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a b s t r a c t

In this paper, the robustness of appearance-based subspace learning techniques in geometrical
transformations of the images is explored. A number of such techniques are presented and tested using
four facial expression databases. A strong correlation between the recognition accuracy and the image
registration error has been observed. Although it is common-knowledge that appearance-based methods
are sensitive to image registration errors, there is no systematic experiment reported in the literature. As
a result of these experiments, the training set enrichment with translated, scaled and rotated images
is proposed for confronting the low robustness of these techniques in facial expression recognition.
Moreover, persondependent training is proven to bemuchmore accurate for facial expression recognition
than generic learning.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Facial expressions and gestures complement verbal commu-
nication in everyday life, conveying information about emotion,
mood and ideas (Zeng, Pantic, Roisman, & Huang, 2009). The facial
expressions play central role in an everyday conversation. Even the
voice intonation present lower impact on efficient communication
than the facial expressions do (Mehrabian, 1968). It has been noted
in the literature that the ideal model in human–computer commu-
nication, would be the human–human communication paradigm
(Bruce, 1993; Hara & Kobayashi, 1996; Takeuchi et al., 1993). Con-
sequently, a successful automatic facial expression recognition
system is expected to significantly facilitate the human–computer
interaction. Furthermore, it could be integrated in many technolo-
gies of this kind, bordering behavioral science and medicine, (e.g.,
assisted living) (Pantic & Rothkrantz, 2000).

Research in psychology Ekman and Friesen (1971) has indicated
that at least six emotions (anger, disgust, fear, happiness, sadness
and surprise) are universally associated with distinct facial
expressions. According to this approach, these are the basic
emotional states which are inherently registered in human brain
and are universally recognized. Several other facial expressions
corresponding to certain emotions have beenproposed, but remain
unconfirmed as universally discernible (Ekman & Friesen, 1971). In
this paper, we focus on the facial expressions deriving from these
particular emotions and the neutral emotional state. In the next
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paragraph a brief outline of a real world system, used for facial
expression recognition, will be presented.

A transparent way of monitoring the human emotional state is
by using a video camera, which automatically detects human face
and captures the facial expressions. Following this approach, the
data used as input to the expression analysis tool would be a video
stream, namely successive luminance or color image frames. Many
techniques have been proposed in the literature for implementing
this tool. Some of them use static images, while others work
with image sequences. Furthermore, the image representations
used for expression recognition are local or global ones. Local
(or landmark-based) techniques employ fiducial image points or
point grids (e.g., the CANDIDE model) and their deformations
for facial expression recognition (Kotsia, Zafeiriou, & Pitas, 2007).
Global techniques use image features derived from the entire
facial image region of interest (ROI) (Kyperountas, Tefas, & Pitas,
2010). The classification techniques operating on these image
representations, have been categorized into template-based, also
known as appearance-based methods, (fuzzy) rule-based, ANN-
based, HMM-based and Bayesian (Pantic & Rothkrantz, 2003). In
the following two paragraphs the subspace learning methods,
which are commonly used in appearance-based approaches, will
be introduced.

Subspace learning methods are based on principles originally
used for statistical pattern recognition and have been successfully
implemented in many computer vision problems, such as facial
expression classification (Kyperountas et al., 2010), human face
recognition (Kyperountas, Tefas, & Pitas, 2008) and object recog-
nition (Leibe & Schiele, 2003). The problem that emerges, when it
comes to appearance-based methods, is that usually initial images
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lie on a high dimensional space. The main goal of subspace learn-
ing methods is to reduce the data dimensionality, maintaining the
meaningful information. These techniques simplify the problem of
dimensionality reduction to a simplemultiplication between ama-
trix (projectionmatrix) and a vector (initial image). In otherwords,
both information extraction and computational load decrease are
achieved by applying such algorithms.

In subspace learning techniques, the initial image is decom-
posed in a 1D vector by row-wise scanning and bases that opti-
mize a given criterion are derived. Then, the high dimensionality
of the initial image space is reduced into a lower one. Several cri-
teria have been employed in order to find the bases of the low
dimensional spaces. Some of them have been defined in order to
find projections that represent the data in an optimal way, with-
out using the information about the way the data are separated
to different classes, e.g., Principal Component Analysis (PCA) (Jol-
liffe, 1986) and Non-Negative Matrix Factorization (NMF) (Lee &
Seung, 1999). Other criteria deal directly with the discrimination
between classes, e.g., DiscriminantNon-NegativeMatrix Factoriza-
tion (DNMF) (Zafeiriou, Tefas, Buciu, & Pitas, 2006), Linear Discrim-
inant Analysis (LDA) (Belhumeur, Hespanha, & Kriegman, 1997)
and Clustering Discriminant Analysis (CDA) (Chen & Huang, 2003).
Subspace learning methods are usually combined with a classi-
fier, like k-Nearest Neighbor (KNN), Nearest Centroid (NC), Nearest
Cluster Centroid (NCC) or Support Vector Machine (SVM) in order
to classify the data in the new low-dimensional space.

Among the various subspace learning methods LDA is the
most popular when the objective is classification. However, LDA
confronts some fundamental problems. One of them is the small
sample size problem, where the number of samples is smaller
than their dimensionality. In Kyperountas, Tefas, and Pitas (2007),
a method for overcoming this problem in face verification has
been proposed. Another problem with LDA is that it is capable
of retaining as many projections as the number of classes minus
one. This is a very strict limitation, especially when dealing with
two-class problems, where the maximum number of projections
is one. In Goudelis, Zafeiriou, Tefas, and Pitas (2007), a class-
specific approach for face verification has been proposed in order
to overcome this limitation.

Another limitation of LDA that emerges from Bayesian theory
is the assumption that the classes have multi-variate Gaussian
distribution. However, usually the data within a class are not
normally distributed. For instance, a class might consist of a
mixture of Gaussians. Clustering Discriminant Analysis (CDA)
(Chen & Huang, 2003) is a subspace learning method that has
been developed in order to handle such cases. Specifically, CDA
introduces a different kind of labeling which relies on the
clustering of the data samples. Thus, it attempts to exploit the
potential subclass structure of the classes of the data.

As has mentioned, the first crucial step toward automatic
facial expression recognition is face detection. The output of
this procedure is a bounding box (facial region of interest,
facial ROI), which is ideally placed around the facial area. The
image information within this bounding box is subsequently
used as input to the classification algorithm. When it comes to
theoretical analysis on the classification performance of all the
aforementioned algorithms, the problem of image registration
prior to recognition is considered solved. However, this is not the
case inmost of the real-world applications. Although, it is common
knowledge that appearance-based methods are sensitive to image
registration errors, there is no systematic experimental study,
resulting in a feasible solution, reported in the literature. In general,
the preprocessing steps are usually not clearly described and the
bounding box, used for recognition, is arbitrarily selected, implying
that only small displacements of the bounding box may occur.
However, when it comes to automatic real-world applications,
inaccuracies regarding the face detection are expected and a
systematic preprocessing is needed. An experimental analysis on
quantifying the misclassification probability due to registration
error has been done in Rentzeperis, Stergiou, Pnevmatikakis, and
Polymenakos (0000). However, the authors do not propose a
solution for improving the overall performance of a real-world
application.

An additional major source of inaccuracies could be attributed
to the difficulty of creating a single model that could operate
optimally in cases of different people. It is common-knowledge
that there is a great variation in the way several facial expressions
are performed by distinct persons, due to personality or cultural
background variations. This fact creates difficulties in developing
a generic facial expression recognition algorithm. However, there
are cases, where the expressors are, a priori, known. For instance,
in cognitive robotics for assisted living, the persons that interact
with the robot are typically known, are few (in many cases just
one person) and do not change over a long period of time. In this
case, attempting to model the way that the facial expressions are
performed by the specific persons is more reasonable rather than
using a generic approach.

The motivation of our work was to create a facial expression
recognition system that would be fast and would operate in
realistic assisted living environments involving few persons
(e.g., one elderly person living independently) (Nani, Caleb-Solly,
Dogramadgi, Fear, & van den Heuvel, 0000). Our experiments
reveal that Landmark-based systems tend to be slow and error-
prone, since facial landmark detection and tracking frequently
fails. Therefore, we abandoned the idea of using grid-based facial
expression recognition. The solution we followed was the one
based on subspace techniques. However, we had to study the
robustness of such techniques to the frequently occurring face
detection and tracking inaccuracies.

The aim of this paper is three-fold. First, to illustrate the
sensitivity of subspace learning methods when the registration
of the facial ROI prior to recognition fails, even slightly (≈6% on
the distance between the eyes). For instance, the eye perturbation
that results using a standard face detection scheme is more than
7% for human scan faces decimated to 10 pixels eye distance
(Rentzeperis et al., 0000). Additionally, we would like to illustrate
that the inter-database recognition performance is much worse
than the intra-database performance that is usually reported
in the literature. Second, to propose a training set enrichment
approach for improving significantly the performance of subspace
learning techniques in the facial expression recognition problem.
Moreover, to highlight that even perfect manual face alignment
in high resolution can be improved by the proposed training set
enrichment. Third, to indicate the contribution of enriching the
training set with images of a tested person, in order to create
person specific recognizers, thus, improving the subspace learning
and the recognition performance.

The remainder of this paper is organized as follows. In
Section 2, the subspace learning techniques and classifiers that
have been utilized for producing this paper’s results, are presented.
Additionally, the Spectral Clustering method that has been used in
order to produce the subclass labels required by the CDAalgorithm,
is described in detail. In Section 3, the whole facial expression
recognition procedure that has been followed is described. In
Section 4, the proposed approach for solving the image registration
problem, along with the person dependent training approach are
explained. Conclusions are drawn in Section 5.

2. Subspace learning techniques

In the following analysis, as mentioned above, the 2D facial
image ROIs have been decomposed into 1D vectors by row-wise
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scanning in order to be used as inputs in the subspace learning
techniques. From now on, we consider a set X = {x1, x2, . . . , xn}
of n such vectors (called data samples), corresponding to one
image each. We denote by y = VTx the projection of x to the
new, low dimensional space using V as the projection matrix.
The initial dimensionality of the data is denoted by m, while the
dimensionality of the projection space is denoted bym′.

2.1. Principal Component Analysis

Principal Component Analysis (PCA) (Jolliffe, 1986) is an
unsupervised subspace learning technique. Assuming that the
mean vector of xq is zero, the problem of finding the projection
matrix V is an eigenanalysis problem of the sample covariance
matrix

C =
1
n

n−
q=1

xqxTq . (1)

The transformation matrix V = [v1, v2, . . . , vm′ ] consists of the
eigenvectors of C that correspond to the m′ largest eigenvalues of
C. Any data sample x from the initial space can be approximated
by a linear combination of the m′ first eigenvectors to produce a
newm′-dimensional vector. In PCA, someone has to decide directly
beforehand on the new dimensionalitym′ or alternatively the new
dimensionality may be defined by the percentage of the total sum
of the eigenvalues that should be retained after the projection.
This percentage essentially indicates the proportion of retained
information.

The main property of PCA is that it generates uncorrelated
variables from initial possibly correlated ones. The disadvantage
of PCA is that it might lose much discriminant information of the
data, since it does not take into account the class labels of the data.

2.2. Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) (Belhumeur et al., 1997),
in contrast to PCA, is a supervised method for dimensionality
reduction. It tries to find a projection to a low-dimensional space
such that, in this subspace, the classes are well discriminated.
Let us denote the total number of classes by c , the mean vector
of the whole dataset by µ and the number of samples, the q-th
sample and the mean vector of the i-th class, by ni, x

(i)
q and µ(i),

respectively. The objective of LDA is to find the transformation
matrix V that maximizes

J (V) =
tr[VTSLDAB V]

tr[VTSLDAW V]
, (2)

where tr[·] denotes the trace of a matrix,

SLDAB =

c−
i=1


µ(i)

− µ
 

µ(i)
− µ

T
(3)

is the between-class scatter and

SLDAW =

c−
i=1

ni−
q=1


x(i)
q − µ(i) x(i)

q − µ(i)T (4)

is the within-class scatter matrix. V is found by solving the
generalized eigenvalue decomposition problem

SLDAB v = λSLDAW v, (5)
while retaining the largest eigenvalues and putting the corre-
sponding eigenvectors in V.

LDA in contrast to PCA, takes into consideration both the
within-class scatter and the between-class scatter carrying more
discriminant information of the data. LDA is capable of retaining
up to c − 1 dimensions, since the rank of SLDAB is at most c − 1
(Belhumeur et al., 1997).
2.3. Clustering Discriminant Analysis

Clustering Discriminant Analysis (CDA) (Chen & Huang, 2003),
like LDA, looks for a transformV, such that the projections y = VTx
for each class are well discriminated. The difference from LDA is
that the classes might contain many clusters (subclasses). Let us
denote the total number of clusters inside the i-th class by di, the
number of samples of the j-th cluster of the i-th class by nij, its q-
th sample by x(i,j)

q and its mean vector by µ(i,j). CDA attempts to
maximize

J (V) =
tr[VTSCDAB V]

tr[VTSCDAW V]
, (6)

where

SCDAB =

c−1−
i=1

c−
l=i+1

di−
j=1

dl−
h=1


µ(i,j)

− µ(l,h) µ(i,j)
− µ(l,h)T (7)

is the between-cluster scatter and

SCDAW =

c−
i=1

di−
j=1

nij−
q=1


x(i,j)
q − µ(i,j) x(i,j)

q − µ(i,j)T (8)

is the within-cluster scatter matrix. In a few words, CDA tries
to discriminate subclasses belonging to different classes, while
minimizing the scatter within every subclass. Also it puts no
constraints on subclasses of the same class. The solution is
provided by Eq. (5) using SCDAB and SCDAW .

As already has been mentioned, the main advantage of CDA
against LDA is that CDA exploits the potential subclass information
to discriminate the classes. One more advantage is that CDA is
capable of retaining d− 1 dimensions, where d is the total number
of subclasses of the data. Of course, d− 1 is greater than or at least
equal to c − 1, which is the maximum retained dimensionality
by LDA. It is worth noting that if no clusters are found in the
data classes, then CDA is identical to LDA. In our study, a Spectral
Clustering approach has been utilized for extracting the subclass
structure of the data.

Two important mathematical tools for Spectral Clustering are
the similarity graph and the affinity matrix. Consider a metric
d

xq, xp


and some parametric monotonically decreasing function

wq,p (σ ) = w

d

xq, xp


, σ

, which measures the similarity be-

tween every pair of such data samples. We define the similarity
graph as the graph (X, E), where X is the set of the data samples
(graph nodes) and E is the set of the edges between the data sam-
ples. The weights of the edges calculated by the similarity function
w constitute a matrix W, which has at position (q, p) the weight
wq,p (σ ) between the q, p nodes. Of course,W has to be a symmet-
ric matrix.

The affinity matrix P is an n × n matrix, which contains the
whole node connectivity information. There are several ways to
define the affinity matrix. Here we have used the random walk
approach:

P = D−1W, (9)

where D is the diagonal degree matrix, with Dq,q =
∑n

p=1 wq,p.
Given the number K of clusters, Spectral Clustering algorithm

firstly computes the K largest eigenvalues of P. Then constructs an
n×K matrixwhohas as columns theK corresponding eigenvectors.
It has been shown in von Luxburg (2007) that the rows of this
matrix could be used as a new representation of the initial data,
which is more useful from a clustering perspective. Thus, on this
new data representation any common clustering algorithm should
be employed in a more efficient way. Here, for our needs, we have
employed the K -means algorithm (Theodoridis & Koutroumbas,
2006).
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An issue that arises from the above discussion is how to
estimate the ‘correct’ number of clusters. In our study, we have
used the eigengap heuristic approach:

• Perform eigenanalysis on the affinity matrix P.
• Rank the eigenvalues in descending order: (λ1, λ2, . . . , λn).
• Find the maximum gap δ between consecutive eigenvalues

λq, λq+1

.

• Use the index q as an estimation of the total number of clusters.
• Use this eigengap δ as a plausibility measure, where δ takes

values between 0 and 1.

In Azran and Ghahramani (0000), the authors extended this
heuristic. They have shown that by letting the random walk take
multiple steps, different scales of partitioning are explored. In the
case where the number of steps isM , the transition matrix is given
by multiplying P with itself M times and is then called the M-th
order transition matrix. This matrix contains the probabilities of
the random walk to transit from one state to another in M steps.
The idea behind this approach is to use the eigengap heuristic
on these M-th order transition matrices for several values of
M . It can be easily shown that the set of the eigenvalues of
PM is


λM
1 , λM

2 , . . . , λM
n


. Using the eigengap heuristic on these

sets for diverse values of M (1 ≤ M ≤ Mmax), results in a set of
eigengaps {δ(M)}M . The local maxima of this set are estimations of
different scales of partitioning with plausibility measured by the
corresponding δ.

In the experiments, wherever we have employed the CDA
method, the clustering was done by utilizing the abovemulti-scale
approach, retaining the most plausible partition. Specifically, we
have used the Euclidean metric

d

xq, xp


=

 m−
s=1


xs,q − xs,p

2
, (10)

where xs,q is the s-th component of xq and as similarity function
the Gaussian similarity function which is defined as

fq,p (σ ) = exp


−

d

xq, xp


σ 2


. (11)

The parameter σ 2 plays the role of the variance and determines
the scale of the neighborhood of every data sample. Our empirical
study, has shown that σ = 0.25Ê[d


xq, xp


] is a valuewhich offers

intuitively satisfactory results. Ê denotes the sample mean. Thus,
we have fixed σ to that value.

2.4. Discriminant non-negative matrix factorization

Non-negative matrix factorization (NMF) (Lee & Seung, 1999)
tries to approximate the vector x with a linear combination of
the columns of a lower dimensional vector h such that x ≃ Zh,
where h ∈ Rm′

+
. The matrix Z ∈ Rm×m′

+ is a non negative matrix,
whose columns sum to one. The approximation error of x ≃ Zh
is calculated using the Kullback–Leibler divergence KL (x ‖ Zh)

(Lee & Seung, 2000). The decomposition cost is the sum of the KL
divergences for the total number of the feature vectors:

D (X ‖ ZH) =

−
q

KL

xq ‖ Zhq


(12)

=

−
s,q

xs,q ln

 xs,q∑
t
zs,tht,q

+

−
t

zs,tht,q − xs,q

 , (13)

where X = (x1, x2, . . . , xn) =

xs,q

,H = (h1,h2, . . . ,hn) =

ht,q

and Z =


zs,t

.

Discriminant Non-Negative Matrix Factorization (DNMF)
(Zafeiriou et al., 2006) is a supervised NMF-basedmethod that pro-
duces discriminant non-negative feature vectors. In DNMF, a mod-
ified divergence is constructed deriving from the minimization of
the Fisher criterion using the new cost function given by

Dd (X ‖ ZH) = D (X ‖ ZH) + γ tr[SDNMF
W ] − δtr[SDNMF

B ], (14)

where γ and δ are constants.
The vectorhρ that corresponds to theρ-th column of thematrix

H, is the coefficient vector for the q-th facial image of the i-th
class and will be denoted by h(i)

q = [h(i)
1,q, h

(i)
2,q, . . . , h

(i)
m′,q]

T . The

mean vector of the vectors h(i)
q for the i-th class is denoted as

µ(i)
= [µ

(i)
1 , µ

(i)
2 , . . . , µ

(i)
m′ ]

T and the mean of all the classes as
µ = [µ1, µ2, . . . , µm′ ]

T . Then, the within-class scatter matrix
SDNMF
W and the between-class scatter matrix SDNMF

B are defined as

SDNMF
W =

c−
i=1

ni−
q=1


h(i)
q − µ(i) h(i)

q − µ(i)T , (15)

SDNMF
B =

c−
i=1

ni

µ(i)

− µ
 

µ(i)
− µ

T
. (16)

The solution is provided by the following minimization problem:

min
Z,H

Dd (X ‖ ZH) under the constraints (17)

zs,t ≥ 0, ht,q ≥ 0,
−

ω

zq,ω = 1, ∀(s, t, q). (18)

The resulting reduced-dimensionality vectors h form the dis-
criminant facial image representation to be used in facial expres-
sion recognition. This class-specific decomposition is intuitively
motivated by the theory that humans use specific discriminant
features of the human face for memorizing and recognizing them
(Chellappa, Wilson, & Sirohey, 1995). In Kotsia et al. (2007), DNMF
has been used in combination with the Support Vector Machine
(SVM) classifier (Burges, 1998; Chapelle, Haffner, & Vapnik, 1999)
in facial image characterization problems.

3. Facial expression recognition procedure

3.1. Preprocessing

Initially, we preprocessed the imagesmanually in order to have
perfect alignment and the eyes in fixed pre-defined positions in
the facial image ROI. To do so, we worked with the high resolution
images and the eye coordinates were gathered in the initial images
by two individuals. The initial distance between the eyes in high
resolution was calculated and the images were down-scaled in
an isotropic way, in order to have a 16-pixel distance between
the two eyes. In the final step we cropped the images to the
size of 40 × 30 pixels, producing a bounding box centered to
the subject’s face. These images are considered perfectly aligned
and are referred as‘‘centered’’ dataset in the rest of the paper.
Image cropping was based on the eye region centers, due to their
invariance to the various facial expressions. The position of other
facial features (e.g., mouth, eye-brows) tend to shift during certain
expressions. For example, in the case of surprise, the eyebrows shift
upwards vertically, in comparison with the neutral expression.
Thus, manual image cropping based on other facial features,
apart from the eyes, could produce discriminant information on
itself, leading to an overestimation of the performance of the
classification. Furthermore, the detection and tracking accuracy of
such features is limited, as we have found experimentally.
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Fig. 1. The Cohn–Kanade Facial Expression Database. (a) neutral, (b) anger, (c) disgust, (d) fear, (e) happiness, (f) sadness, (g) surprise.
3.2. Training

Every preprocessed image was mapped from a 40 × 30 matrix
to a 1200 dimensional vector. The training was performed by
using one of the subspace learning techniques that have been
presented in Section 2. According to the division of the facial
feature extraction stage, that has been presented in Pantic and
Rothkrantz (2003), in our approach, the features are extracted in
an automatic way from still images. Thus, temporal information is
not used. These features are holistic and view-based.

As far as the presented methods of PCA + LDA and PCA +

CDA are concerned, PCA was used for maintaining the 95% of
the covariance matrix energy. When PCA is not mentioned, it is
implicitly considered that a 100%of the total variancewas retained.
Thus, in this case the zero eigenvalues of the covariance matrix
of the data were rejected. PCA was used in order to overcome the
undersampling problem, where the number of the samples is less
than the dimensionality of the data. The cases of maintaining other
percentages of the covariance matrix energy were tested as well,
without leading to better results.

On the one hand, LDA reduced data vector dimensionality to
6 dimensions. On the other hand, CDA, as has been discussed in
Section 2, was capable of reducing the data vector dimensionality
tomore than 6 dimensions. In the following analysis, the results for
the number of dimensions that gave the best results are presented.
Regarding DNMF, the dimensionality of the feature vector was
reduced from 1200 to 120 dimensions.

3.3. Testing

All the abovemethods, aim at projecting the initial high-dimen-
sional data samples to a feature space with low dimensionality. In
that new space, the data samples are likely to be classified in amore
efficient way. Thus, a tested sample was projected to the reduced
feature space, using one of the above-mentioned approaches and
a classifier was then applied on the projected sample. In our study,
we have used the well-known classifiers, KNN, NC and SVMs in the
literature. We have also used the NCC (Maronidis, Tefas, & Pitas,
2010), which accompanies the CDA algorithm. In NCC, the cluster
centroids are calculated and the testing sample is assigned to the
class in which the nearest cluster centroid belongs to.

A support vector machine tries to calculate the optimal
hyperplane or a set of hyperplanes in a high dimensional space.
Intuitively, a good separation is achieved by the hyperplane that
maximizes the functional margin, since, in general, the larger the
margin the lower the generalization error of the classifier. The
SVMused for our experiments was proposed in Tefas, Kotropoulos,
and Pitas (2001). It employs a modified method to calculate the
maximum functional margin, inspired by the Fisher’s discriminant
ratio. The SVM is successively applied for a 2-class problem
each time. The winning class is then compared with one of the
remaining classes following the samemethod and the procedure is
repeated until the prevailing class for each testing sample is found.
In our study, SVM realized the classification on the feature vectors
extracted by DNMF, using an RBF kernel.
Table 1
Cross validation versus inter-database performance rates (%) in BU, JAFFE and
Kanade.

Classifier DR method JK-B BU BK-J JAFFE BJ-K KANADE

NC PCA + LDA 29.9 63.3 23.0 54.5 31.0 67.0
NCC PCA + CDA 31.9 63.4 28.6 57.0 33.2 69.6
SVM DNMF 29.0 55.4 31.0 41.6 31.0 56.4

4. Proposed approach and results

A series of experiments on facial expression recognition has
been conducted using the frontal images of three standard
databases. The databases, that have been used for the experiments
are described below.

The Cohn–Kanade AU-Coded Facial Expression Database
(Kanade, Cohn, & Tian, 2000) affords a test bed for research in
automatic facial image analysis and is available for use by the
research community. Image data consist of approximately 500 im-
age sequences from 100 subjects in 7 different universal emotional
states (anger, disgust, fear, happiness, sadness, surprise andneutral
state). Subjects range in age from 18 to 30 years. Sixty-five percent
were female; 15% were African-American and three percent Asian
or Latino ones. One of the cameras was located directly in front of
the subject, and the other was positioned 30° to the subject’s right.
Sample images of the database are presented in Fig. 1.

BU database (Yin,Wei, Sun,Wang, & Rosato, 2006) contains 100
subjects. Each subject performed the seven aforementioned facial
expressions in front of a 3D face scanner.With the exception of the
neutral expression, each of the six basic expressions (happiness,
disgust, fear, angry, surprise and sadness) include four levels of
intensity. Therefore, there are 25 3D expression models for each
subject, resulting in a total of 2500 3D facial expression models.
Each expression shape model is associated to a corresponding
facial texture image captured at two views (about +45 and −45°
versus the frontal view). As a result, the database consists of 2500
two-view texture images and geometric shape models.

The JAFFE database (Lyons, Akamatsu, Kamachi, & Gyoba, 0000)
contains 213 images of the 7 aforementioned facial expressions,
posed by 10 Japanese female models. Each image has been rated
on these emotion labels by 60 Japanese subjects. Typical examples
are illustrated in Fig. 2. In all the above databases, the used images
are grayscale and have been rescaled to 40 × 30 pixels.

4.1. Inter-database experiments

In this section the behavior of subspace learning techniques
in person independent experiments in both the case of cross
validation within the same database and inter-database validation
is examined. A number of facial expression recognition algorithms
are tested using the three aforementioned facial expression
recognition databases (BU, JAFFE and Kanade). Three typical
examples are depicted in Table 1. The first and second columns
depict the classifier and the subspace learning method used for
dimensionality reduction (DR method), respectively. The best
performing classifier for each dimensionality reduction method is
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Fig. 2. The JAFFE Facial Expression Database. (a) neutral, (b) anger, (c) disgust, (d) fear, (e) happiness, (f) sadness, (g) surprise.
presented here. DNMF is always combined with SVM as originally
proposed in Kotsia et al. (2007) for facial expression recognition.
The following three pairs of columns present the intra-database
cross-validation versus the inter-database performance rates. e.g.,
JK-B refers to training using all the samples from the JAFFE and
Kanade databases and testing on the BU database. The column
with label BU, refers to results using cross validation within the
BU database.

The objective of this series of experiments is to highlight
the significant drop in the performance, when inter-database
experiments are performed. In Table 1, it can be observed that
in the majority of the cases, the accuracy of the cross validation
experiment is more than the double of the inter-database one.
Furthermore, the superiority of CDA combined with NCC classifier
against the other two DR methods combined with their respective
best classifier is apparent. However, it is obvious that the overall
performance rates are rather low. Moreover, to the best of our
knowledge, it is the first time that inter-database experiments
are performed and highlight the serious problems that come
up when someone tries to develop generic person and database
independent facial expression recognition algorithms. Indeed, in
the Literature only intra-database results are reported whereas
the performance in the inter-database case is very low for all the
different subspace-based facial expression recognition algorithms.
This can be attributed to the specific conditions under which, each
database has been acquired. Even the fact that different types of
cameras are used for each database has great impact to the results.
The aim of this study is to highlight the problem and to propose
simple solutions that can improve the performance of subspace
learning methods for generic and person specific facial expression
recognition. In the following sections, possible solutions to this
problem are presented and the comparative results are referred.

4.2. Enriching the training set

When it comes to automatic real-world facial expression
recognition applications, inaccuracies in the facial image ROI’s
size and position are expected. Therefore, either a systematic
preprocessing involving ROI resizing is needed or alternatively
training approaches can beused that robustify the facial expression
recognition algorithm against inaccuracies in the test image size
and position. In this section, the robustness of appearance-based,
subspace learning techniques for facial expression recognition
in geometrical transformations is explored. Also, a method
for database enrichment is proposed. Although, it is common-
knowledge that appearance based methods are sensitive to image
registration errors, we have found no systematic experiment
quantifying this sensitivity in the literature. After a series of
experiments, a strong correlation between the performance and
the image registration error has been observed. Even slight
geometrical distortions in the facial image ROI could lead in
great differences regarding the recognition performance. Themere
investigation of the use of the optimal parameters of the facial
ROI is inefficient, due to the inherent constraints that a real-world
application imposes and an alternative approach is required. Thus,
by forming the training set, using the initial database combined
with a variety of geometrically transformed facial image ROIs,
higher levels of robustness can be obtained improving the overall
success rates at the same time. That is, a facial image database
enrichment with translated, scaled and rotated images is proposed
for confronting the low robustness of subspace techniques for
facial expression recognition.

4.2.1. The procedure
Under this perspective, we constructed two versions of

enriched databases. For the first one called ‘‘enriched database’’,
the ‘‘centered’’ (i.e., perfectly aligned) dataset was enriched with
translated image versions. Specifically, translations to each of the
four basic directions (left, right, up and down) by approximately
6% of the between-eyes distance were considered. Thus, this first
type of enrichment resulted in 5 times larger database, compared
to the initial one.

To construct the second dataset called ‘‘fully enriched’’ here-
after, four hypothetical types of errors regarding the eye detection
were preconsidered. To be more specific, for each eye we consid-
ered that the eye detector fails to detect the correct position by
≈6% of the between-eyes distance in the high resolution images, in
one of the basic four directions (left, right, up and down). The error
≈6% corresponds to one pixel error in the reduced dimensionality
images used for subspace analysis and classification. Consequently,
including the correct position as well, the eye detector could po-
tentially produce 5 different outputs for a given eye position. That
is, the detector either calculates the correct position or one of the
four erroneous positions mentioned above. Thus, considering both
the left and the right eye, such an eye detector could potentially
produce 25 different outputs, given the ground truth for each eye.
We then used each of these 25 possible positions as an input to the
preprocessing algorithmdescribed in Section 3.1. The resultwas 25
different versions of each image, consisted of the original perfectly
aligned images and translated, rotated, and scaled image versions.
To make this procedure clear, two typical examples are given be-
low. First, using the erroneous positions by 6% left for both of the
eyes, the preprocessing algorithm produces translated to the right
image, since the eyes should be positioned symmetrically to the
vertical axis. Second, using the erroneous positions by 6% left for
the left eye, and 6% right for the right eye, an isotropically down-
scaled image by 12% is produced. Following this logic, each posi-
tion pair results in a different geometrical transformation, when it
is used by the preprocessing algorithm.

The set of fully enriched samples produced by one image of the
dataset Cohn–Kanade is depicted in Table 2. On the first column
and row, the direction, L(left), U(up), C(center), D(down), R(right)
of shifting and the exact position in pixel-coordinates of the left
and the right eye respectively are referred. For example, on the
first column, D(8,12)means that the left eye is shifted (erroneously
detected) by one pixel (6%) downwards and its exact coordinates in
the image are 8pixels from the left boundary and12pixels from the
top boundary. The proposed sampling is a compromise between
the resulting dataset size (25 times the initial size) and the possible
geometrical transforms that can be used.

Then, we implemented a number of combinations of subspace
image representations exploiting PCA, LDA, CDA and DNMF
algorithms and NC, NCC, KNN and SVM classifiers, in order to
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Table 2
Enriched training facial image samples resulting from one image of the
Cohn–Kanade database.

L(22,11) U(23,10) C(23,11) D(23,12) R(24,11)

L(7,11)

U(8,10)

C(8,11)

D(8,12)

R(9,11)

examine their effectiveness in classifying the aforementioned
facial expressions. For this purpose, we conducted a five-fold
cross-validation. Regarding the PCA and LDA outputs, we used the
Nearest Centroid algorithm, while, the Nearest Cluster Centroid
and SVM methods were applied on the CDA and DNMF algorithm
outputs, respectively.

4.2.2. Results
We conducted four series of experiments. In the first one, the

centered images (CC) were used to form both the training and
the testing set. This experiment corresponds to a hypothetical
perfect alignment in a real-system. Thus, the performance reported
using the ‘‘centered’’ dataset is the upper bound one would expect
by using a perfect image alignment system. In the second one,
the centered images were used for the training set, while the
left-shifted images (LL) were used for the testing set, in order
to examine the sensitivity of the recognition performance in
displacements of the bounding box by ≈6%. In the third one,
the training set was the ‘‘enriched’’ dataset formed from both
the centered and shifted images, while the centered images
alone constituted the testing set. Finally, in the fourth series of
experiments, the ‘‘fully enriched’’ dataset formed the training
set, while again the centered images were used for testing. The
latter two approaches were conducted in order to explore the
improvement of the performance of the several methods, when
enriching the training set. The comparative results, for the Kanade,
JAFFE and BU databases, are depicted in Tables 3–5, respectively.

In the first two columns of the tables the various utilized
methods are given, both for reducing the dimensionality and for
classifying the samples. KNN was used for K = 1 and K = 3. Here,
the second case (K = 3) has been presented, since it gave better
results. In the third column of these tables the success rates are
presented, in the case of the centered images, for both the training
and test set. The next column shows the performance when
misplaced images are used for the test set. In the fifth column,
the performance of the enriched database, exploiting merely
the translated images, is depicted. Finally in the last column,
the performance using the fully enriched database for training,
where the 25 transformed versions of the original database were
Table 3
Kanade 5-fold cross validation performance rates (%).

Classifier DR method Centered Misplaced Enriched Fully enriched

PCA 36.4 36.0 36.5 39.7
LDA 62.5 55.5 72.4 74.9

NC/NCC PCA + LDA 67.0 65.1 68.8 73.7
CDA 66.0 56.5 68.1 69.6
PCA + CDA 68.9 66.0 64.3 63.3

PCA 39.0 39.2 39.7 38.5
LDA 63.3 55.7 71.6 75.7

KNN PCA + LDA 67.3 65.8 67.6 69.4
CDA 64.8 57.7 70.6 70.9
PCA + CDA 71.2 66.6 63.0 63.8

SVM DNMF 56.4 49.4 67.6 69.2

Table 4
JAFFE 5-fold cross validation performance rates (%).

Classifier DR method Centered Misplaced Enriched Fully enriched

PCA 29.0 26.0 27.5 34.6
LDA 53.5 45.5 51.5 62.9

NC/NCC PCA + LDA 54.5 46.5 63.5 62.4
CDA 48.1 44.9 59.5 67.3
PCA + CDA 49.3 50.6 59.5 62.9
PCA 31.5 31.0 26.0 40.0
LDA 52.5 44.5 51.5 62.0

KNN PCA + LDA 57.0 48.5 58.5 64.9
CDA 53.1 48.8 58.0 68.8
PCA + CDA 54.9 48.3 58.3 66.8

SVM DNMF 41.6 34.6 57.5 63.9

Table 5
BU 5-fold cross validation performance rates (%).

Classifier DR method Centered Misplaced Enriched Fully enriched

PCA 34.6 34.0 34.9 34.3
LDA 56.0 54.4 62.3 68.1

NC/NCC PCA + LDA 63.3 62.3 64.9 63.3
CDA 53.9 46.4 63.8 67.0
PCA + CDA 64.3 58.0 61.6 60.7

PCA 33.1 33.0 32.7 37.3
LDA 56.6 53.7 61.3 65.0

KNN PCA + LDA 60.4 60.0 62.1 59.7
CDA 52.0 45.9 62.7 66.6
PCA + CDA 60.8 55.4 59.5 62.1

SVM DNMF 41.6 34.6 57.5 63.9

used, is depicted. The bold value in each row indicates the
best performance of the corresponding method among the four
approaches.

It can be, easily observed, that whatever method is used, even a
slight divergence from the centered images (≈6% in the case of our
experiments) causes, in certain cases, a severe drop in performance
(up to 8.5%). That is, a small misplacement that can be attributed to
small face detection localization errors in a real systemwill cause a
much lower performance than the one that could be obtainedwith
perfect face registration. On the other hand, after the enrichment
with transformed images, a clear improvement in the performance
is observed in the vast majority of the cases for both versions of
the database enrichment (up to 15.9% for the enrichment with
the translated images and 22.3% for the fully enriched version).
The robustness when enriching the training set is systematically
observed in our experiments. Additionally, it is observed that the
more transformations are used the greater the improvement of the
accuracy becomes.

Moreover, even with manual alignment the occurred registra-
tion errors lead to worse performance compared to the enriched
training sets. This can be observed by comparing the performance
between the centered and the enriched dataset in Tables 3–5.
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Fig. 3. Frontal FER-AIIA images. From upper left to lower right: neutral, anger, disgust, fear, happiness, sadness, surprise.
Another observation can be made for the performance of PCA.
That is, PCA tends to filter out outliers like misaligned images
and thus generalizes better. However, when PCA is used as pre-
processing before dimensionality reduction, in some cases causes
performance loss. This can be attributed to the fact that PCA dis-
cards eigenvectors that correspond to smaller eigenvalues and
these eigenvectors may contain discriminant information for the
enriched and fully enriched case leading to bad modeling of the
classes and subclasses of the data. Additionally, the enrichment
may generate samples with variable geometric characteristics
which are more probable to match with the test sample. There-
fore, such an enrichment of the training dataset is expected to
robustify the subspace facial expression recognition systems ver-
sus facial image ROI detection/localization and tracking errors. It
is important to highlight that when the enriched and fully en-
riched datasets are used, a clear performance improvement oc-
curs both in comparison with the misplaced and the centered
datasets. Thus, this scheme is proposed not merely for compensat-
ing the registration errors that indeed occur in real world applica-
tions (Rentzeperis et al., 0000;Whitehill, Littlewort, Fasel, Bartlett,
& Movellan, 2009), but also for improving the performance even
when the optimal registration has been performed.

4.3. Person dependent training

In this section the use of person dependent training procedures,
in order to obtain more effective facial expression learning, is
explained. The motivation for these experiments was the fact
that facial expressions tend to be person specific, as explained
in Section 1 and in certain settings (e.g., assisted living) training
and testing for facial expressions is ideally performed for few
(sometimes only one) persons. The expectation is that by enriching
the training set with images of the persons that lie in the test set, a
more efficient learning is obtained.

The three aforementioned databases are not appropriate for
studying person dependent/independent performance. The reason
is that they do not provide facial images of the same persons at
different sessions. For this purpose, the new database FER-AIIA
for facial expression recognition has been created by the AIIA
laboratory, Aristotle University of Thessaloniki. It contains 600
videos and 1200 2D luminance images captured using a Logitech
C-200 camera. Cameras of this type can typically be used in low-
budget human-centered interfaces. The series of the facial images
depict the seven universally recognized facial expressions (angry,
disgust, fear, happiness, sadness, surprise and neutral state), posed
by five subjects (2 females and 3 males) in 4 distinct days
(sessions). Each session consists of five recordings. Consequently,
certain factor variations, as the illumination variation from day to
Table 6
FER-AIIA Leave-One-Person-Out performance rates (%).

DR method NC/NCC 1-NN 3-NN

PCA 27.3 44.8 45.7
LDA 54.6 54.9 54.8
CDA 55.0 57.3 53.5
PCA(95%) + LDA 47.6 57.2 57.5
PCA(95%) + CDA 54.8 60.5 60.9
PCA(90%) + LDA 43.6 46.0 48.0
PCA(90%) + CDA 53.3 56.8 55.3

day are taken into account. However, in every case the illumination
was selected to be within a sensible range regarding the everyday
life in a normal house. Both physical (sun) and artificial light
(conventional lamps) were used. Thus, the database is consistent
with everyday life conditions, as it is the case for real-world
applications. The identity of the depicted person is also provided
for every image. Some typical samples of this database are
illustrated in Fig. 3. The camera’s output was firstly grayscaled and
rescaled to 40 × 30 pixel images as a result of the pre-processing
step.

Then, first, we conducted a series of Leave-One-Person-Out
Experiments on the FER-AIIA database. That is, all the images of
a specific person constituted the test set, while the rest images
formed the training set. These experiments were performed for
every person providing a person specific recognition accuracy and
the mean value of these accuracies across persons was calculated.
The results are presented in Table 6. The first column depicts
the utilized pattern recognition method. The following three
columns contain the recognition rates for the Nearest Centroid,
the 1-Nearest Neighbor and the 3-Nearest Neighbor classifiers,
respectively. As expected, the recognition rates are similar to
those that we have obtained from the intra-database experiments,
shown in Table 1, on the other three datasets (BU, JAFFE and
Kanade). Specifically, the maximum recognition rate is 60.9%
achieved by the PCA(95%)+CDAmethod using the 3-NN classifier.

Second, a series of Leave-One-Session-Out Experiments were
performed. In this case, the training was performed for all the
subjects of the database for images recorded on 3 out of 4 available
sessions and the data of the session left out were used for the
testing. That is, a 4-fold cross validation approach was followed.
The results are presented in Table 7. The maximum performance
rate is now95.6%,which ismuchhigher than 60.9% reported for the
Leave-One-Person-Out experiments. It has been obtained by the
CDA method using the 3-NN classifier. This superior performance
can be explained by the fact that the system has been trained to
recognize the expressions of the subjects used in testing. Of course,
it should be stressed that in none of the experiments the same
image was used in both the training and testing set.
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Fig. 4. 20° rotated FER-AIIA images. From upper left to lower right: anger, disgust, fear, happiness, sadness, surprise.
Table 7
FER-AIIA Leave-One-Session-Out performance rates (%).

DR method NC/NCC 1-NN 3-NN

PCA 31.7 71.8 74.5
LDA 95.2 94.8 94.9
CDA 95.5 95.0 95.6
PCA(95%) + LDA 86.2 89.3 91.4
PCA(95%) + CDA 91.7 91.4 92.3
PCA(90%) + LDA 68.5 77.6 78.8
PCA(90%) + CDA 77.6 84.1 84.6

Third, a set of experiments was conducted in order to explore
the combined improvement in the performance when both person
dependent training is performed and fully enriched training
dataset is used. The results show that in the vast variety of the cases
the performance rate increase is even higher. To be more specific,
for these types of experiments, the improvement was found in the
range of 1%–5%.

Additionally, person-specific experiments were performed to
simulate the case of a learning system that has been exclusively
trained and tested for each subject independently. Table 8 depicts
the accuracy rates for this category of experiments. By comparing
the results of Tables 6 and 8, we can see that training and testing on
data of the same person produces far superior results (accuracy in
the range of 80.8%–97.5%) than when we train on some persons
and test on others (accuracy in the range of 27.3%–60.9%). This
performance drops, rather mildly, as can be seen in Table 7
(accuracy in the range of 31.7%–95.6%), when other person images
are included in the training set.

Finally, experiments for defining the system’s operational
limits, due to face rotations, were conducted. Every person was
asked to perform each facial expression with her/his head turned
by 10 and20° to the right, left, upwards or downwardswith respect
to the camera position. Thus, four videos for every expression
were recorded. Experiments for facial expression recognition were
performed using the subspace learning method trained using the
first and the last frame from each video sequence included in the
FER-AIIA LAB database. The average recognition rate has dropped
by approximately 3% for the 10° experiments, remaining, thus,
quite close to the non-rotation ones. On the contrary, the achieved
expression recognition rate dropped radically in average by 23%
for the 20° experiments. Fig. 4 shows characteristic instances from
this dataset. This dramatic reduction in the recognition accuracy
rate is realistic if we consider that the 20° head rotation has a
severe impact regarding the visible facial features, since as we
have observed in many cases the eye detector could not produce
a correct localization result.

Summarizing the results of this section, it can be noted that
when the facial expression recognition system is meant to be
Table 8
FER-AIIA person specific accuracy rates (%).

Approach NC 1-NN 3-NN

PCA 90.4 80.8 86.7
LDA 97.5 97.1 97.1
CDA 96.7 95.4 96.7
PCA(95%) + LDA 93.3 95.0 95.0
PCA(95%) + CDA 94.2 94.2 93.8
PCA(90%) + LDA 92.5 95.4 95.8
PCA(90%) + CDA 93.3 92.5 92.5

used for a specific person, very high performance can be achieved
using person-dependent training. This usecase makes sense, e.g.,
in cognitive robotics for assisted living, where the person that
interacts with the robot is known or in film/games postproduction,
where the film actor identities are known in advance.

5. Conclusions

Facial expressions consist an integral part of human non-
verbal communication. Subspace learning methods have become
a frequently used tool to perform facial expression recognition.
However, in this paper, the great sensitivity of these kinds of
algorithms to geometrical distortion of the images, even for the
case of one pixel, has been highlighted. Real-world applications
carry an inherent difficulty regarding the precise face and facial
feature localization, resulting in inaccurate image registration.
The systematic enrichment of a database with geometrically
transformed (translated, scaled and rotated) images, which has
been proposed in this paper, has shown to give significant
improvement in the recognition performance in the majority of
the cases. Moreover, it has been shown that facial expression
recognition has rather low performance in its generic form,
i.e., when no training images are available for the test person.
Person dependent training has also been proposed for certain
applications, that involve a single user (e.g., assisted living).
The experiments have shown that a major improvement can
be achieved when using subspace learning for facial expression
recognition combined with person-dependent training.
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