheless, small R can be achieved only for slow
walking velocity. Therefore, the main drawback of
Theorem 2.2 is that the convergence is proved only for
very slow walking speed. Moreover, this convergence is
slow in simulations despite an unreasonable high
torque at the actuated Acrobot joint.

Nevertheless, simulations show that the stabiliser
works even for walking speeds significantly higher than
those necessary for the theoretical proof. This indicates
that the above drawbacks are caused by the analytical
methods used for Theorem 2.2. Therefore, a natural
idea is to try to stabilise the error dynamics using more
sophisticated numerical methods.

To be more specific, let us repeat that during the
proof of Theorem 2.2 in Čelikovský et al. (2008) it was
shown that subtracting (32) from (14) one obtains

_e1 ¼ d�111 ð�2ð�1, �3ÞÞ�2 � d�111 ð�2ð�
ref
1 , �ref3 ÞÞ�

ref
2 , _e2 ¼ e3,

_e3 ¼ e4, _e4 ¼ w:

Straightforward computations based on Taylor expan-
sions give

_e1 ¼ �2ðtÞe2 þ �1ðtÞe1 þ �3ðtÞe3 þ oðeÞ, ð36Þ

_e2 ¼ e3, _e3 ¼ e4, ð37Þ

_e4 ¼ w, ð38Þ

�1ðtÞ ¼ �
ref
2 ðtÞ

@ ½d�111 �

@q2

@�2
@�1
ðqref2 ðtÞÞ, ð39Þ

�2ðtÞ ¼ d�111 ðq
ref
2 ðtÞÞ, ð40Þ

�3ðtÞ ¼ �
ref
2 ðtÞ

@ ½d�111 �

@q2

@�2
@�3
ðqref2 ðtÞÞ, ð41Þ

qref2 ðtÞ ¼ �2ð�
ref
1 ðtÞ, �

ref
3 ðtÞÞ, q2 2 ½0, 2	Þ: ð42Þ
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In Čelikovský et al. (2008) it was shown that

j�1ðtÞj � 2�3a
2
maxð�4 þ �5Þ

R

B
, ð43Þ

j�3ðtÞj � 2�3a
2
max

R

B
, 05 amin � �2ðtÞ � amax, ð44Þ

where notation of Theorem 2.2 is used, in particular,

R, B are defined by (34), (35). Moreover, it turns out

that for any given reference trajectory qref(t), the

functions �1,2,3 can be quite easily computed numer-

ically using formulae (39), (40), (41). Summarising, one

has to stabilise linear time-varying system using a

linear feedback. One option is to use the quadratic

stability concept that would ensure existence of a single

linear feedback and a single quadratic Lyapunov

function for all possible values of the

three-dimensional parameter [�1(t),�2(t),�3(t)],

t2 [0,T ] where T4 0 is the time duration of a single

step reference trajectory.

3. LMI based stabilisation of the error dynamics

It was shown at the end of the previous section that for

reference trajectory tracking one has to solve the

following stabilisation problem. Defining the state

xðtÞ ¼ eðtÞ

as the error signal, consider the open-loop continuous

time-varying linear system

_xðtÞ ¼ AðtÞxðtÞ þ BuðtÞ,

AðtÞ ¼

�1ðtÞ �2ðtÞ �3ðtÞ 0

0 0 1 0

0 0 0 1

0 0 0 0

0
BBB@

1
CCCA, B ¼

0

0

0

1

0
BBB@

1
CCCA:
ð45Þ

The tracking problem consists in finding the state-

feedback controller

uðtÞ ¼ KxðtÞ, K ¼ K1 K2 K3 K4½ �, ð46Þ

producing the following closed-loop system:

_x ¼ Aþ BKð Þx ¼

�1ðtÞ �2ðtÞ �3ðtÞ 0

0 0 1 0

0 0 0 1

K1 K2 K3 K4

0
BBB@

1
CCCAx,
ð47Þ

where bounds for �(t)¼ (�1(t),�2(t),�3(t)) are given

by (43), (44).

Despite the entries of �(t) being known functions,
the appealing idea is to treat them as unknown
disturbances satisfying the above-mentioned given
constraints. If constraints are tight enough, one can
think about solving quadratic stability conditions and
design a unique feedback stabilising such an ‘uncertain’
system. Obviously, such a feedback would be at the
same time solving our tracking problem.

To pursue such an idea, let us obtain LMI condi-
tions for quadratic stability. Let us recall here that
quadratic stability is a particular case of robust stability,
valid for arbitrarily fast time variation of the uncertain
parameters, and certified by a unique quadratic-
in-the-state parameter-independent Lyapunov func-
tion. Consider the well-known Lyapunov inequality to
be solved for all values of �(t) by finding a suitable
symmetric positive definite matrix S and a vector K:

A �ð Þ þ BKð Þ
TSþ S A �ð Þ þ BKð Þ � 0, ð48Þ

S ¼ ST � 0: ð49Þ

Such a problem is in fact bilinear with respect to the
unknowns. Denoting

Q ¼ S�1, Y ¼ KS�1, ð50Þ

we derive the following LMI condition for quadrati-
cally stabilising feedback design:

A �ð ÞQþ BYþ ðA �ð ÞQþ BYÞT � 0, Q � 0, ð51Þ

see e.g. Scherer and Weiland (2005, Section 5.2).
Notice that pair (A(�), B) is controllable if and only if

�1�3 þ �2 6¼ 0: ð52Þ

Obviously, if the set of possible values of � contains, or
stays close to, the singular set given by (52), LMI (51)
becomes infeasible, or almost infeasible.

4. Numerical analysis and simulations

As already indicated, values of �(t) during a given sin-
gle step can be computed numerically. In this section
we provide a detailed account of approximate modell-
ing of the �(t) trajectory, and corresponding LMI
conditions used to generate a stabilising feedback gain.

To demonstrate our approach of tracking feedback
design we use the so-called passive walking trajectory,
developed in Čelikovský et al. (2008). Briefly, pseudo-
passive walking trajectory is the one which is produced
by zero virtual input w, i.e. by real torque �2¼��/�,
where �, � are given by (14). By physical consider-
ations it means that the pseudo-passive trajectory
maintains the constant speed of the centre of mass
of the whole Acrobot. For such a trajectory,
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the time-varying entries �1,2,3(t) were computed
numerically with high precision using the same
Acrobot physical parameters as in Čelikovský et al.
(2008). In the sequel, these entries will be embedded in
various kinds of convex polytopic sets and the corre-
sponding LMI problems solved, thereby obtaining
quadratic stability of the error dynamics with various
degrees of conservatism.

4.1 Box

First, let us embed the trajectory into the following
rectangular box (with edges parallel to the main axes),
see Figure 3. Each vertex of the box is defined by a
combination of upper and lower bounds on entries
of �. Summarising, we have 23¼ 8 LMI constraints

AiQþ BYþ ðAiQþ BYÞT � 0, i ¼ 1, . . . , 8 ð53Þ

modelled with the Matlab YALMIP parser and solved
numerically with SeDuMi, giving the state-feedback
gains matrix K¼ 105� (�1.9909� 1.0082�0.10417
� 0.0020611) having Euclidean norm 2.2341� 105.
In the walking-like step trajectory simulations, the
initial positions errors are zero but velocities errors are
about 20%. The walking-like trajectory simulations in
this paragraph are quite similar to those of Section 4.2,
so they are not reproduced for conciseness. The main
observation is that the torque used with the above
high-gain feedback is too high to be realistic. More
details on this rectangular box based design can be
found in Anderle et al. (2009).

Summarising, the rectangular box-based design
produces highly conservative and practically unaccept-
able design. This design can be combined with satu-
rations significantly limiting torques to their realistic
values, yet maintaining exponential tracking.
Nevertheless, the last property can be checked only
experimentally and the saturated torques principally
and qualitatively differ from those non-saturated
which makes almost unrealistic an analytical proof of
saturated stability.

4.2 Prism

Motivated by unrealistically high input torques in the
previous section, an alternative design is considered
here. To reduce the norm of the feedback gain, being
the principal source of the high torques, we manually
adjust the vertices of a polytope to fit closer the actual
trajectory �(t). The idea to construct such a tighter
polytope is quite intuitive: a square with two vertices
parallel to (�1,�3)-plane, centred at �(T/2). The size of
this square is tuned to imbed the trajectory into the
polytope as tightly as possible.

When compared to the rectangular box modelling
of the previous section, the number of LMI constraints
is thereby reduced to six: two constraints are the same
as previously, the remaining four constraints are
defined via vertices relatively close to each other and
centred around parameters value at the middle of the
step. It is nicely seen from Figure 4 that this set is
reasonably small and close to a tetrahedron. We will
refer to this uncertainty model in the sequel as to the
prismatic bounds. Solving the resulting LMI yields
the state-feedback matrix K¼ 104� (�2.4784�
1.5466�0.21082� 0.0098271) having significantly
smaller Euclidean norm 2.9290� 104 than in
Section 4.1.

The initial position errors are zero while velocities
errors are about 20%. For the sake of comparison,
they are the same as in Section 4.1. The initial torque is
much smaller now, yet still quite unrealistic for the
actual model of Acrobot. Therefore, a saturation
limit in the range 	10Nm was used, see Figure 5. In
Figures 6 and 7 one can see the step trajectory
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Figure 3. Trajectory �(t) embedded in a rectangular box.
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Figure 4. Trajectory �(t) and prismatic bounds.
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simulations with and without saturation limit.
Convergence is very good now and saturation limits
ensure a more realistic implementation. Moreover,
though the saturated input torque time functions still
quantitatively quite a lot differs from the non-
saturated one, at least qualitative resemblance can be
observed now.

4.3 H2 design with box and prism

In order to further reduce the control effort, a
complementary alternative to tighter uncertainty
modelling consists in formulating the problem as a
polytopic H2 design problem. In the standard state-
space framework

_x ¼ Axþ Buþ v, z ¼ CxþDu,

with (fictitious) unit Gaussian white noise input v and

(fictitious) performance output z, we aim at finding a

static state feedback u¼Kx minimising the energy

functional

lim
T!1

E
1

T

Z T

0

zTz dt

� �
: ð54Þ

In particular, setting

C j D
� 	

¼
W1=2

x 0

0 W1=2
u

" #

for some given positive definite weighting matrices Wx

and Wu, the integral term in quadratic objective

function (54) becomesZ T

0

zTz dt ¼

Z T

0

ðxTWxxþ uTWuuÞdt

¼

Z T

0

xTðWx þ KTWuK Þxdt

as in standard linear quadratic Gaussian (LQG)

control.
In our context, choosingWx¼ I4 andWu¼ 1 allows

to penalise the control effort significantly, even though

other values can be used to trade off. Using the

standard Gramian interpretation of H2-norm con-

straints, see e.g. Scherer and Weiland (2005,

Section 4.3.3), an LMI formulation of static state-

feedback design is as follows:

minZ,Q,Y traceZ

s:t:
Z CQþDY

ðCQþDYÞT Q

� �

 0

AiQþBYþðAiQþBYÞTþ I� 0, i¼ 1,2, . . . ,
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Figure 6. Angular positions q1, q2 with and without satura-
tion and references (dotted line) for prismatic bounds on �.
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Figure 7. Angular velocities q1, q2 with and without satura-
tion and references (dotted line) for prismatic bounds on �.
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Figure 5. Torque �2 with and without saturation for
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where Ai ranges over vertices of the polytope contain-
ing the �(t) trajectory.

Using the 8-vertex rectangular box of Section 4.1
gives the state-feedback matrix K¼ 104�
(�1.9301� 0.97769� 0.095525� 0.0043721) with
Euclidean norm 2.1657� 104 while the 6-vertex prism
of Section 4.2 gives the state-feedback matrix K¼
103� (�3.8704� 2.3042� 0.32191� 0.025393) with
the notably smaller Euclidean norm 4.5159� 103.

To demonstrate the quality of the above designs in
simulations, only the 8-vertex rectangular box is used.
The simulations for the 6-vertex prism is quite similar
to those of the Section 4.4 and are therefore omitted.
The initial position and velocities errors are the same
as before. Even if the initial torque is approximately
200 times smaller than the initial torque in the
Section 4.1, still it is quite unrealistic for the Acrobot
model. Again, the saturation limit in the range 	10Nm
was used, see Figure 8. In Figures 9 and 10 one can
see the effect of this saturation limit. Convergence is
quite good now and even with saturations limiting
the torques by the values 	10Nm it is possible to
achieve exponential tracking. Nevertheless, the satu-
rated torques time course is qualitatively different from
the non-saturated one, which makes a more rigorous
justification of convergence questionable.

4.4 H2 design with trajectory convex hull

As the last option, we choose to sample the trajectory
at time instants ti, and to let Ai¼A(�(ti)) for
i¼ 1, . . . ,N. The corresponding uncertainty model is
the polytopic convex hull of the Ai vertices. If we
choose N¼ 279 equidistant time instants, the resulting

convex hull is a polytope with 274 vertices and 544

facets in the parameter space. Even though it is not

guaranteed that the genuine trajectory �(t) is contained
in this polytope, it is very close to the actual convex

hull of the trajectory. The convex hull can be seen in

Figure 11, note that it is interesting to compare it with

prismatic bounds in Figure 4.
Solving the H2 design LMIs of Section 4.3,

we obtain the state-feedback matrix K¼ 103�

(�3.3407� 2.0073� 0.29683� 0.024386) with

Euclidean norm 3.9087� 103. We observe that it is

very similar to the matrix obtained with the H2 design

with prismatic bounds. This is an indication that the

manually designed polytope of Section 4.2 is a tight, yet

simple approximation of the convex hull of the

trajectory.
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Figure 10. Angular velocities q1, q2 with and without satu-
ration and references (dotted line) for the gains computed
using 8-vertex rectangular box and H2 design.
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Figure 8. Torque �2 with and without saturation for the
gains computed using 8-vertex rectangular box and H2

design.
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When using the above gains in tracking simulations,
the initial position and velocities errors are the same as
before. Although the initial torque is the smallest of all
simulations, the saturation limit in the range 	10Nm
was used, see Figure 12. The difference in simulation
position and velocities with and without saturation limit
is minimal, see Figures 13 and 14.

As the convergence is quite good now it is possible
to use this feedback gain in realistic implementation. It
is also very important that, unlike the saturations
shown in Figure 8, the saturated torque Figure 12 is
qualitatively very similar to the non-saturated one,
thereby indicating possible more rigorous justification
of the saturated stability.

4.5 Summary of numerical results and tracking
simulations

The state-feedback gain matrices from Sections 4.1–4.4
are summarised in Table 1.

Let us note that in the case of zero errors in initial
position and velocities, almost any state-feedback gain
matrix can be used, i.e. even with very low gains. As a
consequence, very low torque is needed along the ideal
target walking-like pseudo-passive trajectory. In other
words, torques are mainly used to cope with deviation
from the target trajectory. Nevertheless, in the case of
the real Acrobot, the errors in initial position and
velocities are always nonzero and the ability of
reasonable high gains and resulting input torques has
to be studied. In our analysis, the errors were typically
less than 20%.
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Figure 14. Angular velocities q1, q2 with and without
saturation and references (dotted line) for the gains com-
puted using the trajectory sampled convex hull and H2

design.
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Figure 13. Angular positions q1, q2 with and without
saturation and references (dotted line) for the gains com-
puted using the trajectory sampled convex hull and H2

design.
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gains computed using the trajectory sampled convex hull and
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Figure 11. Trajectory �(t) and its convex hull.
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The design based on the rectangular box estimate
without H2 optimisation is just able to track the
walking trajectory but the lowest possible saturation
limit is in the range 	25Nm and could not be further
lowered. For this reason it is unacceptable in realistic
implementation. Remaining designs of state-feedback
gain matrix are able to track the walking trajectory
with realistic saturation limits. Experimentally, the
saturation in the range 	10Nm practically does not
affect the quality of tracking, except the initial stage of
the step. The design from Section 4.4 is able to track
the walking-like trajectory with low and acceptable
control effort.

Finally, to illustrate our approach more transpar-
ently, Figure 15 shows an animation of the
Acrobot walking-like single-step trajectory with the
state-feedback gain matrix from the last row of Table 1
and torque saturation of 	10Nm.

5. Conclusions and outlooks

An LMI-based design for stabilisation of error dynam-
ics resulting from tracking a walking-like trajectory of
the Acrobot has been suggested. Compared to earlier

analytic results in Čelikovský et al. (2008), Anderle

et al. (2009) and Anderle and Čelikovský (2009), it

gives now quite realistic torque at the Acrobot
actuator.

Yet, further torque optimisation is possible via a

further restriction of the set estimating parameter
values. Namely, so far we have modelled the parameter

trajectory as a polytope in the parameter space, and

this allowed for the application of simple vertex LMI
conditions corresponding to the search of a quadratic

Lyapunov function. More sophisticated LMI condi-
tions, based on representations of positive polyno-

mials, can be derived for parameters varying along a

curve, or within a general basic semialgebraic set
(conjunction of multivariate polynomial inequalities).

In the same vein, we could also derive LMI conditions

to search for parameter-dependent polynomial-
in-the-state Lyapunov functions, so as to reduce

conservatism, if necessary.
Nevertheless, the issue of defining a criterion to

minimise the input torque action remains open. We

proposed H2 LMI design conditions to minimise the
control effort, yet gains K affect real torques indirectly

because of a nonlinear change of coordinates and

feedback transformation between real torque �2 and
virtual input w, resulting from partial exact feedback

linearisation.
Regarding saturations of the control signal, we

could also model them as sector-bounded nonlinea-

rities and, as a post-processing phase, assess stability of

the resulting closed-loop system in the presence of
saturations via appropriate Lyapunov-based LMI

conditions. These ideas are currently the subject of

ongoing research.

Note

1. Actually, by (2), _� ¼ d
dt
@L
@ _q1
¼ @L

@q1
and therefore by (1),

_� ¼ � @VðqÞ
@q1

as D(q)�D(q2) by (4). In other words, _� has

relative degree 2, i.e. � has relative degree 3. Moreover,
by straightforward differentiation it holds _p ¼

d11ðq2Þ
�1�, i.e. _p has relative degree 2, i.e. p should

have relative degree 3 as well.

Table 1. Summary of the state-feedback gain matrices.

Method State-feedback matrix K Euclidean norm

Box 105� (�1.9909� 1.0082� 0.10417� 0.0020611) 2.2341� 105

Prismatic 104� (�2.4784� 1.5466� 0.21082� 0.0098271) 2.9290� 104

H2-box 104� (�1.9301, �0.97769, �0.095525, �0.0043721) 2.1657� 104

H2-prismatic 103� (�3.8704, �2.3042, �0.32191, �0.025393) 4.5159� 103

H2-sampling 103� (�3.3407, �2.0073, �0.29683, �0.024386) 3.9087� 103

Figure 15. Animation of a single step with sampling time
0.08 s. The dotted line is the reference, the full line represents
the actual Acrobot.
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