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Color Constancy Using Double-Opponency
Shao-Bing Gao,Kai-Fu Yang,Chao-Yi Li, and Yong-Jie Li, Member, IEEE

Abstract—The double-opponent (DO) color-sensitive cells in the primary visual cortex (V1) of the human visual system (HVS)
have long been recognized as the physiological basis of color constancy. In this work we propose a new color constancy model
by imitating the functional properties of the HVS from the single-opponent (SO) cells in the retina to the DO cells in V1 and the
possible neurons in the higher visual cortexes. The idea behind the proposed double-opponency based color constancy (DOCC)
model originates from the substantial observation that the color distribution of the responses of DO cells to the color-biased
images coincides well with the vector denoting the light source color. Then the illuminant color is easily estimated by pooling the
responses of DO cells in separate channels in LMS space with the pooling mechanism of sum or max. Extensive evaluations on
three commonly used datasets, including the test with the dataset dependent optimal parameters, as well as the intra- and inter-
dataset cross validation, show that our physiologically inspired DOCC model can produce quite competitive results in comparison
to the state-of-the-art approaches, but with a relative simple implementation and without requiring fine-tuning of the method for
each different dataset.

Index Terms—color constancy, double opponency, human visual system, pooling mechanism

✦

1 INTRODUCTION

COLOR constancy is one of the amazing abilities of
perceptual constancy of the human visual system

(HVS), which enables the perceived color of objects
largely constant as the light source color changes [1].
In contrast, captured with regular digital cameras or
videos, the physical color of scenes may be shifted
by the varying external illuminant. As an example,
Fig. 1(a) and (b) show the obvious shift of color
distribution between the color-biased and canonical
images of the same scene. One of the fundamental
requirements in computer vision, especially for the
robust color-based systems (e.g., color-based object
recognition and tracking), is to extract reliable color
cues that are invariant to the changes in external
lighting. A common solution to such challenging task
is to first estimate the scene illuminant, which is then
used to correct the color-biased images to get the so-
called canonical images under a white light source [2].

Based on the two steps mentioned above, a large
number of elegant solutions have been proposed for
computational color constancy, from the simple max
or mean based algorithms to the sophisticated statisti-
cal and machine learning based algorithms. According
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to the underlying biological plausibility, the existing
methods can be divided into two distinct groups:
biologically inspired models [3], [4], [5], [6], [7], [8], [9]
and non-biologically inspired models [10], [11], [12],
[13], [14], [15], [16]; more examples before the year of
2011, see [2], [17], [18], [19] for good reviews.

1.1 Non-biologically based models

There is a large population of non-biologically based
models that attempt to estimate the scene illumi-
nant using the image statistics of low-level [5], [20],
median- or high-level features [10], [11], [21]. For
example, the well-known grey-world theory [20] esti-
mates the illuminant components simply by comput-
ing the mean in each color channel (i.e., R, G, B) of
the input image, based on the assumption that the
average reflectance of a scene is normally achromatic.
Some other grey-world based methods include white
patch or max-RGB [5], shade of grey [10], grey-edge
[11], etc. In general, with fixed (or static [2]) parameter
setting for a given dataset, these methods have the
advantage of simple implementation and fast compu-
tation. However, the diverse reflectance distribution
of scenes does not always perfectly satisfy the grey-
world assumption [2], [17].

In order to make more practical the simple assump-
tion about the reflectance distribution made by grey-
world based models, two types of promising solutions
have been proposed: (1) more complex statistics and
priori information were introduced about the surface
reflectance and more sophisticated statistical compu-
tation was employed to estimate the illuminant. Rep-
resentative examples include gamut mapping and its
various extensions [12], [22], [23], [24], [25], Bayesian
approaches [26], [27], spatio-spectral statistics based
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Fig. 1: The blue and green crosses in the scatter plot (d)
denote the color distributions of the color-biased (a) and
canonical (b) images [33], respectively. The red crosses in (d)
show the color distribution of the responses of the double-
opponent cells in our model (i.e., the DT map (c) shown
in RGB space for display). The true illuminant direction is
shown as a black solid line.

[28], neural network based [13], regression based [29],
and corrected-moment based [30]. (2) The content
of the individual images was used to automatically
select and tune the most appropriate (normally simple
assumption based) algorithm (or combination of algo-
rithms) for each input image [14], [31], [15], [16], [32],
[25]. In general, both of these two types of solutions
are based on learning.

For example, by assuming that the distribution of
RGB color values of an image captured under a canon-
ical illuminant is a limited set, called the canonical
gamut, the classical gamut mapping model proposed
by Forsyth [22] needs a training phase to generate the
canonical gamut containing possible colors that can be
observed under a canonical illumination. In general,
the gamut mapping based methods [12], [22], [23],
[24], [25] possess with the elegant underlying theory
and can achieve competitive performance; however,
the weakness of these methods include their com-
plication in implementation and the requirement of
appropriate pre-processing [2].

Another group of typical models employing more
complex statistics about the surface reflectance are
the Bayesian approaches [26], [27]. These methods
derive the estimate of the light source color from
the posterior distribution conditioned on the image
intensity data, based on the priori distribution learned
from training images [27], [34]. Bayesian approaches
are relatively simple to implement, but just like the
grey world assumption, they do not always accord
with the actual situations.

Different from assuming more sophisticated as-
sumption, another learning strategy tries to estimate
the illuminant by combining multiple methods that
are normally based on simple assumption, consider-
ing the fact that none of the available methods seems

universal for all images [16]. These models try to
combine the output of different models using linearly
or nonlinearly weighted average [35], [36], [21], or
select the most appropriate methods for individual
images or a certain class of scenes (e.g., indoor or out-
door) based on the intrinsic properties of input images
[14], [31], [15], [16], [32], [25]. Most of such methods
need to train multiple models using different machine
learning techniques and feature descriptors in order to
obtain the optimal combination weights or capture the
relationship between the extracted features of images
and the specific algorithms.

Basically, most of the above models are based on
the simple Lambertian model of image formation.
Differently, another group of non-biologically inspired
algorithms, not mentioned too much in this paper,
are based on the more comprehensive dichromatic
reflection model of image formation [37], [38], [39].
These so-called physics-based methods [2], [40], [41]
try to utilize the information about the physical pro-
cess of reflected light by considering that both Lam-
bertian and specular reflections occur in the scenes.
Dichromatic-based methods have the promising merit
of successfully dealing with the scenes containing on-
ly a very few surface colors; however, they generally
suffer from the difficulty of accurately retrieving the
specular reflections of a given scene [2].

1.2 Biologically inspired models

It is widely accepted that computer vision applica-
tions have always been inspired and challenged by
the high efficiency of human vision [1], [19], [42], [43],
[44]. There are several color constancy algorithms that
take inspiration from biological systems [3], [4], [5],
[6], [7], [8], [9], [18], [45], [46], among which only a
few attempts seem to be inspired (to various degrees)
by the biological vision at the levels of individual
neurons [45], neural networks [3], [4], [7], [8], [9],
[18] or psycho-physical behaviors (e.g., retinex-based
models [5], [6], [47], [48]).

For example, Dufort and Lumsden [3] proposed a
neural network based on DO cells. In their model,
color constancy is achieved by using the output from
the DO cells as input to a neural network of four
hypothesized neurons in V4. Courtney et al. [8] pro-
posed a multistage neural network incorporated with
several visual mechanisms including cone adaptation
in retina, center-surround spectral opponency in lat-
eral geniculate nucleus (LGN), and spectrally-specific
long-range inhibition in V4. It should be pointed out
that both the models of Dufort and Lumsden [3] and
Courtney et al. [8] did not show any color constancy
results with real images, so it is unclear whether they
work and how they perform on various real images.

Spitzer and Semo [4] proposed a biologically in-
spired color constancy model based on local and
remote dynamical adaptation mechanisms in color-
coded ganglion cells in the retina. Local adaptation
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occurs in the difference-of-Gaussians shaped classical
receptive fields (CRFs) of the single-opponent gan-
glion cells, and the remote adaptation occurs in the
regions peripheral to these CRFs. Lau and Shi [45]
used the specifically normalized responses of DO
neurons in V1 to obtain an illuminant invariant repre-
sentation of color edges, and then the illuminant was
estimated by applying the grey-world (GW) rule over
the image where the color edges were weighted by
the normalized DO responses [45]. It seems a question
whether the normalization operation required by their
DO cells, i.e., dividing DO response by the sum of all
four low pass filtered responses, exists or not.

The retinex algorithms [47], [48] have been consid-
ered as the first attempts at designing computational
model for human color constancy [19], [49]. Although
the retinex theory offers an explanation of our ability
for color constancy, and various retinex based models
are still widely used with their parameters optimized
for a range of color dependent applications [50], [51],
[52], it is yet difficult to well reconcile with human
constancy performance and its underlying biological
mechanisms [19], [26], [27].

1.3 General description of the proposed model

This work aims to develop a physiologically based
color constancy model by simulating the double-
opponent (DO) mechanism in V1. The idea behind
our so-called double-opponency based color constan-
cy (DOCC) model originates from the interesting ob-
servation from computational experiments that the
responses of DO cells to the color-biased images
provide clear information about the scene illuminant.
From Fig. 1 we can see that the color distribution
of the responses of DO cells to a color-biased image
coincides well with the vector direction of light source
color. Based on this substantial observation on various
scenes of multiple datasets, we directly use the stan-
dard pooling mechanisms like max or sum to extract
the true illuminant from the responses of a population
of DO cells, under the common assumption that the
spectrum of the illumination is uniform across a scene.

This paper is based on our previous work reported
orally at an international conference [53], which is
substantially extended here as follows. (1) Consider-
ing that the spectral sensitivities of digital cameras
used to record the images are different from the
cone spectral sensitivities of HVS, we transform the
input images from RGB space to LMS cone inputs
for more physiological plausibility. (2) Experimental
tests are carried out on more datasets, as well as
more quantitative analysis including both the met-
ric of angular error and the Wilcoxon Signed-Rank
Test (WST) [4] for performance evaluation, and the
inter- and intra-dataset tests for robustness evalu-
ation. (3) Two kinds of pooling techniques (max
and sum) are introduced and evaluated when es-
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Fig. 2: The receptive field (RF) of red-green single-opponent
Type II cells in LGN with color-opponent centre-only RF (a)
and Type I cells with color-opponent centre-surround RF (b).
The RF of red-green double-opponent cells in the primary
visual cortex (V1) (c) can be computationally constructed
using two single-opponent Type II cells with different RF
scales and opposite signs (d). In the expression of “A+”
or “B-”, the sign “+” and “-” denote the excitation and
inhibition, respectively. Adapted from [1].

timating the light source color from the DO re-
sponses. (4) The spatial frequency tuning properties
are analyzed in order to explain why the proposed
model works well. The source codes is available at
http://www.neuro.uestc.edu.cn/vccl/projcc.html.

The rest of this paper is organized as follows. In
Section 2, we begin with an overview of the color
processing mechanisms in HVS. We describe in details
our DOCC model in Section 3. In Section 4 our model
was experimentally verified on three image datasets.
We then discuss some attributes of our model in Sec-
tion 5. Finally, some concluding remarks and future
directions are presented in Section 6.

2 COLOR PROCESSING IN VISUAL SYSTEM

Though we are still very far from fully understanding
the neural mechanisms underlying the transformation
of color signals from retina to color perception in
the higher cortexes [54], the neural basis for color
information processing in the early visual stages are
relatively better characterized at the level of indi-
vidual neurons. In short, color processing progresses
through a series of hierarchical stages [1]: after the
light absorption by cone photoreceptors, cone activi-
ties are compared by cone-opponent retinal ganglion
cells; these color signals are transmitted via LGN to
V1 and then higher areas (e.g., V2 and V4).

Cone photoreceptor layer of retina: There are two
types of photoreceptors: rods and cones, and cones
are responsible for color vision. Based on the spec-
tral sensitivities, cones can be classified into short-
wavelength cone (S-cone), medium-wavelength cone
(M-cone) and long-wavelength cone (L-cone), which
respond preferably to the blue (B), green (G) and red
(R) colors, respectively. The color information into the
eyes is first coded in a trichromatic way via L-, M- and
S-cones in the retina, and then propagated in the way
of color opponency via single-opponent and double-
opponent neurons at the levels of retinal ganglion
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layer, LGN and V1 (and the higher cortical areas).

Single-opponent (SO) cells: Most color-sensitive
cells in ganglion layer and LGN are SO cells that
code the color information within their receptive field-
s (RFs) in the way of red-green, blue-yellow, and
black-white opponency. Fig. 2(a) and (b) show the RF
structures of the red-on/green-off SO cells of type-
II and -I, respectively. Type-II cells (Fig. 2(a)) have
center-only color opponent RF and respond well to
uniformly colored areas [55]. In contrast, type-I cells
(Fig. 2(b)) have center-surround RF structure with
color opponency and respond well to color areas and
luminance contrast [55], [56], [57].

Double-opponent (DO) cells: Many experiments
[56], [57], [58] have revealed that DO cells exist widely
in V1. The most important feature that emerges with
DO color cells in V1 is a spatially transformed recep-
tive field capable of detecting local color contrast [59],
which shows band-pass spatial frequency tuning to
colored gratings. It has been suggested that neurons
computing local color contrast between center and
surround are the basis to discount the illuminant
changes of environment within receptive field, and
thus helpful to color constancy [1], [55], [57].

Based on the spatial structure of RF, DO cells could
be classified into two types: DO cells with concentric
RFs (Fig. 2(c)) and with oriented RFs [60] (not shown
here). In particular, the RFs of the first type (Fig. 2(c))
have concentrically organized center-surround struc-
ture and are both spectrally and spatially opponent.
These properties make such DO cells the reasonable
building blocks of color constancy [1], [58]. It has
been found that the majority of DO cells receive
unbalanced cone inputs [55]. In this study we use
the DO cells with unbalanced concentric RFs to build
color constancy model.

Color sensitive cells in higher visual cortexes: The
color selective cells of thin stripes in V2 are involved
in the elaboration of hues [61], [62], which probably
suggests that the color stream originally coded in
color opponency space (red-green, blue-yellow, and
black-white) in early visual cortex is now ready to
transform to trichromacy space (red, green, and blue)
in higher visual cortexes like V2. Subsequently, the
color stream coded in trichromacy way further prop-
agates to glob region in posterior inferior temporal
cortex (PIT, a loosely defined area including V4 and
its neighboring regions), where a population of cells
in PIT of macaque monkey were recently identified
to contain an explicit representation of primary hues
(red, green, blue) [63], [64].

Neurons in V4 with extensive RFs are able to pool
information from large fields and show constant re-
sponses when the illuminant composition of wave-
length lighting the surfaces is changing [65], which
indicates that V4 neurons are important for defining
global color constancy [66].

3 DOUBLE-OPPONENCY BASED COLOR
CONSTANCY (DOCC)
Fig. 3 shows the flowchart of our DOCC model. The
different layers in this hierarchical framework mainly
correspond to the color processing strategies involved
in the HVS from the retina to V1 and the possible
higher areas like V4. The key idea is that some V4 cells
serve to estimate the illuminant from the responses
of DO cells in V1 with the canonical neural pooling
mechanism of max or sum [67].

Cone layer: The image is first transformed from
RGB space to cone’s LMS space according to [68]
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Then, the three components of the input image in
LMS space, denoted by l(x, y), m(x, y), and s(x, y), are
sent into the L-, M-, and S-cones, respectively. Also,
an extra yellow (Y) component, given by y(x, y) =
m(x, y)+s(x, y) , is constructed for the computation of
blue-yellow (S-Y) opponency. In addition, a luminance
channel, denoted by b(x, y)= l(x, y)+m(x, y)+s(x, y),
is constructed for the computation of black-white
opponency of luminance.

Retinal ganglion/LGN layer: The retinal ganglion
cells (RGCs) locate in the output layer of retina, which
receive the outputs of the cones through different
retinal layers like bipolar cells, and then send signals
to LGN. Note that we did not explicitly simulate
the cells in the sub-layers between cones and RGCs,
since these sub-layers function mainly to form the
RF properties of RGCs as shown in Fig. 2(a) and
(b). RGCs and LGN cells have similar RF properties.
Here we implement the processing of RGC and LGN
within a single step for simplicity. In this study we
only consider the type-II SO cells (Fig. 2(a)), which
are used to construct the RFs of DO cells (Fig. 2(c)
and (d)). The signals in this layer are first transformed
from the LMS space to the SO space according to [18]
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The RF spatial structure of each component of a type-
II SO cell could be described using a two-dimensional
(2D) Gaussian function [1], [55] written as

RF (x, y;σ) =
1

2πσ2
exp(−

x2 + y2

2σ2
) (3)

where the standard deviation σ controls the scale (i.e.,
the size) of RF. Taking a SO cell of type-II (Fig. 2(a))
with red-on/green-off (L+M-) opponency as example,
its response is given by

SOl+m−(x, y;σ) = Olm(x, y)∗RF (x, y;σ) (4)

where ∗ denotes the convolution. Similarly, we can
compute SOm+l−(x, y) for M+L- SO cells, and
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Fig. 3: The flowchart of our DO based color constancy model. The symbol f1 denotes the transformation from RGB to
LMS space. f2 denotes the transformation from DO to LMS space. l, m, s, y, and b denote respectively the components
of the red, green, blue, yellow, and luminance channels. Pooling denotes the mechanism of max or sum.

SOs+y−(x, y) and SOy+s−(x, y) for the responses of
blue-yellow SO cells, and SOb+(x, y) and SOb−(x, y)
for the response of brightness-sensitive cells. In the
expression of “A+B-”, the sign “+” and “-” denote
the excitation and inhibition, respectively.

V1 layer: Based on the viewpoint of physiological
experiments [56], we construct the RF of a V1 DO cell
of L+M-/M+L- shown in Fig. 2(c) using the outputs
from two LGN SO cells of type-II with different scales:
one red-on/green-off (L+M-) SO cell with smaller RF
scale and another green-on/red-off (M+L-) SO cell
with larger RF scale (Fig. 2(d)). Thus, the response
of a DO cell can be computed as

DOlm(x, y)=SOl+m−(x, y;σ)+k·SOm+l−(x, y;λσ)

DOsy(x, y)=SOs+y−(x, y;σ)+k·SOy+s−(x, y;λσ)

DOb(x, y)=SOb+(x, y;σ)+k·SOb−(x, y;λσ)
(5)

where σ and λσ define respectively the scales of the
RF center and its surround of a DO cell. We set λ = 3
based on the finding that the size of RF surround is
roughly 3 times (in diameter) larger than that of RF
center [53]. k is a relative cone weight that controls
the contribution of RF surround. k 6= 1 implies that
DO cells receive unbalanced cone inputs [55].

Higher visual cortex: It is unknown yet at which
stage the human visual system finally realizes color
constancy. What is known, however, is that color
constant cells have been found at the level of V4 [1],
[58]. V4 cells normally have very large receptive fields
[66], which may endow the V4 cells with the ability
to extract light source color based on global statistics.
Along this line, we first transform the output of DO
cells from DO to LMS space according to [18]
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Note that transformation of DO to LMS space by
Eq (6) is based on some physiological evidences sug-

Fig. 4: More examples illustrating the close fitting of the
color distribution (red dots) of DO responses (i.e., DT map)
in RGB space to the true illuminant (black line). From top
to bottom: images are from the Gehler-Shi dataset [33], SFU
lab dataset [69], and SFU HDR dataset [70], respectively.

gesting that transforming signals from DO to LMS
space may happen in the cortex [62], [63], [64]. In the
following, we will call the output of DO cells given
by Eq (6) the DT map in LMS space.

We also need to transform the information (e.g.,
DT map) from LMS to RGB space for the purpose
of display. The transformation is written as [68]
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Taking the color-biased image as shown in Fig. 1
as input, we compute the output of DO cells using
Eqs (1)∼(6). We can clearly find from the scatter plot
shown in Fig. 1 that the color distribution of the DO
responses (i.e., the DT map) represented in RGB space
fits closely to the true illuminant (provided in RGB
space by the datasets), which holds true for the most
of color-biased images in the three datasets [33], [69],
[70] used in this study. Fig. 4 shows more examples
on the images selected from the three datasets.

Based on this substantial observation, we speculate
that one of the functional roles of the specific type of
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DO cells in V1 with concentric RFs (Fig. 2(c)) is to code
the illuminant information of scenes. Then, the color
sensitive cells with large RFs in higher visual cortexes,
e.g., V4, might adopt certain pooling mechanism to
compute an accurate illuminant estimate of the scene
using the color distribution of the DO cells’ output in
the LMS space. Considering that neuronal responses
are non-negative, a simple non-linear operation is
used to set the negative DO responses in LMS space
to be zero before pooling them.

As done in most existing models, we assume that
the scene is illuminated by one single light source
with spatially uniform color across the scene. Then,
the color of the illuminant ~Ee = (el, em, es) is estimat-
ed using certain pooling mechanism according to

ei=pooling
(x,y)

(

DTi(x, y)
)

/coef, i ∈ {l,m, s}

coef=
∑

i∈{l,m,s}
pooling

(x,y)

(

DTi(x, y)
) (8)

where pooling(·) denotes the canonical neural compu-
tation of max or sum [67] pooling the DO responses in
separate channels over the whole image. With these
two different pooling schemes, our model proposed
in this paper has two variations: DOCC-LMS(max)
and DOCC-LMS(sum). In contrast, we named our
previous model in [53] as DOCC-RGB(max).

It should be mentioned that from a signal-
processing point of view, the operations performed
in the proposed DOCC system (Fig. 3) are all linear,
except for the non-linear operation dealing with the
negative DO values. It is clear that when ignoring
the non-linear operation, the transfer from LMS to
SO (as well as the transfer from DO to LMS) is
computationally redundant and can be skipped, and
our model is equivalently to directly apply the linear
DO filters in LMS space.

4 EXPERIMENTAL RESULTS

The proposed model was compared with multiple
methods on three typical datasets, i.e., Gehler-Shi
dataset [33], SFU lab dataset [69], and a more recent
SFU HDR (high dynamic range) dataset [30], [70].

The existing methods considered are classified into
three types according to [2], including: (1) dichromatic
reflection model based: inverse-intensity chromaticity
space (IICS) [38]; (2) low-level statistics based: Grey
World (GW) [20], White Patch (WP) [5], 1st-Grey
Edge (GE1), 2nd-Grey Edge (GE2) [11], Shades of
Grey (SG) [10], General Grey World (GG); (3) learning
based: Bayesian [27], Regression (SVR) [2], [29], Au-
tomatic Color Constancy Algorithm Selection (CART-
AAS) [31], using natural image statistics (CCNIS) [2],
[16], Spatio-spectral Statistics (SS) [2], [28], Pixel-based
Gamut Mapping (GM(pixel)) [2], [22], Edge-based
Gamut Mapping (GM(edge)) [2], [24], Exemplar-based
(Exemplar) [15] and Corrected-Moment (CM) based

[30] models. Note that roughly, the proposed model
could be classified into the low-level statistics based
ones, since it utilizes the statistics of DO responses
emerging at the early stages of the visual system.

In this paper we directly cited the results of Gehler-
Shi dataset and SFU lab dataset from [2], [71] for
comparison. As for the third SFU HDR dataset, since it
was only recently available [30], [70] and few methods
have reported results on this dataset, we compared
multiple algorithms on this dataset by running their
Matlab source codes available from [71] with optimal
parameter settings.

4.1 Performance Measure

We choose the frequently used angular error ε as the
error metric, which is computed as [2]

ε = cos−1
(

(

~Ee · ~Et

)

/
(∥

∥ ~Ee

∥

∥ ·
∥

∥ ~Et

∥

∥

)

)

(9)

where ~Ee and ~Et are respectively the estimated and
the true light source colors, and ~Ee · ~Et is their dot
product.

∥

∥ ·
∥

∥ denotes the Euclidean norm. Due that
the true light source colors provided in the three
datasets are all in RGB space, we first transformed
the estimated illuminant (el, em, es) from LMS to RGB
space with Eq (7) before calculating the angular error.

We also tested our model using both the intra-
dataset evaluation with cross validation and the inter-
dataset evaluation on the three datasets. Similar as
done in [2], we adopted the form of threefold cross
validation for intra-dataset evaluation, which is as
follows. For the SFU lab dataset [69] and SFU HDR
dataset [70], we first randomly divided the whole
dataset into three parts. Next, applying the model on
any two parts, the optimal parameters (σ and k) were
obtained with an exhaustive search. Then, the model
was tested on the third part of the data with this
optimal parameter setting. For a complete procedure
of threefold cross validation, the steps mentioned
above were repeated 3 times to ensure that each image
occurs in the test set only once and all images in the
whole dataset is either in the training set or in the
test set at the same time. In this work, we repeated
100 times of threefold cross validation procedure for
both of the SFU lab and SFU HDR datasets, and hence,
obtained 300 angular error measures for each dataset,
which were averaged as the intra-dataset evaluation
based performance. For the Gehler-Shi dataset [33],
we adopted a simpler threefold cross validation since
the threefolds are provided by dataset. With the pro-
vided three parts of the data, we tested the model on
one part with the optimal parameter setting obtained
by exhaustive search on other two parts, which was
repeated 3 times. We averaged the 3 angular error
measures as the cross validation based performance
for this dataset. Note that we only conducted the cross
validation for DOCC-LMS(max). In the following,
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Fig. 5: The responses of model DO cells to a synthetic image
rendered under greenish illuminant. With the flexible cone
weights (k), the output of DO cells can encode both of the
color edges and color regions.

Fig. 6: Mondrian images with less (first row) or more
(second row) color blocks. The DT map and the corrected
images are also shown (the angular error is shown on the
lower right corner). k = 0.9 and 0.3 are used for the DT map
computation of the two images. The mondrian images were
generated using the surface reflectance spectra combined
with illuminant spectra from [69].

we will name DOCC-LMS(max) with intra-dataset
cross validation as DOCC-LMS(max-cro).

In order to further determine whether the difference
of angular errors between two algorithms is statisti-
cally significant or not, the Wilcoxon Signed-Rank Test
(WST) has been recommended as another valuable
tool for performance evaluation [2], [14], [31], [25],
[72]. In this study, given any two different algorithms,
the WST was run on their angular error distributions
on the whole dataset, and its result was used to
conclude that at a specific (e.g., 95%) confidence level,
the angular error of one algorithm is often lower or
higher than that of another algorithm, or there is no
significant difference between them.

4.2 Parameter Setting

Our model has two free parameters, i.e., the scale of
RF (σ) (in Eqs (3)∼(5)) and the cone weight (k) (in
Eq (5)). Fig. 5 indicates that DO cells with balanced
cone weights (i.e., k = 1) only respond to the color
contrast (i.e., color edges), since the double-opponent
operation makes the different cone responses to ho-
mogeneous surfaces always cancel each other. In con-
trast, DO cells receiving unbalanced cone inputs (i.e.,
k 6= 1) can respond to both the color edges and color
patches, which is consistent with the physiological
observations [1]. DO cells with higher k respond
much more strongly to the color edges than to the

color patches. Fig. 6 further suggests that if only
fewer objects and hence fewer edges are available
in an image (the top row of Fig. 6), emphasizing on
enhancing edges (with higher k) is much better than
on enhancing color regions (with lower k) in terms of
benefiting the accuracy of illuminant estimation. More
discussion about the influence of cone weights on the
properties of DO cells will be presented in section “5
DISCUSSION”.

Fig. 7 shows the influences of different parameter
values on the performance of the proposed DOCC-
LMS(max) in terms of median angular error on
three image datasets. According to which we roughly
set σ = 3.0, 3.0, 3.5, k = 0.1, 0.6, 0.7 for the Gehler-
Shi dataset, SFU lab dataset, and SFU HDR dataset,
respectively. We also exploited the parameter space
of DOCC-LMS(sum) (the figure is not shown for
space limitation), and obtained the optimal param-
eter setting of DOCC-LMS(sum) σ = 0.5, 1.5, 8.0,
k = 1.0, 1.0, 1.0 for the three datasets. Similar to
other algorithms, the optimal parameter setting of our
models varies across different datasets, but fixed for
all the images of the same dataset. Note that though
our models have different optimal parameter settings
on different datasets, it is interesting to find that
from Fig. 7, the median measures on three datasets
are consistently lower than 5.0o by setting arbitrary
values among 1.5≤σ≤ 8.0, and 0.1≤k≤ 1.0, which
are quite wide ranges for parameter setting that can
produce the acceptable performance on all of the
datasets tested here. This indicates that our models
have promising potential to easily obtain acceptable
results by loosely tuning the only two parameters.

4.3 Gehler-Shi Dataset of Real-World Images

Gehler-Shi dataset [27], [33] contains 568 high dynam-
ic range linear images, including a variety of indoor
and outdoor scenes, captured using a high-quality
digital SLR camera in RAW format and therefore free
of any color correction. In this study, the color-checker
patch in each image used for computing ground truth
illuminant was masked out in order to fully evaluate
the performance of a specific model. Moreover, we
down-sampled the original large images to half of its
original size for computational reason.

The results of multiple methods are listed in Ta-
ble 1. All methods were executed with optimal pa-
rameter settings. From Table 1, we can find that
the performances of DOCC-LMS(max) and DOCC-
LMS(max-cro) almost arrive at or beyond the best
performance (for all of error measures) of the state-
of-the-art learning-based algorithms on the indoor,
outdoor and entire datasets. In addition, we can see
that with a slightly higher median error than GG
(3.53o vs. 3.45o), DOCC-LMS(sum) ranks first among
other static algorithms on the whole dataset in all
measures.
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Fig. 7: The influence of receptive field size (σ) and the cone weight (k) of our model (DOCC-LMS(max)) on the measure
of median angular error. Left: Gehler-Shi dataset, middle: SFU lab dataset, right: SFU HDR dataset. For experimental
evaluation, in this study we respectively set k = 0.1, 0.6, 0.7 and σ = 3.0, 3.0, 3.5 for Gehler-Shi dataset, SFU lab dataset,
and SFU HDR dataset.

TABLE 1: Performance of various methods on the Gehler-Shi dataset.

Methods
All images (568) Indoor (246) Outdoor (322)

Median Mean Worst-25% Median Mean Worst-25% Median Mean Worst-25%

Do nothing (DN) 13.55◦ 13.65◦ 17.15◦ 13.37◦ 13.85◦ 19.02◦ 13.61◦ 13.50◦ 15.54◦

Physics-based IICS 13.56◦ 13.61◦ 17.95◦ 13.09◦ 13.35◦ 19.45◦ 13.68◦ 13.81◦ 16.68◦

GW 6.28◦ 6.35◦ 10.58◦ 5.67◦ 5.85◦ 10.42◦ 6.60◦ 6.73◦ 10.63◦

(Static) WP 5.68◦ 7.54◦ 16.12◦ 8.00◦ 8.78◦ 17.05◦ 4.22◦ 6.60◦ 15.25◦

low-level GE2 4.50◦ 5.12◦ 9.25◦ 4.64◦ 5.07◦ 8.96◦ 4.20◦ 5.16◦ 9.41◦

statistics-based SG 4.00◦ 4.92◦ 10.19◦ 4.59◦ 5.39◦ 10.69◦ 3.52◦ 4.56◦ 9.70◦

GG 3.45◦ 4.66◦ 10.18◦ 3.97◦ 5.11◦ 10.70◦ 3.14◦ 4.32◦ 9.62◦

SVR 6.72◦ 8.08◦ 14.89◦ 7.84◦ 9.26◦ 16.79◦ 6.08◦ 7.18◦ 12.55◦

Bayesian 3.46◦ 4.82◦ 10.48◦ 5.93◦ 6.52◦ 11.91◦ 2.44◦ 3.52◦ 7.81◦

CART-AAS 3.34◦ 4.49◦ 10.10◦ 4.26◦ 5.23◦ 10.86◦ 2.73◦ 3.92◦ 9.15◦

Learning-based CCNIS 3.13◦ 4.19◦ 9.21◦ 3.86◦ 4.83◦ 9.60◦ 2.76◦ 3.70◦ 8.50◦

SS 2.96◦ 3.59◦ 7.43◦ 3.64◦ 4.15◦ 7.88◦ 2.37◦ 3.17◦ 6.86◦

GM(pixel) 2.44◦ 4.20◦ 11.15◦ 4.43◦ 5.61◦ 12.57◦ 1.61◦ 3.12◦ 8.87◦

GM(edge) 5.60◦ 6.71◦ 13.46◦ 7.34◦ 7.92◦ 14.45◦ 4.34◦ 5.79◦ 11.90◦

Exemplar 2.27◦ 2.89◦ 5.97◦ 3.07◦ 3.42◦ 6.39◦ 1.93◦ 2.49◦ 5.26◦

CM(19 edge) 2.00◦ 2.80◦ − − − − − − −
DOCC-RGB (max) [53] 2.60◦ 4.03◦ 9.35◦ 3.95◦ 5.01◦ 10.86◦ 2.06◦ 3.13◦ 7.46◦

DOCC-LMS (max) 2.42◦ 4.09◦ 10.37◦ 4.51◦ 5.54◦ 12.33◦ 1.82◦ 2.98◦ 7.57◦

DOCC-LMS (max-cro) 2.43◦ 3.98◦ 9.08◦ 3.79◦ 4.77◦ 15.62◦ 1.83◦ 3.05◦ 11.31◦

DOCC-LMS (sum) 3.53◦ 4.10◦ 8.07◦ 3.75◦ 4.10◦ 7.61◦ 3.30◦ 4.09◦ 8.35◦

Interestingly, Table 1 also shows that almost all
algorithms yield poorer performance on the indoor
subset than on the outdoor images. This observation
is consistent with the results of the same dataset
reported in [28], in which it was speculated that
indoor scenes are more likely to contain some outlying
regions, e.g., the surfaces with significant interreflec-
tions. We further speculate that the indoor scenes may
contain more shadow regions, which are also likely to
act as outliers, since the illuminant may not light and
influence these regions. This observation also indi-
cates that the most of learning-based models achieve
better performance on the entire dataset mainly by
improving its performance on outdoor set.

We also notice that DOCC-LMS(sum) outperforms
DOCC-LMS(max) on the indoor set. In addition,
DOCC-LMS(sum) shows almost equivalent perfor-
mance on both of the indoor and outdoor subsets,
which indicates that pooling with sum scheme may
enhance its generalizability across diverse scenes, in-
stead of biasing to a certain kind of images (e.g.,
outdoor or indoor).

Fig. 8 reports the results of the statistical signif-
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Fig. 8: WST test on the Gehler-Shi dataset.

icance test with WST. A sign (1) at location (i, j)
indicates that the median angular error of method
i is significantly lower than that of method j at the
95% confidence level, and a sign (-1) at (i, j) indicates
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TABLE 2: Performance on the SFU lab dataset.

Methods Median Mean Worst-25%

DN 15.60◦ 17.27◦ 32.42◦

IICS 8.23◦ 15.52◦ 40.01◦

GW 7.00◦ 9.78◦ 23.33◦

WP 6.47◦ 9.08◦ 20.88◦

SG 3.74◦ 6.38◦ 16.40◦

SS 3.45◦ 5.63◦ 12.84◦

GG 3.32◦ 5.41◦ 13.66◦

GE1 3.18◦ 5.58◦ 13.96◦

GM (pixel) 2.26◦ 3.69◦ 9.26◦

SVR 2.17◦ − −
CM (3 edge) 3.60◦ 4.10◦ −
CM (9 edge) 2.00◦ 2.60◦ −
DOCC-RGB (max) [53] 2.38◦ 4.82◦ 12.73◦

DOCC-LMS (max) 2.21◦ 5.71◦ 16.08◦

DOCC-LMS (max-cro) 2.41◦ 4.93◦ 12.80◦

DOCC-LMS (sum) 4.93◦ 6.25◦ 12.43◦

the opposite situation. A sign (0) means that the
median errors of the two methods have no significant
difference. In addition, the score in the last column
reports the times that a method is significantly better
than others. Note that on this dataset, as well as
the datasets in the following experiments, the WST
analysis of CM [30] was omitted, since no error dis-
tributions is currently available for CM.

Fig. 8 indicates that the performance of our DOCC-
LMS(sum) exhibits significant improvement over
various non-learning based algorithms (e.g., IICS, GW,
WP, GE2, SG, with the only exception of GG). In com-
parison to learning-based models, the WST confirm-
s that DOCC-LMS(sum) significantly outperforms
SVR and GM(edge), there is no distinguishable differ-
ence between the performance of DOCC-LMS(sum)
and Bayesian, CART-AAS, and CCNIS.

Fig. 8 also shows that among all the models,
DOCC-LMS(max) exhibits an indistinguishable be-
havior with the best performed learning-based models
like SS, GM(pixel), and Exemplar. In addition, the
WST indexes show that DOCC-LMS(max) exhibits
statistically better performance than the remaining
models, either static or learning-based.

Fig. 9 show some examples of both indoor and out-
door images corrected with the illuminant estimates
of various methods.

It should be pointed out that the Gehler-Shi dataset
is provided in RAW color space, and the conversion
from RGB to LMS color space by Eq (1) was applied
here as if the images in this dataset were in a standard
RGB color space, thus what we obtained is not a true
LMS encoding. This is different from the other two
datasets tested below.

4.4 SFU Laboratory Image Set

SFU lab dataset [69] contains 321 available images of
31 different objects captured with calibrated camera
under 11 different lights in laboratory. Note that the
results of CM method on this dataset are directly
from [30], which has a special pre-processing step of
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Fig. 10: WST test on the SFU lab dataset (a) and SFU HDR
dataset (b).

raising each image to the power of 2 to give brighter
colors greater weights. Table 2 reports the angu-
lar error statistics. From Table 2, DOCC-LMS(max)
achieves quite promising performance, which is better
than all the existing models compared here includ-
ing the learning-based models, i.e., GM(pixel) and
CM(3 edge). The exceptions are CM(9 edge) and SVR,
which have slighter lower median error of 2.00o and
2.17o. But considering the small difference (2.21o vs.
2.17o), it is hard to conclude that DOCC-LMS(max)
is significantly worse than SVR (note that no WST
test was done between them due to the lack of error
distributions of CM and SVR on this dataset).

From the WST analysis shown in Fig. 10(a), we
see that although both of the GM(pixel) and DOCC-
LMS(max) obtain same best score and almost per-
form significantly better than other algorithms ex-
cept for GG, the WST indexes also indicate that
DOCC-LMS(max) performs significantly better than
GM(pixel) at the 95% confidence level. In addition,
DOCC-LMS(max-cro), applying random threefold
cross validation with DOCC-LMS(max), also ex-
hibits quite competitive performance in comparison
to all other models considered here.

DOCC-LMS(sum) also achieves significantly bet-
ter performance than the static methods of IICS, GW,
and WP, as indicated by all of their measures in Table
2 and the WST indexes in Fig. 10(a). Furthermore,
although the median error of DOCC-LMS(sum) is
poorer than that of SG, SS, GG, and GE1, the DOCC-
LMS(sum) performs better than SG, SS, GG, and
GE1 in terms of angular error measure of worst-25%,
which indicates better robust performance.
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Fig. 9: Some examples of indoor and outdoor images from Gehler-Shi dataset corrected with multiple methods.

TABLE 3: Performance on the SFU HDR dataset.

Methods Median Mean Worst-25%

DN 14.66◦ 15.10◦ 19.40◦

GW 7.42◦ 8.05◦ 15.03◦

Max-RGB (blur) 3.90◦ 6.30◦ −
SG 3.89◦ 5.65◦ 12.72◦

GE 3.78◦ 6.00◦ 13.60◦

CM (3 edge) 3.20◦ 4.00◦ −
CM (9 edge) 2.70◦ 3.50◦ −
DOCC-LMS (max) 3.50◦ 6.19◦ 13.94◦

DOCC-LMS (max-cro) 4.14◦ 6.04◦ 13.30◦

DOCC-LMS (sum) 5.27◦ 6.42◦ 13.04◦

4.5 SFU HDR dataset

The SFU HDR dataset, recently collected by Funt and
Shi [70], includes 105 high dynamic range (HDR)
linear images with indoor and outdoor scenes. A color
checker was placed in the scenes for recording the
light source color (again the color checker was masked
during illuminant estimation). Considering that the
HVS indeed directly deals with the real scenes with
high dynamic range, testing our algorithm on HDR
dataset is basically a logical option.

In Table 3, the results are shown for multiple algo-
rithms. In this table, the results of GW, SG, and GE
were obtained by running the Matlab codes from [2],
[71] with optimal parameter settings. The results of
Max-RGB (post-blur) and CM are directly from [30].
Table 3 indicates that DOCC-LMS(max) performs
better than all the static algorithms compared (i.e.,

GW, SG, GE and Max-RGB (post-blur)) except for the
learning-based CM in terms of median measures. The
WST analysis in Fig. 10(b) further indicates that all
algorithms tested here show indistinguishable perfor-
mance on this set at the 95% confidence level except
better than GW.

Note that on this dataset our DOCC-LMS(max)
obtains a median angular error of 3.50◦, a perfor-
mance that is competitive, but not quite outstanding.
This may partially be explained by the last sub-figure
in Fig. 7, in which the plot is much more spiky
than the other two datasets. We have investigated
and found that for some high dynamic range images
in this dataset, DO cells show extremely strong re-
sponses to the quite high contrast boundaries between
the regions with extremely high and low brightness.
Such striking variations in DO responses could result
from even a small change of receptive field size (σ),
e.g., from 1.0 to 1.5. This may result in accidental
fluctuation in angular errors because of the inaccu-
rate estimate of illuminant components when using
the max pooling. This behavior indicates that the
proposed model is not so robust especially when
emphasizing the edge information in HDR images
with the pooling scheme of max, and suggests more
complicated pooling schemes to improve the illumi-
nant estimate from the responses of DO cells.
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TABLE 4: Performance of inter-dataset test.

Training Test dataset
dataset a.Gehler-Shi b.SFU lab c.SFU HDR

− med mean med mean med mean
a. − − 2.99◦ 5.95◦ 3.91◦ 6.07◦

b. 3.39◦ 5.03◦ − − 3.67◦ 6.20◦

c. 3.69◦ 5.11◦ 2.61◦ 5.41◦ − −

TABLE 5: Performance of two non-linear operations.

DOCC-LMS Gehler-Shi SFU lab SFU HDR
− med mean med mean med mean

pos-max 2.42◦ 4.09◦ 2.21◦ 5.71◦ 3.50◦ 6.19◦

pos-sum 3.53◦ 4.10◦ 4.93◦ 6.25◦ 5.27◦ 6.42◦

abs-max 3.12◦ 4.50◦ 2.39◦ 5.27◦ 3.52◦ 5.78◦

abs-sum 2.95◦ 3.87◦ 4.92◦ 6.24◦ 5.31◦ 6.46◦

4.6 Inter-dataset evaluation

Inter-dataset evaluation was done by testing our mod-
el with optimal parameters learned from one dataset
(Fig. 7) on all other two datasets. This is a more
challenging task and almost has not been considered
by both of statistics-based and learning-based illumi-
nant estimation papers with the only exception of the
recent work in [15].

The results of inter-dataset evaluation are listed in
Table 4, which demonstrates the quite competitive
inter-dataset accuracy for various cases mentioned.
For example, we first look at the inter-dataset perfor-
mance of DOCC-LMS(max) on Gehler-Shi dataset.
The median and mean errors of DOCC-LMS(max)
are respectively 3.39o and 5.03o with the optimal
parameter setting from SFU lab dataset, and 3.69o and
5.11o with the optimal parameter setting from SFU
HDR dataset, which indicates that no matter the pa-
rameter setting was based on SFU lab dataset or SFU
HDR dataset, DOCC-LMS(max) always produced
consistently competitive or even better performance
(in terms of both median and mean) in comparison
with most of the static models and learning-based
algorithms as listed in Table 1.

Similar consistency in acceptable performance hold-
s for the SFU HDR dataset with the optimal pa-
rameters from Gehler-Shi dataset or SFU lab dataset.
Analyzing from another point of view, we can also
find that with the same optimal parameters on Gehler-
Shi dataset, DOCC-LMS(max) shows consistently
and equivalently competitive performance on the SFU
lab dataset (e.g., with the median error of 2.99o and
mean error of 5.95o, respectively). Similarly, DOCC-
LMS(max) obtained competitive performance (2.61o

for median and 5.41o for mean) for the inter-dataset
evaluation on the SFU lab dataset when using the
optimal parameters determined on SFU HDR dataset.

4.7 About the nonlinear operation

The only non-linear operation in our model is to set
the negative DO responses in LMS space to be zero
before pooling (pos-max and pos-sum in Table 5). In
order to see the impact of non-linear operation, we

also tested another standard approach of taking the
absolute values (as in the grey-edge algorithms) to
deal with the negative DO responses (abs-max and
abs-sum in Table 5). Table 5 compares the results of
two different non-linear operations. Note the results
of pos-max and pos-sum are directly from Table 1∼3
for convenience of comparison. It is clear that the non-
linear operation by taking the absolute values also
provides competitive performance, but slightly worse
than that by setting the negative to be zero.

5 DISCUSSION

At the level of individual neurons, though DO cells
have been modeled by several researchers, even for
the purpose of color constancy [3], our model dif-
fers entirely from them in how to utilize the output
of DO cells. For example, our model estimates the
light source color by pooling (with sum or max) the
information from the separate LMS channels, which
are transformed from the DO responses obtained in
the double-opponent space. In addition, our DO cells
receive unbalanced cone inputs, which provides a
flexible way to utilize the information of scenes. Fur-
thermore, compared to many other existing models
that depend only on the statistical distributions of
individual pixels and ignore their spatial contexts,
our model could capture the strong dependencies
between nearby pixels using the concentrically or-
ganized center-surround structure with both spectral
and spatial opponency of the DO cells.

The double-opponent properties have been physi-
ologically suggested as the ideal neural substrate for
color constancy [1], [55]. However, it is still unclear
how the DO cells contribute to color constancy. In this
study we have demonstrated in Fig. 5 that DO cells
with unbalanced cone inputs (i.e., k 6= 1) can respond
jointly to the color contrast and color regions, and
with a higher k, the color edges are emphasized much
more than the color regions (e.g., k = 0.9 vs. k = 0.6).
Actually, the property of the DO cells with diverse
inhibitory cone weights could also be interpreted by
the spatial frequency tuning of DO cells shown in
Fig. 11. This figure indicates that the red(L)-green(M)
DO model cells show diverse spatial frequency tuning
properties with various cone weights k. When k = 1.0,
indicating the balanced cone inputs to the RF center
and surround, the DO cells show band-pass tuning
property in double-opponency channels. In contrast,
when k is relatively low, e.g., k = 0.0 ∼ 0.2, indicating
the quite low contribution from surround, the DO
cells show typical low-pass tuning property. For other
k values, e.g., k = 0.4 ∼ 0.8, the DO cells receive
typically unbalanced cone inputs in RF center and
its surround, which endows the DO cells with a
band-pass and partially low-pass spatial frequency
tuning property. These tuning properties of our DO
model cells are quite consistent with the physiological
recording [55], [59].
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Fig. 11: The spatial frequency responses of model L-M DO
cells to the input equluminance red-green color gratings
(a) The input equluminance red-green color gratings with
various spatial frequency. (b) The responses of model DO
cells to the input color gratings.

Roughly, the band-pass spatial frequency informa-
tion mainly signals the color edges in an image (e.g.,
Fig. 5, k = 1); in contrast, the information of low
spatial frequency mainly characterizes the smoothed
regions (e.g., Fig. 5, k = 0.1). Because of the band-pass
and partially low-pass tuning property resulting from
the unbalanced cone inputs, these DO cells would
respond best to the edges defined by the chromatic
and luminance differences [1], [58], and meanwhile,
transfer partially the smoothed low-frequency global
(possibly the light source) color information while
smoothing and suppressing the color of local surfaces.
In fact, as revealed by various models mentioned in
the Introduction section, both the local edges and
global information in natural scenes are importan-
t cues for estimating illuminant. For example, the
mean chromaticity of an image is mainly contributed
by the color regions, which is a significant statistic
indicator for illuminant [73] and often be used for
illuminant estimation [10], [20]. Similarly, the mean
of luminance edges has also been used to estimate
the illuminant [11]. Differently, the DO cells modeled
here could efficiently code these two kinds of spatial
frequency information of scenes simultaneously by its
unbalanced center-surround structure. We speculate
that such attribute of DO cells in V1 makes them
be perfect physiological building blocks for encoding
illuminant information of scenes.

It has been speculated that human color constancy
might be (partially) achieved by the distinct charac-
teristic of double opponency of DO cells, which could
cancel the spectral bias of a light source since DO
cells seems strongly responsive to color patterns but
weakly responsive to full-field color stimuli or color
stimuli of low spatial frequency [1], [19], [54], [58].
Conversely, our results indicate that DO cells in V1
can carry information about the light source color,
which might be further utilized by the higher visual
cortexes, e.g., V4, to achieve the color constancy by
estimating and removing the light source color from

the scenes. This testable prediction, of course, needs
further validation by physiological experiments.

Another point that deserves a brief comment from
a mathematical point of view is that considering
the resemblance of Laplace-of-Gaussian (LoG) with
difference-of-Gaussian (DoG) function [74], the linear
DO filters implemented in this study can be approx-
imately constructed by subtracting two LoGs. For
example, the L+M-/M+L- DO filter shown in Fig. 2(c)
can be approximated by subtracting a LoG applied
in M channel from another LoG with a different
scale applied in L channel. This makes the proposed
DO filter seem close to the second order grey edge
(GE2) filter. However, the better performance of our
model mainly results from the unbalanced cone inputs
(which allows to also employ zero-order information)
and the non-linear operation to remove the negative
DO values. Roughly speaking, our model works as
a kind of GE2 filter accompanied with zero-order
component and followed by non-linear suppression
of negative values in LMS space.

6 CONCLUSION AND FUTURE WORK

We proposed a physiologically inspired color con-
stancy model based on the physiological findings
on color information processing in the human visual
system (HVS). We found that the responses of double-
opponent (DO) cells in V1 to the color-biased images
contain the exact information about the scene illu-
minant. Inspired by the physiological findings that
the color sensitive cells in V4 have large receptive
field and are suggested to be important for defin-
ing global color constancy, we utilized two possible
pooling mechanisms (i.e., sum or max) at the level
of V4 to estimate the illuminant from the responses
of DO cells. Systematical evaluation on three typical
datasets validated the efficiency of the proposed mod-
el, especially with the pooling mechanism of max.
In addition, the results show that transforming the
cone inputs from RGB to LMS space provides a clear
improvement in illuminant estimation.

As an important future direction, it is interesting
to incorporate top-down modulation. High-level feed-
back is known to exist abundantly in visual cortexes
and play important role in stable visual functions
including color constancy. An evidence supporting
this idea comes from the psychophysical experiments
by Hansen et al. [75] indicating that high-level visual
memory of colors could be used as valuable hints by
HVS for estimating the scene illuminant. Computa-
tional models have also demonstrated the advantage
of memory colors of grass and sky [76] and faces [25]
in improving color constancy performance.

Another challenging direction is to extend our mod-
el to work well under the situations of multiple
illuminants or multiple light sources with different
colors. Recently, increasing attention has been drawn
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to consider the presence of multiple light sources
when building color constancy models [15], [77]. Ba-
sically, the DO cells in our model process the local
information involved in their receptive fields, which
provides us reasonable options in the future to easily
estimate the multiple illuminants.
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