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post-transcriptional regulation, protein abun-
dances are only partially correlated with the 
abundances of the corresponding mRNAs8–10. 
This has led many to argue that direct assess-
ment of protein levels is often more informative 
of the cellular state than analysis of mRNA lev-
els. Indeed, protein abundances seem more con-
served across evolution than mRNA transcript 
abundances10. Quantitative mass spectrometry 
is now poised to routinely provide such data at 
large scale and with high accuracy—a testament 
to the rapid progress in quantitative shotgun 
proteomics over the last few years.
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should be effective, current mass spectrometers 
and practices restrict it to a few thousand pro-
teins; this covers the majority of proteins for 
simple organisms but typically represents only 
a fraction of the expressed proteome for higher 
organisms. Fractionation of samples before 
analysis can substantially increase the proteome 
coverage, but further work remains to determine 
how fractionation affects these quantification 
methods. For example, the SRM calibrants 
might have to be chosen appropriately to sample 
the different fractions. Perhaps more impor-
tantly, resolving the differential expression of 
splice variants, which are common in proteomes 
of higher organisms, is still a challenging prob-
lem in shotgun proteomics. Nonetheless, given 
that these approaches offer protein quantifica-
tion without the need for genetic modification 
or extensive isotopic labeling, the combination 
of approaches presented by Malmström et al. 
should be widely applicable to many systems.

The availability of absolute protein concen-
tration data will be indispensable to fulfilling the 
promise of systems biology. Owing to extensive 

first exploits mass spectrum signal intensities, 
the accuracy of which has greatly improved 
owing to recent advances in chromatography 
and ionization (for example, nanoflow electro-
spray ionization) and in mass spectrometers 
themselves (for example, the Thermo Electron 
Corporation LTQ/Orbitrap, which has an inno-
vative mass analyzer6). As a consequence, Silva 
et al.7 found that a protein’s abundance could 
be well estimated from the average mass spec-
trum peak intensity of its three best-detected 
peptides. A second approach, spectral counting, 
analyzes the observed counts of MS/MS spectra 
attributable to each protein. In a recent develop-
ment for large-scale absolute protein expression 
measurements (APEX), Lu et al.8 improved the 
accuracy of spectral counting by incorporating 
differential peptide ionization propensities into 
the computation.

Malmström et al.1 combine these three 
approaches—SRM measurements of a limited 
set of internal reference standards, the average 
mass spectrum signal intensities of the top three 
peptides selected per protein, and weighted MS/
MS spectral counts—to more completely quan-
tify the proteome (Fig. 1). By using the SRM 
measurements of reference standards to calibrate 
the two computational abundance calculations, 
they achieve abundances accurate to ~2-fold 
on average for 769 proteins using the approach 
of Silva et al.7 and to ~3-fold for 1,095 more 
proteins with the technique of Lu et al.8. This 
enables them to measure abundances for >1,800 
proteins, or 83% of the proteome detectable by 
mass spectrometry under these conditions and 
51% of the L. interrogans proteome (based on 
predicted open reading frames). Combining the 
high accuracy of SRM with the high coverage of 
the two computational approaches minimizes 
the costs of isotopic labeling while maximiz-
ing coverage and accuracy (Fig. 1). The abun-
dance estimates are validated with molecule 
concentrations measured by single-cell cryo-
electron tomography for flagellar proteins, fla-
gellar motors and periplasmic methyl-accepting 
chemotaxis protein receptors.

As with any mass spectrometry method, the 
techniques used by Malmström et al.1 are lim-
ited by the peptides’ amenability to ionization 
and by the mass spectrometer’s ability to detect 
low abundance molecules. Although >200 of 
the ~1,000 proteins monitored after exposure 
of L. interrogans to the antibiotic ciprofloxacin 
changed their abundance more than twofold, 
the limitations of sensitivity for differentially 
expressed proteins may be even lower8, depend-
ing on whether the observed quantification 
errors are consistent across samples and system-
atic in nature, which is unknown at present.

Although there is no theoretical upper limit to 
the size of the proteome for which this approach 

Combinatorics and next-generation 
sequencing
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The massive capacity of today’s sequencing machines can be harnessed 
efficiently by sequencing pooled samples and decoding the results.

In the last year alone, the average yields of a sin-
gle DNA sequencing instrument have increased 
by at least tenfold, and ten billion bases can now 
be obtained routinely in a single run. Indeed, for 
many applications, current sequencing through-
put is vastly greater than what is needed to pro-
cess a single sample—a situation that brings not 
only new opportunities but also new challenges. 
Two recent papers in Genome Research, by Erlich 
et al.1 and Prabhu and Pe’er2, present improved 
methods for exploiting this technological capa-
bility. Using ideas from a branch of mathematics 
called combinatorics, they show that thousands 
of pooled samples can be sequenced en masse 
and the results decoded. 

The new sequencing technologies will have 
many applications3, but here we concentrate 
on methods for discovery of rare mutations, 
which are likely to account for much of the 

genetic basis of disease. The high yields of the 
latest instruments allow us to deeply sequence 
genes of medical interest for thousands of indi-
viduals3. As only tens to hundreds of kilobases 
are of interest in such studies, and as even the 
smallest functional unit of a sequencer—a sin-
gle ‘lane’—generates data amounting to many 
thousand–fold coverage of such targets, the 
challenge is how to use a sequencer efficiently 
on samples requiring only a fraction of its capac-
ity. An equally daunting challenge is the need 
to individually amplify and create sequencing 
templates for thousands of samples. The cost of 
the amplification and the difficulties of sample 
tracking and automation are substantial.

Pooling DNA samples promises to solve both 
of these challenges. Grouping many samples 
together in each run makes the most effective 
use of the high depth of sequencing coverage 
and alleviates the problem of handling many 
individual samples. Simply mixing all of the 
samples together, however, makes it impossible 
to determine which individual contributed  
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mutation and is not robust if a pool fails. The 
number of pools in the Erlich et al.1 design will 
be a small multiple of the square root of the 
number of starting samples ( N ), and the 
compression will always be smaller than N .

Prabhu and Pe’er2 suggest several designs that 
use a smaller number of pools than Erlich et al.1, 
but their methods are less able to identify which 
samples carry the rare allele, at least when there 
is more than one such sample. Their most inter-
esting design uses code words from the Golay 
code7, a remarkable combinatorial configura-
tion that has many consequences in pure math-
ematics. Using these theoretical foundations, 
one can combine 759 source wells into 24 pools 
with a relatively high compression of 253 (that 
is, their decoding method must be able to handle 
data from 253 pooled samples). For a sample 
size of 759, which is at present a moderate num-
ber of samples, their method shows extremely 
good robustness for detecting a rare allele. Even 
if three pools fail (which is not uncommon in 
practice), a sample with a rare allele will still be 
sequenced in five other pools.

Erlich et al.1 implemented their strategy in 
an experiment using 40,000 bacterial clones 
and 1,900 pools. Several practical difficulties 
emerged, notably low-level contamination, 
with some sequences appearing in several 
hundred pools. Nevertheless, after some 
modifications to their decoder, they were able 
to achieve good results. Prabhu and Pe’er2 
simulated an experiment by downloading 
sequences from the 1000 Genomes project 
(http://www.1000genomes.org) and simu-
lating pooling in silico. This is not entirely 
satisfactory as unmodeled difficulties would 
likely have arisen in practice, but it is certainly 
a reasonable proof of principle.

It is exciting to see combinatorial designs 
being used in biology in this way. Their use-
fulness will ultimately depend on how the 
technologies develop. Pooling certainly intro-
duces new technical issues (such as achieving 
equimolar pooling of samples) but drastically 
reduces some of the process costs. If barcod-
ing becomes very simple and inexpensive, 
the way forward will be to barcode every 
sequence fragment. If, by contrast, sequenc-
ing costs fall rapidly compared with those of 
barcoding, combinatorial methods should 
prove increasingly valuable.
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effective pooling strategy allows T to be much 
smaller than N. With a suitable design and a 
small number of mutant alleles, there are effec-
tive decoding strategies to reconstruct which 
samples contain the mutants. If the pool is still 
too small for next-generation sequencing to be 
economical, then barcoding and further pooling 
can be applied (Fig. 1).

What should be the rule for assigning source 
wells to destination wells? It turns out that this 
kind of problem has been extensively studied 
in combinatorics. Simple designs in which each 
sample is assigned to a unique pool offer no 
hope of reconstructing which pools contain 
the mutant and are also vulnerable to failure of 
a single pool. There are advantages to mapping 
one source well to several destination wells—
a so-called ‘overlapping’ design. With such a 
design we can achieve ‘robustness’ (resistance to 
a small number of pool failures), and we may 
also be able to work out which samples contain 
the mutant allele.

In designing a pooling strategy, we would 
like to keep small the number of pools (which 
reduces costs), the maximum number of sam-
ples in any pool, called the ‘compression level’ 
(which reduces experimental problems), and the 
maximum number of pools that two samples 
can share, called the ‘intersection number’. A 
large intersection number makes the design 
redundant: for instance, if two samples are 
each assigned to the same set of pools, we have 
no chance of reconstructing which contains a 
mutant. Thus, we would like a low intersection 
number to avoid duplication of information, 
and we would like robustness, so that the chance 
of success is good if coverage is not very high or 
some pools fail.

Erlich et al.1 and Prabhu and Pe’er2 discuss 
these considerations and use techniques from 
combinatorics to construct the design rule. 
Related techniques are being applied to protein 
arrays5. The two papers have subtly different 
aims. Erlich et al.1 propose methods that allow 
rare alleles to be discovered and that determine 
with high probability which samples contain 
the allele. Prabhu and Pe’er2 are concerned pri-
marily with discovering rare alleles. However, 
their designs are able to detect and identify 
‘singletons’—a mutation occurring in just one 
sample—with very good reliability.

Erlich et al.1 suggest a design based on ele-
mentary number theory. Using the Chinese 
remainder theorem6, they show that the inter-
section number of their design is equal to one, 
meaning that no two samples will be jointly 
placed in more than one pool. This is essentially 
the best possible solution, as a design with an 
intersection number of zero would simply group 
samples into pools without overlap. Such a 
design cannot identify the sample carrying a 

any rare DNA variants that are detected. 
Furthermore, a pool may ‘fail’—that is, no useful 
sequence may be recovered owing to experimen-
tal difficulties—and we would like a strategy that 
is robust to small numbers of such failures.

A conceptually simple workaround is to cut 
the DNA in each sample into short fragments 
suitable for sequencing and ligate the fragments 
to a short, sample-specific DNA sequence, or 
‘barcode’4. This approach has been used to 
sequence pooled samples, although, at present, 
barcoding every sample is costly.

An alternative to barcoding is to design a 
pooling strategy that allows the sequence data to 
be decoded—for instance, to identify rare alleles 
and the samples that contain them. In practice, 
this may be achieved by arraying a large number 
of samples (denoted by N) into distinct wells in 
microtiter plates. Then, by machine or by hand, 
the N source wells are pooled into T destina-
tion wells in another set of microtiter plates. An 

Encode

CTTATTAGAACCCCTTTTTTTTTTATAAAAAATTTAA TTT AAAAAAAAGGGGGGAAAAAAAATT

CTTATTAGAACCCCTTTTTTTTTTATAAAAAATTTTAAAA AAAAAAAAAGGGGGGAAAAAAAA

TTCAGATCTTTTTTTTTCCCCCCCAAAAAAAGAAATTTTTTTCCCCCCTTTTTAAAA
TACATCTCCTTTTAAAAACCCCCTTTT AAAAAATTTTAAAA TTCCTTTTTTTCCCCCCCCCCCTT

TTACCGATCTTTTTTTTAAAAAACCCCCCCCCCTT GGGGAAAAAATTTTTTCCCCCAAAA
TACCTTATTGTTTAAAAACCCCCCCCCCCCCTTTT TTTAAAAAA GGTTTTTTTTTTTGGGAA
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Figure 1  Pooling samples using a combinatorial 
design. Also shown is optional barcoding and 
further pooling. The details of the decoding 
strategy will depend on the design used to combine 
samples, but a general method is to assume the 
pattern of the mutants (that is, which samples 
contain the mutant allele) and then work through 
the pooling steps to calculate the likelihood of 
observations given the assumption. This ‘brute 
force’ method is computationally intensive. More 
efficient decoding methods are discussed by Erlich 
et al.1 and Prabhu and Pe’er2.
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