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Definition

Evolutionary kernel learning stands for using evolutionary algorithms to op-
timize the kernel function for a kernel-based learning machine.

Motivation and Background

In kernel-based learning algorithms the kernel function determines the scalar
product and thereby the metric in the feature space in which the learning
algorithm operates. The kernel is usually not adapted by the kernel method
itself. Choosing the right kernel function is crucial for the training accuracy
and generalization capabilities of the learning machine. It may also influence
the runtime and storage complexity during learning and application.
Finding an appropriate kernel is a model selection problem. The kernel
function is selected from an a priori fixed class. When a parameterized fam-
ily of kernel functions is considered, kernel adaptation reduces to finding an
appropriate parameter vector. In practice, the most frequently used method
to determine these values is grid search. In simple grid search the parameters
are varied independently with a fixed step-size through a range of values and
the performance of every combination is measured. Because of its compu-
tational complexity, grid search is only suitable for the adjustment of a few
parameters. Further, the choice of the discretization of the search space may
be crucial. Gradient-based approaches are perhaps the most elaborate tech-
niques for adapting real-valued kernel parameters, see [1, 2] and references
therein. To use these methods, however, the class of kernel functions must
have a differentiable structure. They are also not directly applicable if the
score function for assessing the parameter performance is not differentiable.
This excludes some reasonable performance measures. Evolutionary kernel
learning does not suffer from these limitations. Additionally it allows for




initialize parent population of individuals,
each encoding kernel and perhaps additional parameters

while termination criterion is not met
create offspring individuals from parents
using variation operators

train and evaluate kernel machine encoded by individuals
using sample data

select new parent population based on evaluation

Figure 1: Canonical evolutionary kernel learning algorithm.

multi-objective optimization (MOO).

Structure of Learning System

Canonical evolutionary kernel learning can be described as an evolutionary
algorithm (EA) in which the individuals encode kernel functions, see Figure 1.
These individuals are evaluated by determining the task-specific performance
of the kernel they represent. Two special aspects must be considered when
designing an EA for kernel learning. First, one must decide how to assess the
performance (i.e., the fitness) of a particular kernel. That is, model selection
criteria have to be defined depending on the problem at hand. Second, one
must also specify the subset of possible kernel functions in which the EA
should search. This leads to the questions of how to encode these kernels
and which variation operators to employ.

Assessing fitness: Model selection criteria

The following presents some performance indices that have been considered
for kernel selection. They can be used alone or in linear combination for
single-objective optimization. In MOO a subset of these criteria can be used
as different objectives.

It is important to note that, although many of these measures are designed
to improve generalization, kernel learning can lead to overfitting if only lim-
ited data is used in the model selection process (e.g., in every generation the
same small data sets are used to assess performance). Regularization (e.g.,



in a Bayesian framework) can be used to prevent overfitting. If enough data
are available, it is advisable to monitor the generalization behavior of kernel
learning using independent data. For example, external data can be used for
the early-stopping of evolutionary kernel learning.

Accuracy on sample data 'The most straightforward way to evaluate a model
is to consider its performance on sample data. The empirical risk given by
the error on the training data could be considered, but it does not measure
generalization. To estimate the generalization performance, the accuracy on
data not used for training is evaluated. In the simplest case, the available
data is split into a training and validation set, with the first used for learning
and the second for subsequent performance assessment. A theoretically sound
and simple method is cross-validation (CV). Cross-validation makes better
use of the data, but it is more computationally demanding. In practice, it
yields very good results.

If classification is considered, it may be reasonable to split the classifica-
tion error into false negative and false positive rates and to view sensitivity
and specificity as two separate objectives [3].

Measures derived from bounds on the generalization performance Statistical
learning theory allows one to compute estimates of and bounds on the ex-
pected generalization error of learning machines. These values can be utilized
as criteria for model selection, although then the assumptions of the under-
lying theorems from statistical learning theory are typically violated and the
terms “bound” and “unbiased estimate” become misleading.

An example where radius-margin bounds are used to evolve kernels for
support vector machines (SVMs) is given in [4]. For hard-margin SVMs, the
number of support vectors (SVs) is an upper bound on the expected number
of errors made by the leave-one-out procedure (e.g., see [1]). It was optimized
in combination with the empirical risk for example in [4].

Number of input variables Variable selection refers to the feature selection
problem of choosing input variables that are best suited for the learning task.
Masking a subset of variables can be viewed as modifying the kernel. By
considering only a subset of feature dimensions the computational complexity
of the learning machine decreases. When deteriorating feature dimensions
are removed, the overall performance may increase. Reducing the number




of input variables is therefore a common objective, which can be achieved
using single-objective [5, 6, 7, 8] or multi-objective [9, 10] evolutionary kernel
learning.

Space and time complexity of the classifier In some applications, it can be de-
sirable to have fast kernel methods (e.g., for meeting real-time constraints).
Thus, execution time may be considered in the performance assessment dur-
ing evolutionary kernel learning.

The space and time complexity of SVMs scales with the number of SVs.
This is an additional reason to consider minimization of the number of SVs
as an objective in evolutionary model selection for SVMs [4, 3].

Multi-objective optimization The design of a learning machine is usually a
MOO problem. For example, accuracy and complexity can be viewed as
multiple, and probably conflicting, objectives. The goal of MOO is to ap-
proximate a diverse set of Pareto-optimal solutions (i.e., solutions that cannot
be improved in one objective without getting worse in another one), which
provide insights into the trade-offs between the objectives. Evolutionary
multi-objective algorithms have become popular for MOO. Applications of
multi-objective evolutionary kernel learning combining some of these perfor-
mance measures listed above can be found in [4, 9, 10].

Encoding and variation operators

The sheer complexity of the space of possible kernel functions makes it nec-
essary to restrict the search to a particular class of kernel functions. This
restriction essentially determines the representation and the operators used
in evolutionary kernel learning.

When a parameterized family of mappings is considered, the kernel pa-
rameters can be encoded more or less directly in a real-valued EA. This is a
frequently used representation, for example for Gaussian kernel functions.

For variable selection a binary encoding can be appropriate. One can fix a
kernel £ : X x X — R where k(z, ) solely depends on some distance measure
between z,z € X. In the binary encoding each bit then indicates whether a
particular input variable is considered when computing the distance [9, 10].

Kernels can be built from other kernels. For example, if k£ and k, are
kernel functions on X then ak;(z, z)+ bks(z, 2) or a exp(—0bki(z, z)) for z, z €




X,a,b € R" are also kernels on X. This suggests a representation in which
the individuals encode expressions that evaluate to kernel functions.

Given these different search spaces, it is not surprising that aspects of all
major branches of evolutionary computation have been used in evolutionary
kernel learning: genetic algorithms [6], genetic programming [11], evolution
strategies [4], and evolutionary programming [12].

In general, kernel methods assume that the kernel (or at least the
Gram matrix in the training process) is positive semi-definite (psd). There-
fore, it is advisable to restrict the search space such that only psd functions
evolve. Other ways of dealing with the problem of ensuring positive semi-
definiteness are to ignore it [11] or to construct a psd Gram matrix from
the matrix M induced by the training data and a non-psd “kernel” function.
The latter can be achieved by subtracting the smallest eigenvalue of M from
its diagonal entries.

Gaussian kernels  Gaussian kernel functions are prevalent. Their general form
is k(z,z) :=exp (—(z — 2)TA(z — 2)) for z,z € R" and symmetric positive
definite (pd) matrix A € R"*™. When adapting A, the issue of ensuring
that the optimization algorithm generates only pd matrices A arises. This
can be achieved by an appropriate parametrization of A. Often the search
is restricted to matrices of the form ~/I, where [ is the unit matrix and
v € R* is the only adjustable parameter. However, allowing more flexibility
has proven to be beneficial in certain applications (e.g., see [1, 13, 2]). It is
straightforward to consider diagonal matrices with positive elements to allow
for independent scaling factors weighting the input components. However,
only by dropping this restriction one can achieve invariance against both
rotation and scaling of the input space. A real-valued encoding that maps
onto the set of all symmetric pd matrices can be used such that all modifi-
cations of the parameters result in feasible kernels, see [13, 2, 3] for different
parametrizations.

Optimizing additional hyperparameters One of the advantages of evolutionary
kernel learning is that it can be easily augmented with an optimization of
additional hyperparameters of the kernel method. The most prominent ex-
ample is to encode not only the kernel but also the regularization parameter
when doing model selection for SVMs.



Application Example

Notable applications of evolutionary kernel learning include the design of
classifiers in bioinformatics [10, 9, 14]. Let us consider [14] as an instructive
example. Here, the parameters of a sequence kernel are evolved to improve
the prediction of gene starts in DNA sequences. The kernel can be viewed
as a weighted sum of 64 kernels, each measuring similarity with respect to
a particular tri-nucleotide sequence (codon). The 64 weights wy,. .., wey
are optimized together with an additional global kernel parameter ¢ and
a regularization parameter C for the SVM. Each individual stores z € R,
where (wy, ..., we,0, C)T = (exp(z1),...,exp(z4), |765], |766|)T. An evolu-
tion strategy is applied, using additive multi-variate Gaussian mutation and
weighted global recombination for variation and rank-based selection. The
fitness is determined by 5-fold cross-validation. The evolved kernels lead to
higher classification rates and the adapted weights reveal the importance of
particular codons for the task at hand.

See also

Neuroevolution; Evolutionary Artificial Neural Networks
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Definitional Entries

Evolutionary algorithms

Synonyms

genetic and evolutionary algorithms, evolutionary computation, evolutionary
computing

Definition

Generic term subsuming all machine learning and optimization methods in-
spired by neo-Darwinian evolution theory.

Kernel matrix

Synonyms

Gram matrix

Definition

Given a kernel function £ : X x X — C and patterns z,...,x, € X, the
m x m matrix K with elements K;; := k(z;,2;) is called kernel matrix of &k
with respect to zy, ..., z,,.

Leave-one-out error

Synonyms

hold-one-out error, LOO error



Definition

Given a data set of ¢ patterns, the LOO error is the ¢-fold cross-validation
error.

Model selection

Definition

Model selection is the process of choosing an appropriate mathematical model
from a class of models.

Multi-objective optimization

Synonyms

vector optimization, multi-criteria optimization, MOO

Definition

Multi-criteria optimization is concerned with the optimization of a vector of
objectives, which can be the subject of a number of constraints or bounds.
The goal of multi-objective optimization is usually to find or to approximate
the set of Pareto-optimal solutions. A solution is Pareto-optimal if it cannot
be improved in one objective without getting worse in another one.

Positive semi-definite

Synonyms

positive definite
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Definition

A symmetric m x m matrix K satisfying Vo € C™ : 2*Kz > 0 is called
positive semi-definite. If the equality only holds for x = 0 the matrix is
positive definite.

A function £ : X x X — C, X # &, is positive (semi-) definite if for
all m € IN and all x;,...,2, € X the m X m matrix K with elements
Kj; := k(x;, z;) is positive (semi-) definite.

Sometimes the term strictly positive definite is used instead of positive
definite and positive definite refers then to positive semi-definiteness.
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