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fire detection algorithm for the Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) sensor capable of mapping actively burning fires at 30-m spatial resolution.
For daytime scenes, our approach uses near infrared and short-wave infrared reflectance imagery. For
nighttime scenes a simple short wave infrared radiance threshold is applied. Based on a statistical analysis of
100 ASTER scenes, we established omission and commission error rates for nine different regions. In most
regions the probability of detection was between 0.8 and 0.9. Probabilities of false alarm varied between
9×10−8 (India) and 2×10−5 (USA/Canada). In most cases, the majority of false fire pixels were linked to
clusters of true fire pixels, suggesting that most false fire pixels occur along ambiguous fire boundaries. We
next consider fire characterization, and formulate an empirical method for estimating fire radiative power
(FRP), a measure of fire intensity, using three ASTER thermal infrared channels. We performed a preliminary
evaluation of our retrieval approach using four prescribed fires which were active at the time of the Terra
overpass for which limited ground-truth data were collected. Retrieved FRP was accurate to within 20%, with
the exception of one fire partially obscured by heavy soot.
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1. Introduction

At present a number of satellite-based active fire, or “hot spot”,
data products are available for operational and experimental use. The
number of sensors from which these data sets are derived has grown
considerably over the past decade, and now includes the Advanced
Very High Resolution Radiometer (AVHRR), the Moderate Resolution
Imaging Spectroradiometer (MODIS), the Along-Track Scanning
Radiometer (ATSR) and Advanced Along-Track Scanning Radiometer
(AATSR), the Visible and Infrared Scanner (VIRS), the Geostationary
Operational Environmental Satellite (GOES) Imager, the Operational
Linescan System (OLS), and the Spinning Enhanced Visible and
Infrared Imager (SEVIRI) (Arino & Rosaz, 1999; Elvidge et al., 1996;
Giglio et al., 2003; Justice et al., 1996, 2002; Prins et al., 2001; Roberts
and Wooster, 2007; Stroppiana et al., 2000) While a variety of
intercomparisons between satellite-based active fire data sets (or
between the fire detection approach associated with each) have been
performed (Li et al., 2001; Ichoku et al., 2003), there has been little
tions, Inc., Lanham, Maryland,
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rigorous product validation. The primary reason for this arises from
the dynamic nature of fire and the short time scales over which it
interacts with, and moves across, the landscape. Continued interest
exists, therefore, in using high resolution sensors on board aircraft or
satellites to provide spatially and temporally coincident fire imagery.
The resulting fire “snapshots” could then be used to derive detailed,
instantaneous maps of fire extent (and perhaps properties) to support
validation. In addition, high resolution fire maps are independently
useful for ecological field studies on fire and its effects, especially in
heterogeneous landscapes and at the wildland–urban interface.

A high-resolution sensor that has facilitatedfire validation in recent
years is the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER), a 14-channel imaging radiometer on board the
National Aeronautics and Space Administration's (NASA) Terra
satellite. Since ASTER co-resides with the Terra MODIS instrument,
high resolutionASTERfiremasks have become an important tool in the
ongoing validation of the 1-km Terra MODIS active fire products
initiated by Morisette et al. (2005a,b) and Csiszar et al. (2006). Since
manual production of fire masks is time consuming, and simple fixed
threshold methods do not scale well (both spatially and temporally), a
consistent, automated source of ASTER fire masks is desirable. In this
paper we present a fire detection algorithm that uses ASTER observa-
tions to provide binary “yes/no” fire masks at 30-m spatial resolution.
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Table 1
ASTER channel characteristics

Band Central Spatial

Number Wavelength (µm) Resolution

1 0.56 15 m
2 0.66
3N 0.82
3B 0.82
4 1.65 30 m
5 2.17
6 2.21
7 2.26
8 2.33
9 2.40
10 8.30 90 m
11 8.65
12 9.10
13 10.60
14 11.30
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Algorithm performance is evaluated using 100 ASTER scenes for which
fire pixels were manually identified. We next consider the potential of
ASTER for fire characterization, and present an empirical method for
retrieving fire radiative power (FRP), a measure of fire intensity, using
ASTER data. The method is then evaluated using ground truth data
obtained for several prescribed fires.

2. The ASTER instrument

The ASTER is a 14-channel imaging radiometer with separate
visible and near-infrared (VNIR), short wave infrared (SWIR), and
thermal infrared (TIR) optical subsystems (Yamaguchi et al., 1998). The
individual subsystems contain four (VNIR), six (SWIR), and five (TIR)
spectral bands at 15, 30, and 90 m spatial resolution, respectively. The
ASTER band numbering and spectral locations are listed in Table 1. The
VNIR and SWIR bands have three and four individually-selectable gain
settings, respectively, referred to as high, normal, low-1, and low-2
(SWIR only). The imaging swath for all bands spans 60 km. Due to
various hardware, power, and data storage and download rate
constraints, ASTER does not continuously acquire data, but is instead
operated on a prioritized acquisition schedule (Yamaguchi et al.,
1998).

3. Data

For this study we used 196 radiometrically calibrated and
geometrically coregistered Level 1B ASTER scenes acquired between
early 2001 and late 2004 for algorithm testing and evaluation. Scene
Fig. 1. Locations of the 196 ASTE
locations and acquisition dates were selected based on current
knowledge of the global distribution of fire activity. The locations of
all scenes are shown in Fig. 1.

4. Fire detection

4.1. Band selection

Satellite-based fire detection has traditionally relied upon bands
located near 4 µm to exploit the high levels of black-body radiation
emitted at typical fire temperatures in this region of the electro-
magnetic spectrum. This region is, in fact, near-optimal for satellite-
based fire detection in daytime imagery. This can be seen by
considering the ratio R of black-body radiation emitted by a fire (Lfire)
to the radiance of the ambient non-fire land surface (Lland):

R ¼ Lf ire=Lland: ð1Þ

The land radiance is composed of reflected solar radiation and
thermal black-body radiation. For nowwe consider a simplified case of
a Lambertian grey-body surface, unit fire emissivity, and no atmo-
sphere. With the Sun located directly overhead, the ratio in Eq. (1) is
given by

R kð Þ ¼ B k; Tf ireð Þ
qB k; Tsunð ÞXsun=pþ 1� qð ÞB k; Tlandð Þ ð2Þ

where B(k, T) is the Planck function, ρ is the land surface reflectance,
Tland is the land surface temperature, and Xsun is the solid angle
subtended by the Sun. The Planck function, which describes the
spectral radiance emitted at wavelength k by a black-body at
temperature T, is given by

B k; Tð Þ ¼ c1k
�5 exp

c2
kT

� �
� 1

h i�1
ð3Þ

where c1 and c2 are constants. In Fig. 2, the ratio R(k) is shown for
representative flaming (∼1000 K) and smoldering (∼600 K) fires.
Sensitivity peaks near 4 µm for both cases.

Among the most egregious of the simplifications we have made is
the assumption of a grey body surface. In reality, of course, surface
reflectance varies considerably with wavelength, and the constant ρ
appearing in Eq. (2) should be replaced with the function ρ(k). If we
were to substitute the reflectance spectrum of most natural terrestrial
components into Eq. (2), the general shape of the curve in Fig. 2 would
still resemble that of the ideal case, and peak sensitivity would remain
near 4 µm. In contrast, including the atmosphere (which we have
R scenes used in this study.



Fig. 3. False color ASTER image of an active fire in eastern Cambodia, acquired 15 January
2003, 03:31 UTC, with band 8 shown as red, band 3N shown as green, and band 1 shown
as blue. With this color scheme active fires appear bright red, burn scars appear brown,
clouds appear white, and cloud shadows appear black. Approximate location of this fire
is 13.2°N, 107.7°E.

Fig. 4. Relationship between band 3N and band 8 top-of-atmosphere reflectance for all
pixels comprising the scene shown in Fig. 3. For this particular scene, band 8 saturates at
a reflectance of about 0.64.

Fig. 2. Ratio R of typical fire radiance to typical land surface radiance, as a function of
wavelength, for 1000 K flaming and 600 K smoldering fires. The solid portions of both
curves denote the locations of atmospheric windows computed using the MODTRAN 4
atmospheric model for the U.S.1976 standard atmosphere (rural 23 kmvisibility). This is
a highly idealized case with the land surface assumed to be a grey body of 15%
reflectance, and no atmospheric extinction. Vertical dotted lines indicate locations of
ASTER bands 3N, 8, 10, and 14. Vertical dot-dashed line indicates location of MODIS
middle infrared fire bands for comparison.
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heretofore neglected) introduces severe constraints on band selection.
Water vapor absorption, for example, renders the spectral region from
5.5 to 7 µm completely useless for observing the terrestrial surface.
The locations of atmospheric windows are indicated in Fig. 2 as the
solid portions of the curves; the broken portions indicate those
spectral regions not usable for surface observation (defined here
somewhat arbitrarily as regions in which the atmospheric transmit-
tance is less than 0.6). Conveniently, an atmospheric window exists
between 3.6 and 4.1 µm, leaving a wavelength interval located at
approximately 4 µm optimal for daytime fire detection.

Since ASTER lacks a 4 µm band, the next best choice would
normally be band 9 (2.40 µm). This was the band used by Morisette
et al. (2005a) to validate the MODIS fire product in southern Africa,
where it was found to work well. Active fires were detected within
ASTER scenes by means of a fixed 6.33 W m−2 sr−1 µm−1 threshold
criterion applied to band 9 radiance imagery. The authors include a
qualitative discussion on themerits of using this particular band in the
context of fire detection. There are several issues, however, which
complicate the use of band 9 for routine use. In general, all of the
ASTER SWIR bands, particularly band 9, can exhibit blooming when
pushed to the point of saturation, making it difficult to demarcate
actual fire front boundaries. Second, a small number of “dead” pixels
having a digital count near zero tend to occur along an edge (or
sometimes within) clusters of saturated SWIR pixels, and occurs most
often in band 9. These issues were first noted by Morisette et al.
(2005a). A third complication is that crosstalk from band 4 spills
primarily into bands 5 and 9. While the magnitude of this effect is
usually small (Iwasaki et al., 2002), for certain combinations of
“mismatched” SWIR-band gain settings (e.g., band 4 normal, band 9
low-2) the crosstalk will produce a major signal bias in band 9. For
the ASTER scenes used in this study, this bias varied between 0.3 and
0.7 in terms of reflectance.

Using Fig. 2 it might be argued that band 10 (8.30 µm) would
actually be a superior choice for detecting smoldering fires. While true
for pixels that are comparable in size to ASTER's 30-m SWIR bands, the
lower 90-m spatial resolution of the TIR bands leaves them
significantly less sensitive to fires. A good example of this may be
found in Morisette et al. (2005a).

For the reasons discussed abovewe have selected band 8 (2.33 µm)
as the most useful for fire detection. Our approach for daytime scenes
in fact uses two ASTER bands, one of which is sensitive to the black-
body radiation emitted by fires (band 8), and another which is
insensitive to such radiation but that provides a highly correlated
reflectance over “normal” (non-fire) components of terrestrial scenes,
which includes soil, vegetation, clouds, and urban areas. The only
viable candidate is band 3N (0.82 µm)which, of the four VNIR bands, is
the least susceptible to scattering by smoke and other aerosols. Fig. 3
shows a false color band 1, band 3N, and band 8 image of an active fire
in eastern Cambodia. In this color scheme active fires appear bright
red, burn scars appear brown, clouds appear white, and cloud
shadows appear black. In Fig. 4 we show the relationship between
band 3N and band 8 reflectance for the same scene. Several broad
features are evident. First, there is a central cluster in which the band
3N and band 8 reflectances are largely uncorrelated but well
constrained. This corresponds to vegetation, some soils, and burn
scars. Next, there is an elongated cluster in which the reflectances are



Fig. 5. Minimum fire size required to saturate ASTER band 8 (at normal gain) as a function
of fire temperature under typical daytime conditions. A surface reflectance of 15% was
assumed.
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very highly correlated, corresponding to clouds and, to a lesser extent,
brighter soils. The third, vertically oriented cluster corresponds to
pixels containing active fires. The apparent band 8 reflectance of these
pixels is anomalously high due to the substantial emissive SWIR
contribution from combustion. Overall, the reflectances of non-fire
pixels are linearly related, and this relationship is sufficiently strong
that the ratio of band 8 reflectance to band 3N reflectance is nearly
constant. We will exploit this characteristic in developing a daytime
fire detection algorithm for ASTER. Nighttime scenes, being devoid of
reflected sunlight (barring a very small contribution from the Moon),
are much less ambiguous, and active fires can be identified with
thresholds applied to band 8 imagery.

4.2. Detection algorithm

For daytime scenes we use top-of-atmosphere reflectances
computed for ASTER bands 3N and 8, denoted by ρ3 and ρ8,
respectively. To produce compatible spatial resolutions, band
3N pixels are aggregated to 30 m spatial resolution by averaging. For
nighttime scenes our approach requires the ASTER band 8 top-of-
atmosphere radiance (L8) only.

4.2.1. Daytime algorithm
In the following discussion we refer to the ratio (r) and the

difference (Δρ) of the band 3N and band 8 reflectances, where r=ρ8/ρ3
and Δρ=ρ8−ρ3.

4.2.2. Step 1: mask obvious water pixels
Because our approach includes a contextual component in which

local spatial statistics are computed, it is desirable to exclude water
pixels during this process. Since ancillary water masks are currently
unavailable at the scale of an ASTER pixel, we apply a simple band 8
threshold test on a per-pixel basis: all pixels for which ρ8b0.04 are
flagged as water and are excluded from further processing. While this
value provided reasonably good identification of water pixels in our
test scenes, it may need to be adjusted regionally to account for
variations in, among other factors, depth, and the amount and type of
suspended matter.

4.2.3. Step 2: identify obvious fire pixels
Pixels for which rN2 and ΔρN0.2 are considered to be obvious fire

pixels and are immediately flagged as containing an active fire. The
difference test ensures that areas of exceptionally low reflectance are
not incorrectly identified as a fire.

4.2.4. Step 3: identify candidate fire pixels
Pixels for which rN1.1 andΔρN0.1 that were not flagged as obvious

fire pixels in the previous step are flagged as candidate fire pixels.

4.2.5. Step 4: background characterization
Neighboring pixels in a square window centered on the candidate

fire pixel are used to estimate the mean non-fire “background” values
of the reflectance ratio and band 8 reflectance. Pixels identified as
obvious fire pixels in Step 2 are excluded from this window. Unlike the
variable background windows used in contextual algorithms devel-
oped for coarser resolution (∼1-km) sensors (e.g., Flasse and Ceccato,
1996; Giglio et al., 1999), the size of the backgroundwindow is fixed at
61×61 pixels (1830 m×1830 m) in size. This scale, which was
determined empirically, is reasonable given the much higher spatial
resolution of ASTER. For small and moderate size fires, the majority of
the 30-m pixels within a window of this size will be fire-free and
usable for background characterization. On the other hand, the
problematic case of the background window spanning a very large
fire, and consequently leaving an insufficient number of non-fire
pixels available for background characterization, will virtually never
occur: most pixels within a very large fire will have already been
identified as obvious fire pixels in Step 2, thus obviating the need for
background characterization to be performed.

Four statistics are computed for pixels within the background
window: the mean (r–) and standard deviation (σr) of the reflectance
ratio, and the mean (ρ8―) and standard deviation (σ8) of the band 8
reflectance.

4.2.6. Step 5: contextual tests
For all candidate fire pixels the conditions

rN r̄ þmax 3rr ;0:5ð Þ ð4Þ

q8N
P
q8 þmax 3r8;0:05ð Þ ð5Þ

are evaluated, where max(u, v) denotes the larger of u and v. If both
conditions are satisfied, the pixel is flagged as containing an active fire.
Condition (4) is used to identify pixels exhibiting the anomalously
high SWIR to VNIR ratio expected when an active fire is present in an
ASTER pixel. Condition (5) is used to identify pixels having the
anomalously high apparent SWIR reflectance caused by the presence
of fires. It also prevents false alarms in pixels having an exceptionally
low near-infrared reflectance but otherwise modest SWIR reflectance.
This condition can occur, for example, within shallow, silt-ladenwater
bodies. The minimum difference thresholds of 0.5 and 0.05 in Eqs. (4)
and (5), respectively, prevent false alarms in unusually homogeneous
regions.

4.2.7. Nighttime algorithm
The simplicity of nighttime scenes permit the use of a single band 8

radiance threshold. Pixels for which L8N1 Wm−2sr−1 µm−1 are
classified as fire pixels. This particular threshold value is roughly a
factor of ten larger than the typical nighttime land surface radiance at
2.33 µm.

4.3. Expected performance

Although the daytime detection algorithm does not require
saturation of band 8 to detect a fire, saturation is nevertheless a
useful criterion for gauging the approximate fire detection capability
of the instrument. As will be shown in Section 6, the majority of
detected fires saturate band 8. Fig. 5 shows the minimum fire size that
will reach the band-8 saturation level of 10.55 Wm−2sr−1 µm−1 (gain
setting normal), indicating that ASTER can in principle detect flaming
fires ∼1 m2 in size, and smoldering fires approximately 100 times
larger.



Table 3
Elements of error matrix for each region

Region Scenes Mff Mnf Mfn Mnn

Africa 19 4816 845 217 82,193,491
Australia 9 14255 2846 255 39,044,478
South America 10 4172 616 175 42,996,551
Mexico 10 1631 684 8 42,931,999
Europe 11 1372 147 282 47,401,479
India 10 2070 2507 4 43,240,339
USA/Canada 11 35160 8415 765 47,473,810
Russia 10 13548 2311 172 43,891,622
Southeast Asia 10 921 92 94 43,603,099

Table 4
Regional accuracy measures for ASTER fire detection algorithm, including the
probability of detection (Pd), probability of false alarm (Pf), and the fraction of false
fire pixels connected to clusters of true fire pixels (fc)

Median
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5. Algorithm evaluation

Of the 196 ASTER scenes used in this study, 96 were used for
testing during algorithm development and the remaining 100 were
set aside for algorithm evaluation. The evaluation scenes were
partitioned into the following nine regions: Africa, Asia, Australia,
India, Europe, Mexico, Russia, South America, and USA/Canada.

For each evaluation scene, manually identified fire pixels were
stored in an “expert” fire mask. These masks were then compared to
the fire masks generated by the detection algorithm, allowing the
construction of error matrices which summarized algorithm perfor-
mance for each region. The elements of the error matrix are shown in
Tables 2 and 3.

A common measure of accuracy known as the overall accuracy is
simply the ratio of the number of correctly classified pixels to the total
number of pixels evaluated. In terms of the elements of the error
matrix, the overall accuracy A is given by

A ¼ Mf f þMnn

Mf f þMfn þMnf þMnm
: ð6Þ

In the present work this metric is not particularly useful since the
number of correctly classified non-fire pixels (Mnn) will generally
dwarf all other elements of the error matrix. Eq. (6) will consequently
nearly always uninformatively tell us that A≈100%. Of more utility
here is the probability of detection (Pd) and the probability of false alarm
(Pf), where

Pd ¼ Mf f

Mf f þMnf
: ð7Þ

and

Pf ¼ Mfn

Mf f þMnn
: ð8Þ

The resulting probabilities computed using Eqs. (7) and (8) are
presented in Table 4.

In most regions, Pd varied between 0.8 and 0.9, with a somewhat
lower probability inMexico (Pd=0.71). An unusually low probability of
detection (Pd=0.45) was found for India. To help explain the poor
performance in this region, we linked adjacent fire pixels within each
expert fire mask into independent clusters, where each cluster was
surrounded completely by either non-fire pixels or a scene edge. We
next computed the median size of all fire-pixel clusters within each
region (Table 4), and found that the smallest median cluster size
occurred in India, where half of all fires identified were three 30-m
ASTER pixels or less in size. This suggests that the fires in our Indian
scenes are simply too small for reliable detection, a finding consistent
with the fact that small agricultural-waste fires are abundant in this
region.

False alarm probabilities varied between 9×10−8 (India) and 2×10−5

(USA/Canada). For a typical ASTER scene of ∼5,000,000 30-m pixels,
these extremes correspond to between less than 1 and 100 false fire
pixels per scene. More representative intermediate false alarm rates
Table 2
Elements of error matrix used to calculate accuracy measures

Expert class

Algorithm class Fire Non-fire

Fire Mff Mfn

Non-fire Mnf Mnn

The first subscript denotes the class assigned to a pixel by the algorithm, and the second
denotes the class assigned by the expert.
(Pf∼5×10−6) yield ∼25 false fire pixels per scene. In an extension of our
fire-pixel cluster analysis, we determined the fraction of false fire pixels
connected to clusters of true fire pixels, fc, and show this fraction in
Table 4. In most regions the majority of false fire pixels were linked to
clusters of true fire pixels, suggesting that most false fire pixels occur
along the ambiguous fire boundaries.

6. Fire characterization

6.1. Instantaneous fire temperature and area

A more extensive fire-product validation could be achieved if sub-
pixel average fire temperatures and instantaneous fire areas were
estimated using ASTER observations. This would permit fire detection
probabilities to be established as a function of fire temperature and
area, an appealing prospect as the resulting envelopes of detection are
readily understandable. Temperature and area statistics would also
allow more realistic fire scenes to be used in simulation-based
approaches to validation (e.g., Dowty, 1996; Giglio et al., 1999, 2003).
One approach is to use the bispectral method developed by Dozier
(1981), which permits the retrieval of the temperature and area of a
sub-pixel fire within an otherwise homogeneous pixel. Using slight
modifications suggested by Giglio and Kendall (2001), we may write
the total radiance Li reaching the sensor in the ith band (i=1, 2) as

Li ¼ sipBi Tfð Þ þ 1� pð ÞLb;i; ð9Þ

where Tf is the fire temperature, and p is the relative fraction of the
pixel containing the fire. The factor τi is the band-averaged atmo-
spheric transmittance, weighted by the spectral response of the ith
channel, and Bi(Tf) is the band-averaged Planck function. The
quantities Lb,1 and Lb,2 are independent estimates of the radiance
contributions from the non-fire portion (or background) of the target
pixel, usually taken as the radiances of a neighboring, non-fire pixel, or
Cluster

Region Pd Pf Size fc

Africa 0.85 3×10−6 4.0 0.83
Australia 0.84 8×10−6 6.0 0.93
South America 0.87 4×10−6 4.0 0.92
Mexico 0.71 2×10−7 4.0 0.25
Europe 0.90 6×10−6 4.0 0.82
India 0.45 9×10−8 3.0 1.0
USA/Canada 0.81 2×10−5 5.0 0.64
Russia 0.85 4×10−6 5.0 0.92
Southeast Asia 0.91 2×10−6 3.5 0.76
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the average radiances of several neighboring, non-fire pixels. Given
these estimates, Eq. (9) may be solved numerically for p and Tf. An
important assumption built into Eq. (9) is that the fire radiates as a
true black body, and thus has unit emissivity. The impact of a grey-
body fire fraction is considered by Giglio and Kendall (2001).

There are numerous well documented limitations of the bispectral
approach for fire characterization (e.g., Langaas, 1993; Giglio and
Kendall, 2001; Shephard and Kennelly, 2003). With respect to the
ASTER instrument, there are several limitations of particular sig-
nificance. First, it is difficult to obtain a good estimate of the
background radiance (Lb,i) within a fire pixel since the non-fire
fraction contains hot, recently-burned areas having a unique tem-
perature and area distribution not matched in neighboring non-fire
pixels. This is especially true at the scale of an ASTER pixel: fire
heterogeneity is more pronounced compared to sensors having ∼1 km
spatial resolution (or coarser) most often used for operational fire
monitoring. Second, only a tiny fraction of ASTER scenes have been
acquired with even a subset of the SWIR bands in one of the low gain
modes, making saturation of these bands extremely common when
observing fires. Since the bispectral method cannot be applied when
one or both bands saturate, one might potentially appeal to “band
hopping”, where the band-pair used to solve Eq. (9) is independently
chosen from the pool of unsaturated channels for each fire pixel.
However, except for the case of homogeneous fires, solving Eq. (9)
with different band combinations can yield dramatically different
solutions for p and Tf. As discussed by Giglio and Justice (2003), this
phenomenon arises because the bispectral method models fires as
having a single, homogeneous temperature, when in fact they have a
more complicated temperature distribution. In general, a fire model
should allow at least a hotter flaming and a cooler smoldering
component. While multiple-component models have been used
successfully with hyperspectral instruments (Green, 1996; Dennison
et al., 2006), a two-fire-temperature model would require a minimum
of four unsaturated ASTER channels, a feat bordering on the
miraculous for nearly all of the ASTER scenes that have been acquired
to date. Finally, band-to-band coregistration must meet fairly
stringent requirements for the retrieved fire parameters to be accurate
for fires occupying a small fraction of the pixel (Shephard and
Kennelly, 2003). A practical method of reducing the impact of
misregistration (at the cost of spatial resolution) is to apply the
bispectral method to clusters of adjacent fire pixels (Oertel et al., 2003;
Zhukov et al., 2006), where the radiances L1 and L2 in Eq. (9) become
averages of all pixels within the cluster.

Given the above difficulties, and based on initial unsuccessful tests
with several ASTER scenes, we did not pursue the retrieval of fire
temperature and area from ASTER observations. Instead, we direct our
efforts toward retrieval of fire radiative power, a remotely-sensed
measure of fire intensity of growing interest.

6.2. Fire radiative power

The MODIS active fire product includes an estimate of the
fire radiative power (FRP) emitted within each MODIS pixel (Kaufman
et al., 1998). As originally conceived, the FRP, when integrated over
time, can be used to estimate combusted biomass, and is thus a topic
of current research for its potential in quantifying pyrogenic green-
house-gas emissions (e.g., Ichoku & Kaufman, 2005). Subsequent work
has extended the scope of potential applications to include the
discrimination of different fire types (Wooster & Zhang, 2004; Smith &
Wooster, 2005) and the estimation of smoke injection height
(Mazzoni et al., 2007). Although some validation of the MODIS FRP
has already been performed (Wooster, 2002; Wooster et al., 2003),
such cases are few in number and not yet globally representative.
There is interest, therefore, in validating the MODIS FRP using
comparatively large samples of ASTER fire scenes. Here we briefly
consider the feasibility of such a task.
The FRP for N different fire components within a pixel, each having
its own temperature and area, is defined as (Wooster et al., 2003)

FRP ¼ Apix�r
XN
i¼1

piT4
i ; ð10Þ

where pi is the fraction of the pixel occupied by the ith fire component
with temperature Ti, Apix is the area of the pixel, � is the weighted
mean emissivity of the fire components, and σ is the Stefan-
Boltzmann constant. For the special case of a wavelength near 4 µm,
Wooster et al. (2003) showed that FRP could be remotely sensed using
a single middle-infrared band via the relationship

FRPc
Apix�r
a�MIR

L� Lbð Þ; ð11Þ

where L is the 4 µm radiance of a fire pixel, Lb is an independent
estimate of the radiance contributed by the non-fire portion of the
pixel, �MIR is the middle-infrared fire emissivity, and a is a constant.
This unique property of the middle-infrared was first noted by
Kaufman et al. (1998), who derived an empirical relationship relating
the FRP to brightness temperature.

Since Eq. (11) is not applicable to the bands available on ASTER, an
alternative approach might be to use the instantaneous fire tempera-
ture and sub-pixel area estimates obtained from Eq. (9) to calculate
the FRP directly, i.e.,

FRP ¼ Apix�rpTf : ð12Þ

Use of Eq. (12) brings with it all of the limitations inherent in the
bispectral technique, and we consequently did not attempt to apply
such an approach to the ASTER scenes used in our analysis. Motivated
by the fact that the ASTER bands weight the flaming and smoldering
contributions differently, we instead seek an empirical relationship
which expresses the FRP as a linear combination of the “surplus
radiance” observed in n≥1 ASTER bands, i.e.,

FRP ¼
Xn
j¼1

cj Lj � Lb;j
� �

; ð13Þ

where Lj is the observed radiance in band j for a fire pixel, Lb,j is an
independent estimate of the non-fire background radiance, and cj is a
band-specific constant. Here, Lj and Lb,j are bottom-of-atmosphere
radiances since we can make use of the ASTER atmospherically-
corrected SWIR Surface Reflectance product (AST 07S, AST 07XTS) and
TIR Surface Radiance product (AST 09T) when attempting fire
characterization.

The constants appearing in Eq. (13) were calculated for different
band combinations by means of a simple fire model in which bottom-
of-atmosphere radiances were computed for 120,000 simulated fires.
Each fire was assigned independent flaming and smoldering compo-
nents having temperatures ranging from 750–1200 K and 500–700 K,
respectively, drawn randomly from uniform distributions. The area of
each flaming and smoldering component was also assigned randomly
for each simulated fire, with the constraint that the total fire area
(flaming and smoldering combined) occupied no more than 90% of an
ASTER pixel. The emissivity of the non-fire component within each
pixel was randomly selected from the interval [0.97,0.99], and unit fire
emissivity was assumed.

An initial analysis revealed that a minimum of four independent
SWIR bands were required to match the accuracy that could be
achieved using only three TIR channels. For this reason, as well as the
scarcity of ASTER scenes having a consistent set of unsaturated SWIR
bands for fire pixels, we restricted the remainder of our analysis to the
TIR bands. Within this restricted wavelength interval, highest
accuracy is attained by spacing the bands sufficiently far apart such



Table 5
Fire characteristics of prescribed fires for which quantitative ground-based estimates
were available at the time of the Terra overpass

Maximum

Fuel Area (m2) Temperature (K) FRP (MW)

Straw 50 661 0.54
Straw 100 693 1.31
Straw 500 693 6.54
Tire 10 1166 1.05
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that the Planck function yields significantly different radiances at a
given fire temperature. We therefore opted to use bands 10, 12, and 14
in Eq. (13). Our empirical relationship is then

FRP ¼ c10 L10 � Lb;10
� �þ c12 L12 � Lb;12

� �þ c14 L14 � Lb;14
� �

: ð14Þ

By regressing the true FRP of 200,000 simulated fires against the
corresponding surplus radiance in bands 10, 12, and 14, we obtained
values for the coefficients of c10=9.98±0.06 MW W−1 m2 sr µm, c12=
−14.6±0.1 MWW−1 m2 sr µm, and c14=4.85±0.08 MWW−1 m2 sr µm.
Fig. 6 shows the FRP retrieved using Eq. (14) versus the true FRP for a
random subset of the simulated fires.

We note that Eq. (14) can be applied on either a per-fire-pixel or a
per-fire-pixel-cluster basis. For validation purposes the latter is
generally most appropriate as it minimizes the effects of geolocation
error and the inherent imprecision of pixel boundaries. In this case, Lj
represents the mean band j radiance for a contiguous cluster of 90-m
TIR pixels which contain one or more fire pixels identified in the 30-m
fire mask. When computing the average radiances for each cluster, the
individual TIR radiance of each pixel should then be weighted by the
number of 30-m fire pixels contained within it.

Denoting the uncertainties in the fit coefficients, the radiance of
each fire pixel (or cluster of pixels), and the background radiance
estimate as Δcj, ΔLj, and ΔLb,j , respectively, and assuming the
uncertainties are both independent and random, the net uncertainty
in retrieved FRP is given by

DFRP ¼ P
j

AFRP
Acj

Dcj

� �2

þ AFRP
ALj

DLj

� �2

þ AFRP
ALb;j

DLb;j

� �2
" # !1=2

¼ P
j Lj � Lb;j
� �

Dcj
� �2þ cjDLj

� �2þ cjDLb;j
� �2h i� �1=2

;

ð15Þ
where the index j={10,12,14}. Note that in Eq. (15) the quantities ΔLj
and ΔLb,j represent the combined uncertainty in radiance from
instrument noise, quantization, and the atmospheric correction.

6.3. Evaluation of retrieved fire radiative power

We evaluated the empirical FRP relationship in Eq. (14) using four
prescribed fires set in Szendrő, Hungary on 3 September 2005 which
were active at the time of the descending (daytime) Terra overpass.
We scheduled a simultaneous ASTER scene acquisition with a SWIR-
band gain setting of low-2, but due to a scheduling error a gain of
normal was inadvertently used. While this had no impact on the TIR
Fig. 6. Predicted FRP (via Eq. (14)) versus true FRP for 1000 simulated fires. Dashed line
indicates perfect agreement.
channels (all of which remained unsaturated), it did result in
saturation of many of the SWIR pixels overlapping fires. Fuel (straw
and, in one case, a rubber tire) was arranged and ignited so as to
match, as closely as possible, a range of pre-specified flaming areas at
the time of the Terra overpass. Within several minutes of the overpass,
the maximum instantaneous fire temperature was estimated for each
fire using multiple FLIR Systems handheld thermal radiometers
(models ThermaCAM E45, InfraCAM, and ThermaCAM P65), which
acquired real-time imagery at an effective spatial resolution of
∼10 cm. Fire characteristics are summarized in Table 5, with the FRP
calculated using the observed maximum fire temperature as a proxy
for the mean fire temperature. This was not entirely unreasonable for
the three smallest fires since their temperature fields were observed
to be relatively homogeneous. The temperature field of the 500m2

fire
was noticeably heterogeneous, however, hence the recorded max-
imum is consequently less representative of the mean fire tempera-
ture, and the FRP calculated for this fire will overestimate the true FRP.
We will return to this issue momentarily.

Fig. 7 shows the FRP retrieved for each cluster of fire pixels (each of
which corresponds to a single prescribed fire) versus the FRP
estimated from our ground-truth data. For the 50 m2 and 100 m2

straw fires the retrieved and ground truth values are in good
agreement. The bulk of the underestimation in retrieved FRP for the
500 m2

fire (by about 17%) most likely reflects the fact that, as
mentioned above, we calculated our ground-truth FRP estimates using
themaximum fire temperature (whichwas readilymeasurable) rather
than the mean fire temperature (which was not readily measurable).
Clearly this will overestimate our ground-based FRP estimate. Work-
ing backwards, we calculated that the retrieved and ground-based
estimates would be in agreement for a fire temperature of 662 K, a
value consistent with the ∼50 K variation in temperature observed
over the combustion zone at the time of the Terra overpass. Finally,
Fig. 7. Retrieved mean FRP versus FRP calculated from ground truth data collected for
prescribed burns. Dashed line indicates perfect agreement.
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agreement for the 10 m2
fire was poor, with the true FRP under-

estimated by nearly 80%. We suspect that the heavy soot associated
with this fire (a burning tire) was primarily responsible for the poor
agreement in this case. In addition to reducing the apparent radiance
of the fire as measured by the sensor through absorption, heavy
aerosol loadings are likely to substantially degrade the quality of the
atmospheric correction.

We note that this exercise represents a first step toward a proper
validation of our ASTER FRP retrieval using contemporaneous ground-
based measurements. Among other requirements, rigorous validation
would include precise measurements of fire temperature, with
consideration of the differences between satellite and ground viewing
geometries, obviously for a much larger sample of fires. Nevertheless,
our preliminary evaluation indicates relatively good agreement for
three of the four fires considered in this study.

7. Conclusion

We have presented an automated fire detection algorithm for the
ASTER sensor capable of mapping actively burning fires at 30-m
spatial resolution. For daytime scenes, our approach uses band 8
(2.33 µm) and band 3N (0.82 µm) reflectance imagery. The former is
sensitive to black-body radiation emitted by fires, while the latter is
insensitive to such radiation but that provides a highly-correlated
reflectance over “normal” (non-fire) components of terrestrial scenes.
For nighttime scenes a simple 2.33-µm radiance threshold is applied.

Based on a statistical analysis of 100 ASTER scenes, we established
omission and commission error rates for nine different regions. In
most regions, the probability of detection varied between 0.8 and 0.9,
with a somewhat lower probability in Mexico (Pd=0.71). An unusually
low probability of detection (Pd=0.45) was found for India, most likely
because the fires in our Indian scenes were too small for reliable
detection, a finding consistent with the fact that small agricultural-
waste fires are abundant in this region. Probabilities of false alarm
varied between 9×10−8 (India) and 2×10−5 (USA/Canada). In most
regions, the majority of false fire pixels were linked to clusters of true
fire pixels, suggesting that most false fire pixels occur along the
ambiguous fire boundaries.

With respect to fire characterization, we formulated an empirical
method for estimating fire radiative power using three ASTER thermal
infrared channels. A preliminary evaluation of this approach using
four prescribed fires demonstrated that retrieved values were accu-
rate to within 20%, with the exception of one fire partially obscured by
heavy soot.

Despite difficulty in demarcating precise boundaries of large fire
fronts due to saturation-induced pixel blooming, fire maps derived
from ASTER are an important tool for the validation of the Terra
MODIS active fire products. The use of ASTER fire masks for the
validation of other fire monitoring sensors is also possible provided
the sensor resides on a satellite having at least an occasional overpass
coincident (or nearly coincident) with the Terra satellite. Sensors
meeting this criterion include the Tropical Rainfall Measuring Mission
(TRMM) VIRS, the GOES Imager, and SEVIRI on boardMeteosat 8 and 9.
Validation is perhaps the most important application of ASTER in the
context of fire monitoring as the sensor's spatial coverage and revisit
frequency limit its utility for routine fire monitoring. Other applica-
tions include studies of the fine structure of fire fronts, and the spatial
structure of burn scars and the associated combustion completeness.
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