
Performance Evaluation of Sparse Matrix
Multiplication Kernels on Intel Xeon Phi?

Erik Saule1, Kamer Kaya1, Ümit V. Çatalyürek1,2

1 The Ohio State University, Dept. Biomedical Informatics
2 The Ohio State University, Dept. Electrical and Computer Engineering

{esaule,kamer,umit}@bmi.osu.edu

Abstract. Intel Xeon Phi is a recently released high-performance co-
processor which features 61 cores each supporting 4 hardware threads
with 512-bit wide SIMD registers achieving a peak theoretical perfor-
mance of 1Tflop/s in double precision. Its design differs from classical
modern processors; it comes with a large number of cores, the 4-way
hyperthreading capability allows many applications to saturate the mas-
sive memory bandwidth, and its large SIMD capabilities allow to reach
high computation throughput. The core of many scientific applications
involves the multiplication of a large, sparse matrix with a single or mul-
tiple dense vectors which are not compute-bound but memory-bound. In
this paper, we investigate the performance of the Xeon Phi coprocessor
for these sparse linear algebra kernels. We highlight the important hard-
ware details and show that Xeon Phi’s sparse kernel performance is very
promising and even better than that of cutting-edge CPUs and GPUs.

1 Introduction

Given a large, sparse, m × n matrix A, an input vector x, and a cutting edge
shared-memory manycore architecture Intel Xeon R© Phi, we are interested in
analyzing the performance of computing y← Ax in parallel. The computation,
known as the sparse-matrix vector multiplication (SpMV), and with some vari-
ants, such as the sparse-matrix matrix multiplication (SpMM), they form the
computational core of many applications involving linear systems, eigenvalues,
and linear programs, i.e., most large scale scientific applications. For this rea-
son, they have been extremely intriguing in the context of high performance
computing (HPC). Efficient shared-memory parallelization of these kernels is
well studied [1,2,3,9,19], and there exist several techniques such as prefetching,
loop transformations, vectorization, register, cache, TLB blocking, and NUMA
optimization, which have been extensively investigated to optimize the perfor-
mance [7,11,12,19]. In addition, company-built support is available for many

? This work was partially supported by the NSF grants CNS-0643969, OCI-0904809
and OCI-0904802. We would like to thank NVIDIA for the K20 cards, Intel for
the Xeon Phi prototype, and the Ohio Supercomputing Center for access to Intel
hardware.

shared-memory architectures, such as Intel’s MKL and NVIDIA’s cuSPARSE.
Popular 3rd party libraries such as OSKI [18] and pOSKI [8] also exist.

Intel Xeon Phi is a new coprocessor with many cores, hardware thread-
ing capabilities, and wide vector registers. Although Intel Xeon Phi has been
released recently, performance evaluations already exist in literature [6,15,17].
Eisenlohr et al. investigated the behavior of dense linear algebra factorization on
Xeon Phi [6] and Stock et al. proposed an automatic code optimization approach
for tensor contraction kernels [17]. For sparse, irregular data, we evaluated the
scalability of graph algorithms, coloring and breadth first search (BFS) [15].

Although similar to BFS, SpMV and SpMM are different kernels, in terms of
synchronization, memory access, and load balancing. The irregularity and spar-
sity of SpMV-like kernels create several problems for accelerators. In this paper,
we analyze how Xeon Phi performs on SpMV and SpMM. [4] studied the per-
formance of a Conjugate Gradient application which uses SpMV, however this
study concerns only a single matrix and is application oriented.

Having 61 cores and hyperthreading capability can help the Intel Xeon Phi
to saturate the memory bandwidth during SpMV, which is not the case for many
cutting edge processors. Yet, our analysis showed that the memory latency, not
the memory bandwidth, is the bottleneck and the reason for not reaching to the
peak performance. We observed that the performance of the SpMV kernel highly
depends on the nonzero pattern of the matrix and its sparsity: when the nonze-
ros in a row are aligned and packed in cachelines in the memory, the memory
accesses are much faster. We investigate two existing approaches for densify-
ing the computation (namely the reverse Cuthill-McKee ordering RCM [5] and
dense register blocking). This paper presents concise results and a more detailed
version of our work can is available as a technical report [16].

Section 2 presents a brief architectural overview of the Intel Xeon Phi copro-
cessor. Section 3 describes the sparse-matrix multiplication kernels. In Sections 4
and 5, we conduct analyze Xeon Phi’s performance on these kernels using 22
matrices from UFL Sparse Matrix Collection3. Section 6 shows that Xeon Phi’s
sparse matrix performance is better than that of four modern architectures: two
dual Intel Xeon processors, X5680 (Westmere) E5-2670 (Sandy Bridge), and two
NVIDIA Tesla R© GPUs C2050 and K20. Section 7 concludes the paper.

2 The Intel Xeon Phi Coprocessor

In this work, we use a pre-release KNC card SE10P. There are 61 cores clocked
at 1.05GHz. Each core in the architecture has a 32kB L1 data cache, a 32kB L1
instruction cache, and a 512kB L2 cache. The architecture of a core is based on
the Pentium architecture: though its design has been updated to 64-bit. A core
can hold 4 hardware contexts at any time. A core never executes two instructions
from the same hardware context consecutively: in other words, if a program only
uses one thread, half of the clock cycles are wasted.

3 http://www.cise.ufl.edu/research/sparse/matrices/

http://www.cise.ufl.edu/research/sparse/matrices/

Most of the performance of the architecture comes from the vector process-
ing unit (VPU). Each core has 32×512-bit SIMD registers which can be used
as a vector of 8×64-bit or 16×32-bit values. The VPU can perform many basic
instructions, such as addition or division, and mathematical operations, such as
sine and sqrt, allowing to reach 8 double precision operations per cycle (16 sin-
gle precision). The VPU can also perform both an addition and a multiplication
simultaneously using a Fused Multiply-Add (FMA) instruction. Therefore, the
peak performance of the SE10P card is 1.0248 Tflop/s in double precision (2.0496
Tflop/s in single precision) and half without FMA.

The card has 8 memory controllers; each can execute 5.5 billion transac-
tions/second and has two 32-bit channels. Hence, the controllers can achieve an
aggregated total bandwidth of 352GB/s. The cores’ memory interface are 32-bit
wide with two channels and the total bandwidth is 8.4GB/s per core. Thus,
the cores can consume 512.4GB/s at most. However, the bandwidth between
the cores and the memory controllers is limited by the ring network which can
theoretically transport at most 220GB/s.

To better understand the performance of Intel Xeon Phi, we designed two
simple benchmarks on read and write bandwidth. In both cases, each thread
reads or writes large arrays into the memory multiple times. The read-bandwidth
benchmark shows four configurations. The first two read the array one byte at
a time or four bytes at a time; they are instruction bound and reach respec-
tively 12GB/s and 60GB/s. The third benchmark (vect) uses SIMD instructions
to process 64 bytes at a time; it reaches 171GB/s. The last one (vect+pref)
adds prefetching instructions and obtains 177GB/s. Results are presented in
Figure 1(a).

 0

 50

 100

 150

 200

 250

loop-char loop-int vect vect+pref

B
a
n
d
w

id
th

 (
in

 G
B

/s
) Ring BW

(a) Read Bandwidth

 0

 50

 100

 150

 200

 250

store store-NR store-NRNGO

B
a
n
d
w

id
th

 (
in

 G
B

/s
) Ring BW

(b) Write Bandwidth

Fig. 1. Benchmarking read and write bandwidth with various instructions. The ring
bus theoretical maximal bandwidth is shown.

Figure 1(b) shows a similar benchmark for write operations. All three tested
configurations use vectorized write instructions to overcome the instruction bound.
The first benchmark uses a simple store operation and reaches 65GB/s. The sec-
ond configuration disables the Read For Ownership protocol (which forces the
processor to bring a cacheline into the cache before being able to write it) by
using a No-Read hint (NR) and improves the write bandwidth to 99GB/s. The
last configuration allows the write operations to be committed to the memory in

an arbitrary order using the Non Globaly Ordered write instructions (NRNGO);
it yields 155GB/s.

More detailed experiments can be found in our report [16] which shows that
when using vect+pref and store-NRNGO, the bandwidth scales sublinearly with
the number of cores, indicating a contention on the memory subsystem.

3 Sparse Multiplication Kernels

SpMV is in the form y← Ax where A is an m× n sparse matrix, and x and y
are n×1 and m×1 column vectors. In this kernel, each nonzero is accessed, mul-
tiplied with an x-vector entry, and the result is added to a y-vector entry once.
That is, there are two reads and one read-and-write per each nonzero accessed.
Different from SpMV, in SpMM, x and y are n× k and m× k dense matrices.
Hence, there are k reads and k read-and-writes per each nonzero accessed. Ob-
taining a good performance for SpMV is difficult on almost any architecture due
to the sparsity pattern of A which yields a non-regular access to the memory.
The amount of computation per nonzero is also very small. And most of the
operations suffer from bandwidth limitation.

An m×n sparse matrix A with τ nonzeros is usually stored in the compressed
row storage format CRS which uses three arrays:

– cids[.] is an integer array of size τ that stores the column ids for each nonzero
in row-major ordering.

– rptrs[.] is an integer array of size m+1. For 0 ≤ i < m, rptrs[i] is the location
of the first nonzero of the ith row in the cids array. The first element is rptrs[0]
= 0, and the last element is rptrs[m] = τ . Hence, all the column indices of
row i are stored between cids[rptrs[i]] and cids[rptrs[i+ 1]]− 1.

– val[.] is an array of size τ . val[i] is the value of the ith nonzero.

There exist other sparse matrix representations [14], and the best storage
format almost always depends on the pattern of the matrix and the kernel. In
this work, we use CRS as it constitutes a solid baseline. Since A is represented
in CRS, it is straightforward to assign a row to a single thread in a parallel
execution. Each entry yi of the output vector can be computed independently
while streaming the matrix row by row. While processing a row i, multiple x
values are read, and the sum of the multiplications is written to yi. Hence, there
are one multiply and one add operation per nonzero, and the total number of
floating point operations is 2τ .

4 SpMV on Intel Xeon Phi

For the experiments, we use a set of 22 matrices given in Table 1. The matrices
are taken from the UFL Sparse Matrix Collection with one exception mesh 2048
which corresponds to a 5-point stencil 2048×2048 mesh in 2D. We used the CRS
representation, store all the scalar values in double precision, and all the indices
via 32-bit integers. In the rest of the paper, the matrices are ordered from 1 to 22
by increasing number of nonzero entries. We repeated each operation 70 times
and compute the averages of the last 60 operations. Caches are flushed between
each measurement.

Table 1. Properties of the matrices used in the experiments. All matrices are square.
name #row #nonzero

1 shallow water1 81,920 204,800
2 2cubes sphere 101,492 874,378
3 scircuit 170,998 958,936
4 mac econ 206,500 1,273,389
5 cop20k A 121,192 1,362,087
6 cant 62,451 2,034,917
7 pdb1HYS 36,417 2,190,591
8 webbase-1M 1,000,005 3,105,536
9 hood 220,542 5,057,982
10 bmw3 2 227,362 5,757,996
11 pre2 659,033 5,834,044

name #row #nonzero

12 pwtk 217,918 5,871,175
13 crankseg 2 63,838 7,106,348
14 torso1 116,158 8,516,500
15 atmosmodd 1,270,432 8,814,880
16 msdoor 415,863 9,794,513
17 F1 343,791 13,590,452
18 nd24k 72,000 14,393,817
19 inline 1 503,712 18,659,941
20 mesh 2048 4,194,304 20,963,328
21 ldoor 952,203 21,723,010
22 cage14 1,505,785 27,130,349

4.1 Performance evaluation

The SpMV kernel is implemented in C++ using OpenMP and processes the
rows in parallel. We tested our dataset with multiple scheduling policies when
compiled with -O1 and -O3 (see [16] for more details). When compiled with -O1,
the performance obtained varies from 1 to 13GFlop/s. When compiled with -O3

the performance rises for all matrices and reaches 22GFlop/s on nd24k. In total,
5 matrices from our set achieve a performance over 15GFlop/s.

An interesting observation is that the difference on the performance is not
constant; it depends on the matrix and not correlated to its size. Analyzing the
compiled assembly code for the SpMV inner loop (which computes the dot prod-
uct between a sparse matrix row and the dense input vector) gives an insight
on why the performances differ. When -O1 is used, the dot product is imple-
mented in a simple way, one element at a time, with 3 memory indirections, one
increment, one addition, one multiplication, one test, and one jump per nonzero.

The code generated in -O3 is much more complex. It uses vectorial opera-
tions so as to make 8 operations at once. The compiled code loads 8 consecutive
values of the sparse row in a 512-bit SIMD register in a single operation. Then
it populates another SIMD register with the values of the input vector. Once
populated, the two vectors are multiplied and accumulated with previous results
in a single FMA. Populating the SIMD register with the appropriate values from
x is non trivial since these values are not consecutive in memory. However, Xeon
Phi offers an instruction, vgatherd, that allows to fetch multiple values at once.
The instruction takes an offset vector, a pointer to the beginning of the array,
and a destination register. In general, vgatherd needs to be called as many times
as the number of cachelines the offset vector touches (indicated by a auxiliary
bit-mask), since it can only simultaneously fetch the elements that are on the
same cacheline. So overall, one FMA, two vector loads (one for the nonzero from
the matrix and one for the column positions), one increment, one test, and some
vgatherd are performed for each 8 nonzeros of the matrix.

Figure 2 shows the SpMV performance for each matrix with -O1 and -O3

as a function of the useful cacheline density (UCLD), a metric we devised for
the analysis. For each row, we computed the ratio of the number of nonzeros on
that row to the number of elements in the cachelines of the input vector due to
that row. Then we took the average of these values to compute UCLD. For each
matrix, there are two points in Figure 2, one for the performance in -O1 (marked

 0

 5

 10

 15

 20

 25

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Pe
rf

o
rm

a
n
ce

 (
in

 G
Fl

o
p

/s
)

Useful cache line density

No Vect.
Comp. Vect.

Fig. 2. The improvement of -O3 (Comp. Vect.) is linked to cacheline density.

with ‘+’s) and one for the performance in -O3 (marked with ‘×’s). These points
are horizontally aligned for the same matrix, and their vertical distance repre-
sents the improvement on the performance for that matrix. The improvement
with vectorization, and in particular with vgatherd, is significantly much higher
when the UCLD is high.

4.2 Bandwidth considerations

The nonzeros in the matrix need to be transferred to the core before being pro-
cessed. Assuming the access to the vectors do not incur any memory transfer,
and since each nonzero takes 12 bytes (8 for the value and 4 for the column
index) and incurs two floating point operations (multiplication and sum), the
flop-to-byte ratio of SpMV is 2

12 = 1
6 . We saw that the sustained memory band-

width is about 180GB/s, which indicates a maximum performance for the SpMV
kernel of 30GFlop/s. This is not obtained by our previous experiments.

Assuming only 12 bytes per nonzero need to be transfered to the core gives
only a naive bandwidth for SpMV: both vectors and the row indices also need
to be transferred. For an n × n matrix with τ nonzeros, the actual minimum
amount of memory that need to be transferred in both ways is 2× n× 8 + (n+
1)× 4 + τ × (8 + 4) = 4 + 20× n+ 12× τ . Usually, 12τ dominates the equation,
but for sparser matrices, 20n should not be ignored. The application bandwidth,
which takes both terms into account, is a common alternative cross-architecture
measure of performance on SpMV.

Figure 3 (left) shows that the naive approach which ignores a significant por-
tion of the data for some matrices. The application bandwidth obtained ranges
from 22GB/s to 132GB/s. Most matrices have a bandwidth below 100GB/s.

The application bandwidth is computed assuming that every single byte of
the problem is transferred exactly once. This assumption is (mostly) true for the
matrix and the output vector. However, it does not hold for the input vector for
two reasons: first, it is unlikely that each vector element will be used by only
a single core’s threads, some element will be transferred to multiple cores. Fur-
thermore, a core’s cache is only 512kB, and elements of the input vector may be
transfered multiple times to the same core. We analytically computed the num-
ber of cachelines accessed by each core assuming that chunks of 64 rows are dis-
tributed in a round-robin fashion. We performed the analysis assuming an infinite

 0

 20

 40

 60

 80

 100

 120

 140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

B
a
n
d
w

id
th

 (
in

 G
B

/s
)

Naive
Application
Hardware infinite cache
Hardware 512KB cache

















1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
















Fig. 3. The achieved bandwidth for SpMV (left) and SpMM (right).

cache and with a 512kB cache. We computed the effective memory bandwidth of
SpMV and display them as the top two stacks of the bars in Figure 3 (left).
Three observations are striking: first, the difference between the application
bandwidth and estimated actual bandwidth is greater than 10GB/s on 10 in-
stances and more than 20GB/s on three of them. The highest difference is seen on
2cubes sphere (#2) where the amount of data transferred is 1.7 times larger than
the application bandwidth. Second, there is no significant difference between the
assumed infinite cache and 512kB cache bandwidth. That is, no cache thrashing
occurs. Finally, even when we take the actual memory transfers into account,
the obtained bandwidth is still way below the architecture peak bandwidth.

4.3 Effect of matrix ordering

A widely-used approach to improve SpMV performance is ordering the rows and
columns to make the matrix more suitable for the kernel. Such permutations are
used in sparse linear algebra for multiple purposes such as improving numer-
ical stability and preconditioning. Here, we employ the reverse Cuthill-McKee
algorithm (RCM) [5]. RCM has been widely used for minimizing the maximum
distance between the nonzeros and the diagonal of the matrix, i.e., the bandwidth
of the matrix. We expect that such a densification of the nonzeros can improve
both the UCLD of the matrix and reduce the number of times the vector needed
to be transfered from the main memory to the core caches.

RCM improves the performance of only 4 matrices by more than 2GFlop/s
and most of the matrices benefit less. The performance of 8 matrices degrade.
Hence, RCM ordering was not able to significantly improve SpMV on Intel Xeon
Phi (see [16] for more details).

4.4 Effect of register blocking

One limitation in the original SpMV implementation is that only a single nonzero
is processed at a time. Register blocking helps us to process all the nonzeros
within a region at once. The region should be small enough that the data associ-
ated with it can be stored in the registers so as to minimize memory accesses [7].
Assuming a regular partitioning A to blocks of size a× b, we use a dense block
representation for the blocks containing at least one nonzero. We represent this
list of non-empty blocks via CRS. One dimension of the blocks is set to 8 to

leverage the Xeon Phi architecture which naturally align on 512 bits, the other
dimension varies from 1 to 8. To perform the multiplication, each dense block
is loaded into the registers in packs of 8 values allowing to use Fused Multiply-
Add operations. Register blocking typically helps the performances by reducing
three quantities: 1) the matrix size in memory, 2) the number of instructions to
perform the multiplications, 3) the number of load instructions to the vector.

Overall, we could not observe a constant improvement for register blocking on
Xeon Phi. The best scheme with 8× 1 blocks improved the performance on only
8 instances compared to the original implementation (detailed results in [16]).
Register blocking allows to reach a much higher utilization of the hardware (the
effective memory bandwidth is over 160GB/s) but this does not compensate the
large increase in matrix sizes. Indeed, the matrices we used have a low locality
leading to a sharp increase in the size of the matrix when encoded using dense
tiles. There is almost no reduction of the load instruction of the vector since the
vgatherd instruction already reads the input vector per batch.

5 SpMM on Intel Xeon Phi

One idea to obtain more performance is to increase the flop-to-byte ratio by
performing more than one SpMV at a time. Many applications can take the
advantage of using multiple vectors at once, e.g., graph based recommendation
systems [10] or eigensolvers (by the use of the LOBPCG algorithm) [20]. Mul-
tiplying several vectors by the same matrix boils down to multiplying a sparse
matrix by a dense matrix, which we refer to as SpMM. All the statements above
are also valid for existing cutting-edge processors and accelerators. However, with
its large SIMD registers, Xeon Phi is expected to perform significantly better.

To implement Y ← AX, we encode the dense m × k input matrix X in
row-major, so each row is contiguous in memory. To process a row Ai∗ of A,
a temporary array of size k is first initialized to zero. Then for each nonzero
in Ai∗, a row Xj∗ is streamed to be multiplied by the nonzero and the result
is accumulated into the temporary array. We developed three variants of that
algorithm: the first variant is generic and relies on compiler vectorization. The
second is tuned for values of k which are multiple of 8 and uses FMA to per-
form the multiplications and additions of 8 at a time. The temporary values are
kept in registers by taking the advantage of the large number of SIMD registers
available on Xeon Phi. The third variant also uses Non-Globally Ordered write
instructions with No-Read hint (NRNGO).

We experimented with k = 16. Manual vectorization doubles the performance
allowing to reach more than 60GFlop/s in 11 instances. The use of NRNGO
write instructions provides significant performance improvements. The achieved
performance peaks on the matrix pwtk matrix at 128GFlop/s. Figure 3 (right)
shows the bandwidth achieved by the best implementation (complete results are
in [16]). The application bandwidth is computed assuming the matrix and vector
are transferred only once. It surpasses 60GB/s in only 1 instance. Since there
are 16 input vectors, the overhead induced by transferring the values in X to
multiple cores is comparable to the application bandwidth. The impact of having
a finite cache is mostly negligable.

6 Against other architectures

We compare the performance of Xeon Phi with 4 other architectures including
2 GPU configurations and 2 CPU configurations. We used two CUDA-enabled
cards from NVIDIA: an NVIDIA Tesla C2050 (448 CUDA Cores @ 1.15GHz,
2.6GB memory @ 1.5GHz, ECC on, CUDA 4.2) and an NVIDIA Tesla K20
(2,496 CUDA Cores @ 0.71GHz, 4.8GB memory @ 2.6GHz, ECC on, CUDA
5.0). For both GPU configurations, we use the CuSparse library. We also use
two Intel CPU systems: the first has a dual Intel Xeon X5680 (Westmere: 6
cores @ 3.33Ghz, no hyperthreading, 12MB shared L3 cache). The second has
a dual Intel Xeon E5-2670 (Sandy Bridge: 8 cores @ 2.6GHz, hyperthreading
enabled, 20MB shared L3 cache). The codes for both CPU architectures are
compiled with the icc 13.0 with -O3 optimization flag. The implementation
used is the same as the one used on Xeon Phi except the vector optimizations
in SpMM where the instruction sets differ.

 0

 5

 10

 15

 20

 25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Pe
rf

o
rm

a
n
ce

 (
in

 G
Fl

o
p

/s
)

SE10P
C2050
K20
Dual X5680
Dual E5-2670

















                     



















Fig. 4. Architectural comparison between a Intel Xeon Phi coprocessor (Pre-release
SE10P), two NVIDIA GPUs (C2050 and K20) and two dual CPU architectures (Intel
Xeon X5680 and Intel Xeon E5-2670) for SpMV (left) and SpMM (right).

Results of the experiments are presented in Figure 4. We present the con-
figurations as stacked bar charts: K20 on top of C2050 and E5-2670 on top of
X5680. Figure 4 (left) shows the SpMV results: E5-2670 appears to be roughly
twice faster than X5680. It reaches a performance between 4.5 and 7.6GFlop/s
and achieves the highest performance for one instance. For GPU architectures,
K20 is faster than the C2050. It performs better for 18/22 instances. It obtains
between 4.9 and 13.2GFlop/s and the highest performance on 9 instances. Xeon
Phi reaches the highest performance on 12 instances and it is the only architec-
ture which obtains more than 15GFlop/s. Furthermore, it does it for 7 instances.

Figure 4 (right) shows the SpMM results: E5-2670 gets twice the performance
of X5680, which is similar to their relative SpMV performances. The K20 is often
more than twice faster than C2050, which is much better compared with their
relative performances in SpMV. The Xeon Phi coprocessor gets the best perfor-
mance in 14 instances. Intel Xeon Phi is the only architecture which achieves
more than 100GFlop/s. Furthermore, it reaches more than 60GFlop/s on 9 in-
stances. The CPU configurations reach more than 60GFlop/s on 6 instances
while the GPU configurations never achieve that performance.

7 Conclusion and Future Work

In this work, we analyze the performance of Intel Xeon Phi coprocessor on SpMV
and SpMM. These sparse algebra kernels have been used in many important ap-
plications. The analysis gives the first absolute performance results of Xeon Phi.
Overall, the performance we obtained is very promising. When compared with
cutting-edge processors and accelerators, its SpMV, and especially SpMM, per-
formance are superior thanks to its wide registers and vectorization capabilities.

In particular, we showed that the sparse matrix kernels we investigated are
latency bound. Our experiments suggested that having a relatively small 512kB
L2 cache per core is not a problem for Intel Xeon Phi. However, having 61 cores
induces a significant data transfer overhead due to accessing similar parts of x
and X from multiple cores, especially in SpMM. We linked the performance of
SpMV to the efficacy of the vgatherd instruction which allows efficient memory
loads. The classical techniques to improve the performance of SpMV appeared
to bring little improvements on Xeon Phi. As a future work, we are planning to
investigate matrix storage schemes, intra-core locality, and data partitioning to
improve the performance of Xeon Phi.

References

1. N. Bell and M. Garland. Implementing sparse matrix-vector multiplication on throughput-
oriented processors. In Proc. High Performance Computing Networking, Storage and Analy-
sis, SC ’09, 2009.

2. A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leiserson. Parallel sparse matrix-
vector and matrix-transpose-vector multiplication using compressed sparse blocks. In Proc.
SPAA ’09, pages 233–244, 2009.

3. A. Buluç, S. Williams, L. Oliker, and J. Demmel. Reduced-bandwidth multithreaded algorithms
for sparse matrix-vector multiplication. In Proc. IPDPS, 2011.

4. T. Cramer, D. Schmidl, M. Klemm, and D. an Mey. Openmp programming on intel xeon phi
coprocessors: An early performance comparison. In Proceedings of the Many-core Applications
Research Community (MARC) Symposium at RWTH Aachen University, Nov. 2012.

5. E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices. In Proc.
ACM national conference, pages 157–172, 1969.

6. J. Eisenlor, D. E. Hudak, K. Tomko, and T. C. Prince. Dense linear algebra factorization in
OpenMP and Cilk Plus on Intel MIC: Development experiences and performance analysis. In
TACC-Intel Highly Parallel Computing Symp., 2012.

7. E.-J. Im and K. A. Yelick. Optimizing sparse matrix computations for register reuse in sparsity.
In Proc. of ICCS, pages 127–136, 2001.

8. A. Jain. pOSKI: An extensible autotuning framework to perform optimized spmvs on multicore
architecture. Master’s thesis, UC Berkeley, 2008.

9. M. Krotkiewski and M. Dabrowski. Parallel symmetric sparse matrix-vector product on scalar
multi-core CPUs. Parallel Comput., 36(4):181–198, Apr. 2010.

10. O. Küçüktunç, K. Kaya, E. Saule, and Ü. V. Çatalyürek. Fast recommendation on bibliographic
networks. In Proc. ASONAM’12, Aug 2012.

11. J. Mellor-Crummey and J. Garvin. Optimizing sparse matrix-vector product computations
using unroll and jam. Int. J. High Perform. Comput. Appl., 18(2), May 2004.

12. R. Nishtala, R. W. Vuduc, J. W. Demmel, and K. A. Yelick. When cache blocking of sparse
matrix vector multiply works and why. Appl. Algebra Eng., Commun. Comput., 18(3):297–311,
May 2007.

13. S. Potluri, K. Tomko, D. Bureddy, and D. K. Panda. Intra-MIC MPI communication using
MVAPICH2: Early experience. In TACC-Intel Highly Parallel Computing Symp., 2012.

14. Y. Saad. Sparskit: a basic tool kit for sparse matrix computations - version 2, 1994.
15. E. Saule and Ü. V. Çatalyürek. An early evaluation of the scalability of graph algorithms on

the Intel MIC architecture. In IPDPS Workshop MTAAP, 2012.
16. E. Saule, K. Kaya, and U. V. Catalyurek. Performance evaluation of sparse matrix multiplica-

tion kernels on intel xeon phi. Technical Report arXiv:1302.1078, ArXiv, Feb. 2013.
17. K. Stock, L.-N. Pouchet, and P. Sadayappan. Automatic transformations for effective parallel

execution on intel many integrated core. In TACC-Intel Highly Parallel Computing Symp.,
2012.

18. R. Vuduc, J. Demmel, , and K. Yelic. OSKI: A library of automatically tuned sparse matrix
kernels. In Proc. SciDAC 2005, J. of Physics: Conference Series, 2005.

19. S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel. Optimization of sparse
matrix-vector multiplication on emerging multicore platforms. In Proc. SC ’07, 2007.

20. Z. Zhou, E. Saule, H. M. Aktulga, C. Yang, E. G. Ng, P. Maris, J. P. Vary, and Ü. V. Çatalyürek.
An out-of-core eigensolver on SSD-equipped clusters. In Proc. of IEEE Cluster, Sep 2012.

	Performance Evaluation of Sparse Matrix Multiplication Kernels on Intel Xeon Phi
	Erik Saule, Kamer Kaya, Ümit V. Çatalyürek

