Streaming Similarity Search over one Billion Tweets using
Parallel Locality-Sensitive Hashing

Narayanan Sundaram?, Aizana Turmukhametova *, Nadathur Satisht,
Todd Mostak*, Piotr Indyk-, Samuel Madden* and Pradeep Dubey'

tParallel Computing Lab, Intel
{narayanan.sundaram} @intel.com

ABSTRACT

Finding nearest neighbors has become an important operation on
databases, with applications to text search, multimedia indexing,
and many other areas. One popular algorithm for similarity search,
especially for high dimensional data (where spatial indexes like kd-
trees do not perform well) is Locality Sensitive Hashing (LSH), an
approximation algorithm for finding similar objects.

In this paper, we describe a new variant of LSH, called Parallel
LSH (PLSH) designed to be extremely efficient, capable of scaling
out on multiple nodes and multiple cores, and which supports high-
throughput streaming of new data. Our approach employs several
novel ideas, including: cache-conscious hash table layout, using
a 2-level merge algorithm for hash table construction; an efficient
algorithm for duplicate elimination during hash-table querying; an
insert-optimized hash table structure and efficient data expiration
algorithm for streaming data; and a performance model that ac-
curately estimates performance of the algorithm and can be used to
optimize parameter settings. We show that on a workload where we
perform similarity search on a dataset of > 1 Billion tweets, with
hundreds of millions of new tweets per day, we can achieve query
times of 1-2.5 ms. We show that this is an order of magnitude faster
than existing indexing schemes, such as inverted indexes. To the
best of our knowledge, this is the fastest implementation of LSH,
with table construction times up to 3.7 x faster and query times that
are 8.3 faster than a basic implementation.

1. INTRODUCTION

In recent years, adding support to databases to identify simi-
lar objects or find nearest neighbors has become increasingly im-
portant. Hundreds of papers have been published over the past
few years describing how to extend databases to support similar-
ity search on large corpuses of text documents (e.g., [24]), moving
objects (e.g., [14]), multimedia (e.g., [12]), graphs (e.g., [32]), ge-
netic sequences (e.g., [23]), and so on.

Processing such queries is a challenge, as simple attempts to
evaluate them yield linear algorithms that compare the query object
to every other object. Linear algorithms are particularly unattrac-

tive when the objects being compared are complex or multi-dimensional,

or when datasets are large, e.g., when comparing trajectories of a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.

Proceedings of the VLDB Endowment, Vol. 6, No. 14

Copyright 2013 VLDB Endowment 2150-8097/13/14... $ 10.00.

*CSAIL, MIT

{aizana,tmostak,indyk,madden } @mit.edu

large number of moving objects or computing document similarity
measures over dynamic text corpuses (e.g., Twitter).

Many efficient nearest neighbor algorithms have been proposed.
For low-dimensional data, spatial indexing methods like kd-trees [11]
work well, but for higher dimensional data (e.g., vector represen-
tations of text documents, images, and other datasets), these struc-
tures suffer from the “curse of dimensionality”, where there are
many empty hypercubes in the index, or where query performance
declines exponentially with the number of dimensions. In these
cases, these geometric data structures can have linear query times.
For such higher dimensional data, one of the most widely used al-
gorithms is locality sensitive hashing (LSH) [20, 13]. LSH is a
sub-linear time algorithm for near(est) neighbor search that works
by using a carefully selected hash function that causes objects or
documents that are similar to have a high probability of colliding
in a hash bucket. Like most indexing strategies, LSH consists of
two phases: hash generation where the hash tables are constructed,
and querying, where the hash tables are used to look up similar
documents. Previous work has shown that LSH is the algorithm of
choice for many information retrieval applications, including near-
duplicate retrieval [19, 25], news personalization [15], etc.

In this work, we set out to index and query a corpus of approx-
imately 1 billion tweets, with a very high update rate (400 million
new tweets per day) [6]. Initially we believed that existing LSH
algorithms would provide a straightforward means to tackle this
problem, as tweets are naturally modeled as high-dimensional ob-
jects in a term-vector space. Surprisingly, applying LSH to very
large collections of documents, or document sets that change very
frequently, proved to be quite difficult, especially in light of our
goal of very fast performance that would scale to thousands of con-
current queries (of the sort Twitter might encounter). This can be
ascribed to the following factors:

1. Modern processors continue to have more and more cores,
and it is desirable to take advantage of such cores. Unfortunately,
obtaining near-linear speedups on many cores is tricky, due to the
need to synchronize access of multiple threads to the data structure.

2. Existing variants of LSH aren’t distributed. Because LSH is
a main-memory algorithm, this limits the maximum corpus size.

3. Additionally, hash table generation and querying in LSH can
become limited by memory latency due to cache misses on the ir-
regular accesses to hash tables. This means that the application no
longer utilizes either compute or bandwidth resources effectively.

4. High rates of data arrival require the ability to efficiently ex-
pire old data from the data structure, which is not a problem that
previous work has addressed satisfactorily.

5. The LSH algorithm takes several key parameters that deter-
mine the number of hash tables and number of buckets in each
hash table. Setting these parameters incorrectly can yield exces-

1930



sive memory consumption or sub-optimal performance, and prior
work provides limited guidance about how to set these parameters.

To address these challenges, we developed a new version of LSH,
which we call “Parallel LSH” (PLSH), which we describe in this
paper. In order to get PLSH to perform well, we needed to make a
number of technical and algorithmic contributions such as:

1. Both hash table construction and hash table search in PLSH
are distributed across multiple cores and multiple nodes.

2. Within a single node, multiple cores concurrently access the
same set of hash tables. We develop techniques to batch and re-
arrange accesses to data to maximize cache locality and improve
throughput.

3. We introduce a novel cache-efficient variant of the LSH hash-
ing algorithm, which significantly improves index construction time.
We also perform software prefetching and use large pages to mini-
mize cache miss effects.

4. To handle streaming arrival and expiration of old documents,
we propose a new hybrid approach that buffers inserts in an insert-
optimized LSH delta table and periodically merges these into our
main LSH structure.

5. We develop a detailed analytical model that accurately projects
the performance of our single- and multi-node LSH algorithms to
within 25% of obtained performance. This model allows us to esti-
mate the optimal settings of PLSH parameters on modern hardware
and also allows us to understand how close our observed perfor-
mance on modern systems is to expected performance.

Although LSH has been widely used, as we note in Section 2,
previous work has not shown how to optimize LSH for modern
multi-core processors, and does not include the optimizations for
efficient parallel operation on LSH tables. We believe PLSH is
quite general, and should efficiently support many of the previous
applications of LSH mentioned above [19, 25, 15].

Taken together, versus an unoptimized implementation, our op-
timizations improve hash table construction times by a factor of
3.7x, and query times by a factor of 8.3x on a 1 Billion Twitter
data set, with typical queries taking 1-2.5 ms. In comparison to
other text search schemes, such as inverted indexes, our approach
is an order of magnitude faster. Furthermore, we show that this im-
plementation achieves close to memory bandwidth limitations on
our systems, and is hence bound by architectural limits. We believe
this is the fastest known implementation of LSH.

2. RELATED WORK

LSH is a popular approach for similarity search on high-dimensional

data. As a result, there are numerous implementations of LSH
available online, such as: E2LSH [1], LSHKIT [4], LikeLike [2],
LSH-Hadoop [3], LSH on GPU [27] and Optimal LSH [5]. Among
these, LikeLike, LSH-Hadoop and LSH-GPU were designed specif-
ically for parallel computational models (MapReduce, Hadoop and
GPU, respectively). LikeLike and LSH-Hadoop are distributed LSH
implementations; however they do not promise high performance.
LSH-GPU, on the other hand, is oriented towards delivering high
levels of performance but is unable to handle large datasets because
of current memory capacity limitations of GPUs. However, to the
best of our knowledge, none of these implementations have been
designed for standard multi-core processors, and are unable to han-
dle the large scale real-time applications considered in this paper.
There have been many variations of LSH implementations for
distributed systems to reduce communication costs through data

clustering and clever placement of close data on nearby nodes e.g. [18].

Performing clustering however requires the use of load balancing
techniques since queries are directed to some nodes but not others.
‘We show that even with a uniform data distribution, the communi-

cation cost for running nearest neighbor queries on large clusters
is < 1% with little load imbalance. Even with other custom tech-
niques for data distribution (e.g., [10]), each node eventually runs
a standard LSH algorithm. Thus a high performing LSH imple-
mentation that achieves performance close to hardware limits is a
useful contribution to the community that can be adopted by all.

Our paper introduces a new cache-friendly variant of the all-pairs
LSH hashing presented in [7], which computes all LSH hash func-
tions faster than a naive algorithm. There are other fast algorithms
for computing LSH functions, notably the one given [16] that is
based on fast Hadamard transform. However, the all-pairs approach
scales linearly with the sparsity of the input vectors, while the
fast Hadamard transform computation takes at least (D log D)
time, where D is the input dimension (which in our case is about
500, 000). As a result, our adaptation of the all-pairs method is
much more efficient for the applications we address.

The difficulty of parameter selection for the LSH algorithm is
a known issue. Our approach is similar to that employed in [31]
(cf. [1]), in that we decompose the query time into separate terms
(hashing, bucket search, etc.), estimate them as a function of the
parameters k, L, § (see Section 3) and then optimize those param-
eters. However, our cost model is much more detailed. First, we
incorporate parallelism into the model. Second, we separate the
cost of the computation, which depends on the number of unique
points that collide with the query, from the cost that is a function
of the total number of collisions. As a result, our model is very ac-
curate, predicting the actual performance of our algorithm within a
15-25% margin of error.

LSH has been previously used for similarity search over Twit-
ter data [28]. Specifically, the paper applied LSH to Twitter data
for the purpose of first story detection, i.e. those tweets that were
highly dissimilar to all preceding tweets. In order to reduce the
query time, they compare the query point to a constant number of
points that collide with the query most frequently. This approach
works well for their application, but it might not be applicable to
more general problems and domains. To extend their algorithm
to streaming data, they keep bin sizes constant and overwrite old
points if a bin gets full. As a result, each point is kept in multi-
ple bins, and the expiration time is not well-defined. Overall, the
heuristic variant of LSH introduced in that work is accurate and
fast enough for the specific purpose of detecting new topics. In this
paper, however, we present an efficient general implementation of
LSH that is far more scalable and provides well-defined correctness
guarantees. In short, our work introduces a high performance, in-
memory, multithreaded, distributed nearest neighbor query system
capable of handling large amounts of streaming data, something no
previous work has achieved.

3. ALGORITHM

Locality-Sensitive Hashing [20] is a framework for constructing
data structures that enables searching for near neighbors in a col-
lection of high-dimensional vectors. The data structure is param-
eterized by the radius R and failure probability 6. Given a set P
containing D-dimensional input vectors, the goal is to construct a
data structure that, for any given query g, reports the points within
the radius R from g. We refer to those points as R-near neighbors
of ¢ in P. The data structure is randomized: each R-near neigh-
bor is reported with probability 1 — § where 6 > 0. Note that the
correctness probability is defined over the random bits selected by
the algorithm, and we do not make any probabilistic assumptions
about the data set.

The data structure utilizes locality sensitive hash functions. Con-
sider a family H of hash functions that map input points to some



universe U. Informally, we say that H is locality-sensitive if for any
two points p and g, the probability that p and g collide under a ran-
dom choice of hash function depends only on the distance between
p and g. We use the notation p(t) to denote the probability of col-
lision between two points within distance ¢. Several such families
are known in the literature, see [8] for an overview.

In this paper we use the locality-sensitive hash families for the
angular distance between two unit vectors, defined in [13]. Specif-
ically, let t € [0, 7] be the angle between unit vectors p and q.
t can be calculated as acos(m). The hash functions in the
family are parametrized by a unit vector a. Each such function h,,
when applied on a vector v, returns either —1 or 1, depending on
the value of the dot product between a and v. Specifically, we have
ha(v) = sign(a - v). Previous work shows [13] that, for a random
choice of a, the probability of collision satisfies p(¢t) = 1 — ¢/m.
That is, the probability of collision P[hq(vi) = ha(v2)] ranges
between 1 and 0 as the angle ¢ between v, & v2 ranges between 0
and 7.

Basic LSH: To find the R-near neighbors, the basic LSH algorithm
concatenates a number of functions h € H into one hash function
g. In particular, for k specified later, we define a family G of hash
functions g(v) (h1(v), ..., hg(v)), where h; € H. For an
integer L, the algorithm chooses L functions g1, ..., gr from G,
independently and uniformly at random. The algorithm then cre-
ates L hash arrays, one for each function g;. During preprocessing,
the algorithm stores each data point p € P into buckets g, (v), for
all j = 1,..., L. Since the total number of buckets may be large,
the algorithm retains only the non-empty buckets by resorting to
standard hashing.

To answer a query ¢, the algorithm evaluates g1(q), ..., g9z(q),
and looks up the points stored in those buckets in the respective
hash arrays. For each point p found in any of the buckets, the algo-
rithm computes the distance from g to p, and reports the point v if
the distance is at most R.

The parameters k£ and L are chosen to satisfy the requirement
that a near neighbor is reported with a probability at least 1 — 9. See
Section 7 for the details. The time for evaluating the g; functions
for a query point g is O(DkL) in general.

For the angular hash functions, each of the & bits output by a hash
function g; involves computing a dot product of the input vector
with a random vector defining a hyperplane. Each dot product can
be computed in time proportional to the number of non-zeros NNZ
rather than D. Thus, the total time is O(NNZEL).

All-pairs LSH hashing: To reduce the time to evaluate functions
g; for the query g, we reuse some of the functions hy) in a manner
similar to [7]. Specifically, we define functions w; in the following
manner. Suppose k is even and m = /L. Then, fori = 1...m,
hP, .., h,
at random from the family 7{. Thus w; are vectors each of k/2
functions (bits, in our case) drawn uniformly at random from the
LSH family H. Now, define functions g; as g; = (uq,us), where
1 < a < b < m. Note that we obtain L = m(m — 1)/2 functions
Gi-

The time for evaluating the g; functions for a query point q is
reduced to O(Dkm + L) = O(Dk+/L + L). This is because we
need only to compute m functions u;, i.e., mk individual functions
h, and then just concatenate all pairs of functions u;. For the an-
gular functions the time is further improved to O(NNZkm + L).
In the rest of the paper, we use “LSH” to mean the faster all-pairs
version of LSH.

let u;

), where each h;” is drawn uniformly

1932

In addition to reducing the computation time from O(DkL) to
O(DkV'L + L), the above method has significant benefits when
combined with 2-level hashing, as described in more detail in Sec-
tion 5.1.2. Specifically, the points can be first partitioned using the
first chunk of k/2 bits, and the partitioning can be refined further
using the second chunk of k/2 bits. In this approach the first level
partitioning is done only m times, while the second level hashing is
done on much smaller sets. This significantly reduces the number
of cache misses during the table construction phase.

To the best of our knowledge, the cache-efficient implementation
of the all-pairs hashing is a new contribution of this paper.

Hash function for Twitter search: In the case of finding nearest
neighbors for searching Twitter feeds, each tweet is represented
as a sparse high-dimensional vector in the vocabulary space of all
words. See Section 8 for further description.

4. OVERALL PLSH SYSTEM

In this work, we focus on handling nearest neighbor queries on
high-volume data such as Twitter feeds. In the case of Twitter
feeds, there is a stream of incoming data that needs to be inserted
into the LSH data structures. These structures need to support very
fast query performance with very low insertion overheads. We also
need to retire the oldest data periodically so that capacity is made
available for incoming new data.

. 1
100 % static M Nodes: 50 % static, 10% streamingi 100 % static
1

Node i

Node 0

Node 1 Node 99

Coordinator

9 T qaj ip i

Queries
Figure 1: Overall system for LSH showing queries and insert operations.
All nodes hold part of the data and participate in queries with a coordinator
node handling the merging of query results. For inserts, we use a rolling
window of M nodes (Node i to i + M — 1) that have a streaming structure
to handle inserts in round-robin fashion. These streaming structures are pe-
riodically merged into static structures. The figure shows a snapshot when
the static structures are 50% filled. When they are completely filled, the
window moves to nodes 7 + M to¢ + 2M — 1.

Insertions

Figure 1 presents an overview of how our system handles high-
volume data streams. Our system consists of multiple nodes, each
storing a portion of the original data. We store data in-memory for
processing speed; hence the total capacity of a node is determined
by its memory size. As queries arrive from different clients, they
are broadcast by the coordinator to all nodes, with each node query-
ing its data. The individual query responses from each structure are
concatenated by the coordinator node and sent back to the user.

PLSH includes a number of optimizations designed to promote
efficient hash table construction and querying. First, in order to
speed up construction of static hash tables (that are not updated
dynamically as new data arrives) we developed a 2-level hashing
approach, that when coupled with the all-pairs LSH method de-
scribed in Section 3 significantly reduces the time to construct hash



tables. Rather than using pointers to track collisions on hash buck-
ets this approach uses a partitioning step to exactly allocate enough
space to store the entries in each hash bucket. This algorithm is
described in Section 5.1. We show that this algorithm speeds up
hash table construction by up to a factor of 3.7x versus a basic
implementation.

In order to support high throughput parallel querying, we also
developed a number of optimizations. These include: i) processing
the queries in small batches of a few hundred queries, trading la-
tency for throughput, ii) a bitmap-based optimization for eliminat-
ing duplicate matches found in different hash tables, and iii) a tech-
nique to exploit hardware prefetching to lookup satisfying matches
once item identifiers have been found. These optimizations are de-
scribed in Section 5.2. In Section 8, we show that our optimized
query routine from can perform static queries as fast as 2.5 ms per
query, a factor of 8.3 faster than a basic implementation.

We have so far described the case when there are no data updates.
In Section 6 we describe how we support updates using a write-
optimized variant of LSH to store delta tables. Queries are an-
swered by merging answers from the static PLSH tables and these
delta tables. Since queries to the delta tables are slower than those
to static tables, we periodically merge delta tables into the static ta-
bles, buffering incoming queries until merges complete. Deletions
are handled by storing the list of deleted entries on each node; these
are eliminated before the final query response.

Taken together, these optimizations allow us to bound the slow-
down for processing queries on newly inserted data to within a fac-
tor of 1.5X, while easily keeping up with high rates of insertions
(e.g., Twitter inserts 4600 updates/second with peaks up to 23000
updates/second) [6].

S. STATIC PLSH

In this section, we describe our high-performance approach to
construction and querying of a static read-only LSH structure con-
sisting of many LSH tables. Most data in our system described in
Section 4 is present in static tables, and it is important to provide
high query throughput on these. We also describe in Section 6 how
our optimized LSH construction routine is fast enough to support
fast merges of our static and delta structures.

We focus on a completely in-memory approach. Since mem-
ory sizes are increasing, we have reached a point where reasonably
large datasets can be stored across the memory in different nodes
of a multi-node system. In this work, we use 100 nodes to store and
process more than a billion tweets.

The large number of tables (L is around 780 in our implementa-
tion) and the number of entries in each table (k can be 16 or more,
leading to at least 2 = 64K entries per table) leads to performance
bottlenecks on current CPU architectures.

Specifically, there are two performance problems that arise from
a large number of hash tables: (1) time taken to construct and query
tables linearly scales with the number of tables — hence it is im-
portant to make each table insertion and query fast, and (2) when
performing a single query, the potential neighbor list obtained by
concatenating the data items in the corresponding hash bins of all
hash tables contains duplicates. Checking all duplicates is wasteful,
and these duplicates need to be efficiently removed.

In addition, unoptimized hash table implementations can lead to
performance problems both during table construction and querying
due to multi-core contention. Specifically, in LSH, nearby data
items, by design, need to map to similar hash entries, leading to
hash collisions. Existing hash table implementations that employ
direct chaining and open addressing methods [22] have poor cache

1933

behavior and increased memory latency. Array Hashes [9] increase
memory consumption and do not scale to multiple cores.

These considerations drove the techniques we now describe for
producing an optimized, efficient representation of the static rep-
resentation of hash tables in PLSH (we describe how we support
streaming in Section 6.)

We first define a few symbols for ease of explanation.

N : Number of data items.

D : Dimensionality of data.

k : Number of bits used to index a single hash table.

L : Number of hash tables used in LSH.

m : Number of k/2-bit hash functions used. Combinations of these
are used to generate L = m(m — 1)/2 total k-bit hashes.

T : Number of hardware threads (including SMT/Hyperthreading).
S : SIMD width.

5.1 LSH table construction

Given a choice of LSH parameters k and L (or equivalently, m),
the two main steps in LSH table construction are (1) hashing each
data point using each hash function to generate the k-bit indices
into each of the L hash tables, and (2) inserting each data point
into all L hash tables. All insertions and queries are done using
data indexes 0...N-1 (these are local to each node, and hence we
assume them to be 4-byte values).

In this section we describe the approach we developed in PLSH,
focusing in particular on the new algorithms we developed for step
(2) that involve a two-level hierarchical merge operations that works
very well in conjunction with the all pairs LSH-hashing method de-
scribed in Section 3.

5.1.1 Hashing data points

Recall that (as described in Section 3) the LSH algorithm be-
gins by computing m*k /2 hash functions that compute angular dis-
tances. Each hash function is obtained as a dot-product between the
sparse term vector representing the tweet and a randomly generated
hyperplane in the high-dimensional vocabulary space. Due to the
use of these angular distances, evaluating the hash functions over
all data points can be treated as a matrix multiply, where the rows
of the first matrix stores the data to be hashed in sparse form (IDF
scores corresponding to the words in each tweet), and the columns
of the second matrix store the randomly generated hyperplanes.
The output of this is a matrix storing all hash values for each in-
put. In practice, the first matrix is very sparse (there are only about
7.2 words per tweet out of a vocabulary of 500000), and hence is
best represented as a sparse matrix. We use the commonly used
Compressed Row Storage (CRS) format [17] for matrix storage.
Parallelism: These steps are easily parallelized over the data items
N, yielding good thread scaling. Note that it is possible to struc-
ture this computation differently by iterating instead over columns
of the dense (hyperplane) matrix; however structuring the computa-
tion as parallelization over data items ensures that the sparse matrix
is read consecutively, and that at least one row of the dense matrix
is read consecutively. This improves the memory access pattern,
allowing for SIMD computations (e.g., using Intel® AVX exten-
sions).

There can be cache misses while accessing the dense matrix
since we can read rows that are widely apart. Such effects can in
general be reduced by using a blocked CRS format [17]. However,
in our examples, the Zipf distribution of words found in natural lan-
guages lead to some words being commonly found in many tweets.
Such words cause the corresponding rows of the dense matrix to be
accessed multiple times, which are hence likely to be cached.



This behavior, combined with the relatively large last level caches
on modern hardware (20 MB on Intel® Xeon® processor E5-2670)
results in very low cache misses. In practice, we see less than 10%
of the memory accesses to the dense matrix miss the last level cache
(LLC). Hence this phase is compute bound, with efficient use of
compute resources such as multiple cores and SIMD.

5.1.2 Insertion into hash tables

Once the m k/2-bit hashes have been computed, we need to cre-
ate L k-bit hashes for each tweet and insert each tweet into the L
hash tables so generated. In this section, we describe our new two-
level partitioning algorithm for doing this efficiently. They idea
is that we want to construct hash tables in memory that are repre-
sented as contiguous arrays with exactly enough space to store all
of the records that hash to (collide in) each bucket, and we want to
do this in parallel and in a way that maximizes cache locality.

Given all k/2-bit hashes u1,...un, for a given tweet, we take pairs
of hashes (u;,u;), and concatenate them into k-bit hashes g; ;.
There are L = (") such combinations of hashes we can generate.
Each such hash g; ; maps a tweet to a number between 0 and 2% —
1, and this tweet can then be inserted into a specific bucket of a
hash table. A naive implementation of this hash table would have
a linked list of collisions for each of the 2¥ buckets. This leads to
many problems with both parallel insertion (requiring locks), and
irregular memory accesses.

Given a static (non-dynamic) table, we can construct the hash
table in parallel using a contiguous array without using a linked
list. This process of insertion into the hash tables can be viewed
as a partitioning operation. This involves three main steps: first,
scan each element of the table and generate a histogram of entries
in the various hash buckets; (2) perform a cumulative sum of this
histogram to obtain the starting offsets for each bucket in the final
table, and (3) perform an additional scan of the data and recompute
the histogram, this time adding it to the starting offsets to get the
final offset for each data item. This computation needs to be per-
formed for each of the L hash tables. Note that a similar process
has been used for hash-join and radix-sort, where it was also shown
how to parallelize this process [21, 30].

However, although easily parallelized, we found the performance
to be limited by memory latency — especially when the number of
buckets is large. One common problem of partitioning algorithms
is the limited size of the Translation Lookaside Buffer (TLB) which
is used to perform virtual to physical address translation on mod-
ern hardware. As previously described by Kim et al. [21], for good
partitioning performance, the number of partitions should not be
more than a small multiple of the first level TLB size (64/thread
in Intel® Sandy bridge). In practice, PLSH typically requires k to
be about 16, and having 2'® = 64K partitions results in significant
performance loss due to TLB misses.

In order to improve performance, we perform a 2-level hierar-
chical partitioning similar to a Most-Significant Bit (MSB) radix
sort. Given the k-bit hash, we split it into two halves of k/2 bits
each. We first partition the data using the first k/2 bits, resulting
in 2%/2 first-level partitions. Each first-level partition is then inde-
pendently rearranged using the second k/2 bit-key. For example,
the hash table for g1 2 can be first partitioned on the basis of the
first half of the key (u1), thus creating ok/2 partitions. Each such
partition is then partitioned by us. Similarly, the table for g1 3 can
be partitioned by u; and ug respectively. The main advantage is
that each of these steps only creates ok/2 partitions at a time (256
for k=16), which results in few TLB misses.

In the case of LSH, this 2-level division matches precisely with
the way the hashes are generated. This leads to opportunities to

tl 10 11 11 | 00
t2 00 | 00 10 | 00
t3 00 11 01 11
t4 10 | 11 11 10
t5 11 11 10 | 00
t6 11 10 10 10
t7 10 10 10 | 01
t8 10 11 | 00 | 00
t9 10 | 01 11 | 01
t10 | 00 10 | 01 10

Table 1: Example with k = 4, m = 4, L = 6: hashing of 10 datapoints

W Level 1 partition Level 2 partitions
input +— u, —> Uz —> Uy
t2 00 00 00
/T 01 ™ 2 01 |—(t3 01 ~ t2
Uy —— 10 |[—|t10 10 10 |—>[t10
PR O A v == e AN S R e B
00 il 1 |—J3 11 2 11 |—=l3
o /L — 9 — 8 — t1
10 | ¢ t4 00 /* o 18 oo
1 | o 7 01 /L 01 /’L 01 \&
8 g L i E T % W T Ny LA
: T 11 t4 11 t4 11 \ t9
1 - t4
5 S 20 -~ I R Lo A
00 t6 00 t5 00 |—|t5
U1 t6 191 A% 1 =
—_ 01 15 01 t6 01 / t6
10 / 10 10
11 11 11
HashTable (uy,u;) {HashTable (uy, u3): HashTable (uq, uy)

Figure 2: Example with & = 4, m = 4, L = 6: sharing of the first-
level partition among the different hash functions. Hash tables (u1,u2),
(u1,u3) and (w1, uq) are first partitioned according to wq. Each partition
(shown in different colors) is then partitioned according to hash functions
u2, u3 and u4. The corresponding hash values are shown in Table 1.
share the results of the first-level partitions among the different
hash functions. For instance, consider the hash tables for g1 o =
(u1,u2) and g1,3 = (u1,u3). Both these tables are partitioned
first using the same hash function u;. Instead of repeating this
partitioning work, we can instead share the first level partitioned
table among these hashes. Figure 2 and Table 1 show an exam-
ple of this sharing. In order to achieve this, we again use a 2-step
process: we first partition the data on the basis of the m hash func-
tions u1..um. This step only involves m partitions. In the second
step, we take each first level partition, say u;, and partition it on the
basis of w;q1...um. This involves a total of L = (”21) partitions.
This reduces the number of partitioning steps from 2 * L (first and
second level partitions) to L +m, which takes much less time since
m~ OL).
Detailed Algorithm: The following operations are performed :
Step I1: Partition all data items (rather their indices initialized to
0..N-1) according to each of the m k/2 bit hashes. This is done
using the optimized three-step partitioning algorithm described ear-
lier in this section. Also store the final scatter offsets into an array.
Step I12: Create all hashes required for the second level partition.
For each final hash table [ € 1..L corresponding to a first level hash
function g; and a second level function g;, rearrange the hash val-
ues g;(n),n € 1..N according to the final scatter offsets created
in Step Ilc for g;. These will reflect the correct order of hashes for
the permuted data indexes for g;.
Step I3: Perform second level partitions of the permuted first-level
data indexes using the hashes generated in Step 12. This follows
the same three step procedure as in Step I1. This is done for a total
of L hash tables.

Of these steps, Step I1 only does rearrangement for m hash func-
tions and takes O(m) time. Steps 12 and I3 work with all L hash
tables, and thus dominate overall runtime of insertion.

Parallelism: Step 11 is parallelized over data items, as described

1934



in [21]. Threads find local histograms for their data, and then go
into a barrier operation waiting for other threads to complete. One
of the threads performs the prefix sum of all local histogram entries
of all threads to find per-thread offsets into the global output array.
The threads go into another barrier, and compute global offsets in
parallel and scatter data. Step 12 is also parallelized over data items
for each hash table. Finally, Step I3 has additional parallelism over
the first level partitions. Since these are completely independent,
we parallelize over these. To reduce load imbalance, we use the
task queueing [26] model, whereby we assign each partition to a
task and use dynamic load balancing using work-stealing.
Insertions into the hash table are mostly limited by memory band-

width, and there is little performance to be gained from using SIMD.

5.2 Queries in PLSH

In this section, we discuss the implementation used while query-
ing the static LSH structures. As each query arrives, it goes through
the following steps:

Step Q1: The query is hashed using all m*k /2 hash functions and
the hash index for each of the L hash tables is computed.

Step Q2: The matching data indices found in each of the hash
tables are merged and duplicate elimination is performed to deter-
mine the unique data indexes.

Step Q3: Each unique index in the merged list is used to look up
the full data table, and the actual distance between the query and
the data item is computed (using dot products for Twitter search)
Step Q4: Data entries that are closer to the query than the required
radius R are appended to an output list for the query.

Step Q1 only performs a few operations per query, and takes
very little time. Step Q4 also generally takes very little time since
very few data items on average match each query and need to be
appended to the output. Most time is spent in Steps Q2 and Q3.
Parallelism: All Steps are parallelized over queries that are com-
pletely independent. To reduce the impact of load imbalance across
different queries, we use work-stealing task queues with each query
being a task. In order to achieve sufficient parallelism for multi-
threading and load-balance, we buffer at least 30 queries and pro-
cess them together, at the expense of about 45 ms latency in query
responses. We benchmark optimization in Section 8.

We next describe three key optimizations that PLSH employs to
speed up querying. These are: (i) An optimized bitvector repre-
sentation for eliminating duplicates in Step Q2; (ii) A prefetching
technique to mask the latency of RAM in step Q3; and (iii) A rep-
resentation of queries as sparse bit vectors in the vocabulary space
to optimize the computation of dot products in Step Q3.

5.2.1 Bitvector optimization to merge hash lookups

The first optimization occurs in Step Q2, which eliminates dupli-
cate data indexes among the data read from each hash table. There
are three basic ways this could be done: (1) by sorting the set of
duplicate data items and retaining those data items that are not the
same as their predecessors, (2) using a data structure such as a set
to store non-duplicate entries using an underlying structure such as
red-black trees or binary search trees, or (3) using a histogram to
count non-zero index values. The first and second methods involve
O(Qlog Q) operations over the merged list containing duplicates
Q. If the indices in the hash buckets were maintained in sorted or-
der, then we could do (1) using merge operations rather than sorts.
However, even then, we are sorting L lists of length QQ/L (say),
which will take O(Q log L) time overall using merge trees. The
third technique can be done in constant time per data index or O(Q)
overall, with a small constant. Specifically, for each data index, we

1935

can check if the histogram value for that index is 0, and if so write
out the value and set the histogram to 1, and if not skip that index.

The choice of (2) vs (3) has some similar characteristics to the
more general sort vs. hash debate for joins and sorts [21, 30].
Since our data indices fall in a limited range (0..N-1), we can use
a bitvector to store the histogram. For N = 10 million, we only
need about 1.25 MB to store the histogram. Even with multiple
threads having private bitvectors, we can still keep them in cache
given that modern processors have about 20 MB in the last level
cache. Computing this bit-vector is bound by compute resources.
Hence, we use histograms and bitvectors for duplicate elimination.

5.2.2  Prefetching data items

The bitvector described above stores ones for each unique data
index that must be compared to the query data. For each such one,
the corresponding tweet data (identifying which words are present
in the tweet and their IDF scores), has to be loaded from the data
tables and distances from the query computed. We first focus on
the loading of data and then move on to the actual computation.

We find that the access of data items suffers from significant
memory latency. There are two main reasons for this: (1) the set
of data items to be loaded is small and widely spread out in mem-
ory, which results in misses to caches and TLB (2) the hardware
prefetcher fails to load data items into cache since it is difficult to
predict which items will be loaded.

To handle the first problem, we use large 2 MB pages to store the
actual data table to store more of the data in TLB (support for 1 GB
pages is also available and can completely eliminate these misses —
we did not find this necessary in this work). However, it is difficult
to solve the prefetch problem if we only use bit-vectors to store
unique indexes. Fundamentally, given a bit set to 1, the position of
the next bit set to 1 is unpredictable.

In order to get around this problem, we scan the bitvector and
store the non-zero items into a separate array. Note that this ar-
ray is inherently sorted and only has unique elements. We use this
array to identify succeeding data items to prefetch — when comput-
ing distances for one data item, we issue software prefetches to get
the data corresponding to succeeding data items into cache. A lin-
ear scan of the bit-vector can use SIMD operations to load the bits
and can use a lookup table to determine the number of ones in the
loaded data. Although this has to scan all bits, in practice the time
spent here is a small constant. This operation is also CPU-bound.

5.2.3 Performing final filtering

Once data is loaded into cache, the distance between the data
item and query must be computed. For Twitter search, this distance
is a dot product between two sparse vectors — one representing a
data item and the other a query. Each dimension in the vector rep-
resents the IDF score for a word in the tweet. Each sparse vector
is stored using a data array (containing IDF scores) and an index
array (showing which word in the vocabulary is contained in the
tweet).

One approach to find this sparse dot-product is to iterate over the
data items of one sparse vector, and perform a search for the corre-
sponding index in the other sparse vector’s index array. If a match
is found, then the corresponding IDF scores are multiplied and ac-
cumulated into the dot-product. In order to efficiently perform this
computation, we form a sparse bit-vector in the vocabulary space
representing the index array of the query, and use O(1) lookups
into this bit-vector to decide matches. Note that this bit-vector is
different from the one used to find unique data indexes from the
hash tables — that bit-vector is over the set of data indexes 0.../V-
1 rather than the vocabulary space. The query bit-vector is small



(only 500K bits) and comfortably fits in L2 cache. In practice, the
number of matches is very small (only around 8% of all bit-vector
checks result in matches), and hence the computation time mainly
involves fast O(1) lookups. It turns out that the overall time for Step
Q3 (load data item and compute the sparse dot-product) is limited
by the memory bandwidth required to load the data. We provide
more details in Section 7.

5.3 Multi-Node PLSH

The main motivation to use multiple nodes for LSH is to scale
the system capacity to store more data. Given a server with 64 GB
DDR3 memory, and using N = 10 million tweets and typical LSH
parameters L = 780 (m = 40), the total size of the LSH tables is
given by L * N * 4 bytes = 31 GB. Along with additional storage
required for the actual data plus other structures, we need about 40
GB memory. This is nearly two-thirds of our per-node memory. In
order to handle a billion tweets, we need about a hundred nodes to
store the data.

There are two ways to partition the data among the nodes. First,
each node could hold some of the L hash tables across all data
points. Second, each node could hold all hash tables but for a subset
of the total data N. The first scheme suffers two problems (1) it
incurs heavy communication costs since unique elements have to be
found globally across the hash entries of different nodes (Step Q2
in Section 5.2); (2) L is a parameter depending on desired accuracy
and does not scale with data size N. It is possible for L to be
less than the number of nodes, and this will limit node scaling.
Therefore we adopt the second scheme in this work.

Since each node stores part of the data, LSH table constructions
and queries occur on the data residing in each node in parallel. In
our scheme, we evenly distribute the data in time order across the
nodes, with nodes getting filled up in round-robin order as data
items arrive. As queries arrive, they are broadcast to all nodes, with
each node producing a partial result that is concatenated. It is pos-
sible to think of alternative methods that attempt to perform clus-
tering of data to avoid the communication involved in broadcasting
queries. However, we show in Section 8 that this broadcast takes
well under 1% of overall time, and hence the overheads involved in
data clustering plus potential load-balancing issues will be too high
to show benefits for these techniques. We also show in Section 8
that the load imbalance across nodes for typical query streams is
small, and that query performance is constant with increasing node
counts while keeping the data stored per node constant.

6. HANDLING STREAMING DATA

In real life applications, such as similarity search in Twitter, the
data is streaming. There are, on average, around 400 million new
tweets per day, equating to approximately about 4600 tweets per
second [6]. Static LSH is optimized for querying, and insertion of
new data requires expensive restructuring of the hash tables. There-
fore, we propose a new approach where we buffer inserts in delta
tables to handle high rates of insertions efficiently. These delta ta-
bles are stored using an insert-optimized variant of LSH that uses
dynamic arrays (vectors) to accommodate the insertions. As a con-
sequence, queries on the delta tables are slower than on the opti-
mized static version. (The details of the delta table implementation
are given in Section 6.1 below.)

Upon the arrival of a query from the user, we query both static
and delta tables and return the combined answer. When the number
of points in the delta table is sufficiently low, the query runs fast
enough. Once the delta table hits a threshold of a fraction n of
the overall capacity C' of a node, its content is merged into the
static data structure. The fraction 7 is decided such that the query

performance does not drop by more than an empirical bound of
1.5X from that of static queries. This is a worst case bound; and
only happens when the delta structure is nearly full.

When the total capacity of the node is reached, old data needs
to be retired for new data to be inserted. In a multi-node setting,
there are many possible policies we can use to decide how retire-
ment happens. This is closely tied to insertion policies. Under the
assumption that streaming data is uniformly inserted to all nodes
(in a round robin manner), it is very difficult to identify old data
without the overhead of keeping timestamps. One approach that
could be used is to use circular queues to store LSH buckets, over-
writing elements when buckets overflow ??. In this scenario, there
is no guarantee that the same data item is deleted from all buckets;
this can also affect accuracy of results. We adopt an alternative ap-
proach where we can easily and gracefully identify old data to be
retired. Consider our system in Figure 1. In our system, we limit
insertions to a set of M nodes (M is smaller than the total number
of nodes) at a time in round-robin fashion. Initially, all updates go
to the first set of M nodes, and we move on to the next set when
these nodes get full. This continues until all nodes have reached
their capacity. At this point, new data insertions require some old
data to be retired. The advantage of our system is that we know
that the first set of M nodes store the oldest data, and hence can be
retired (the contents of the these nodes are erased). Insertions then
begin to the delta tables as in the beginning. Note that at any point,
all nodes except possibly for M will be at their peak capacity.

The main drawback to our system is that all updates go to only
M nodes at a time. We must choose M to ensure that updates
and merges are processed fast enough to meet input data rates. In
practice, with our optimized insertion and merge routines, we find
that M = 4 is sufficient to be able to meet Twitter traffic rates with
overheads of lower than 2%.

6.1 Delta table implementation

Delta tables must be able to support two conditions: they must
be able to support fast queries while also supporting fast insertions.
There are at least 2 ways to implement such a streaming structure.
A commonly used structure is a simple linear array which is ap-
pended to as data items arrive. This is easy to update, but queries
require a linear scan of the data. This leads to unacceptably poor
performance — e.g., a 2x slow down with only 7 =1% of the data
in the delta table. Hence we do not pursue this approach.

(a) Static

(b) Streaming

Bin
Pointers

Figure 3: Comparison of (a) static and (b) streaming LSH tables. Static ta-
bles are contiguous and optimized for read access. Streaming (or delta)
tables support fast inserts using dynamically reallocated arrays for each
bucket. However, query performance is slower on these structures, requir-
ing periodic merges with static structures for good performance.

The second approach involves maintaining hash tables as in PLSH
— with the exception that each bucket has to be dynamically updat-
able. We retain the same parameter values (k, L) as for the static
LSH data structures (although it is technically possible to have dif-
ferent values). The main difference between the static and stream-
ing LSH structures is how the data is arranged. As mentioned in

1936



Section 5, static LSH has a set of L arrays, each with N points par-
titioned according to their hash values. For delta tables, we use a
streaming variant of LSH that has a set of 2* x L resizeable vectors.
Every new tweet is hashed and inserted into L of these bins. These
insertions can be done independently for each table, allowing us the
exploit multiple threads to parallelize the computation. Figure 3 il-
lustrates this difference between an optimized static hash table and
a delta table. Using hash table based delta tables allows us to eas-
ily integrate the results of static and streaming structures without
any linear scans of data. We find that query performance is only
slightly affected (less than 1.5X — Section 8 has details) for delta
structures as large as 7 =10% of overall data. We show insertion
performance for different delta table sizes in Section 8.

6.2 Low overhead updates

In order to maintain query performance on our overall system, it
is important to keep the overheads of updates (insertions, deletions
and merges) as low as possible. Our overall LSH system (Sec-
tion 4) ensures all inserts (and hence subsequent merges) go to the
delta tables of M nodes at a time. As M increases, these inserts and
merges are done in parallel over more nodes; hence reducing their
overhead. However, as we increase M, we retire more data simul-
taneously, hence temporarily reducing system capacity. In practice,
we do not want M to be larger than 4 or so (out of 100), and this
drives our performance requirements on inserts and merges.

Insertions: We first consider insertions. We process insertions into
the delta table are processed in batches of about 100K. This al-
lows us to amortize insertion costs, but means that the newest data
will not be reflected in query results until 100K updates arrive at
each of M nodes. For M=4 and at Twitter update rates of 4600
updates/second, this occurs in about 86 seconds.Using a batch of
this size, our LSH delta tables allow us to process 100K updates
in around 400 milliseconds (Section 8), which parallelized across
M=4 nodes, is under 100 milliseconds. This overhead is incurred
roughly every 86 seconds. Inserts thus take about 0.4% of the over-
all time.

Merging of Delta and Static Tables: We next consider merges.
The merge step combines static hash tables and delta tables into one
static data structure. This must be done once delta tables grow large
enough that query performance slows significantly. One way to
perform the merge is simply to reinitialize the static LSH structure,
but with the streamed data added. We can easily show that although
this is unoptimized, no merge algorithm can be more than 3X bet-
ter. This is seen by noting that our initialization time is bound by
memory bandwidth, with traffic of about 32 bytes per entry in the
combined tables (Section 7). Any other merge scheme will at least
have to read the static table and write the combined tables, taking
about 12 bytes of traffic. Hence our bound of 32/12=2.67X.

In practice, our merge costs are around 15 seconds in the worst
case when the static and delta buffers are both full (from construc-
tion costs for static LSH in Section 8). The merge time is nearly in-
dependent of the size of the delta array (since most data is assumed
to be in the static array). Hence it is advantageous to have larger
delta buffers to reduce the frequency of merge overheads. For n =
10% of overall capacity, merges happen once 1 Million inserts ac-
cumulate at a node (C=10M). This happens every 864 seconds for
Twitter with M =4. Hence merge overhead is about 1.7%. Queries
received during the merge are buffered until the merge completes.

Deleting Entries: Deletions of arbitrary tweets can be handled
through the use of a bitvector similar to that used for eliminating
duplicates in Section 5.2. Before performing the sparse dot product
computation, we check this bitvector to see if the corresponding

1937

entry is “live” and proceed accordingly. This bitvector gets reset
to all-zeros when the data in the node is retired. This does not add
significantly to query times due to the low overhead of a single bit-
vector access.

6.3 Worst-case vs Average case query rates

The overall query processing time is the sum of the query times
on the static and delta table LSH structures. We ignore update costs
since they are very low.

In the following discussion, we will express the distribution of
data among static and delta tables as a tuple (ps,pp), where ps
and pp represent the fraction of overall capacity C' in the static
and delta tables. We assume pp is bounded by a number 7, after
which merges are performed. It is important to note that the nodes
involved in the insertion of data items may not be at peak capacity,
hence ps + pp is less than 1.

All nodes except the ones performing inserts have all their data in
static LSH tables, and that the static tables are full, corresponding
to a data distribution of (1.0, 0.0). For the nodes performing inserts,
the worst case query times occur when both the static table as well
as delta tables are nearly full, corresponding to a distribution of
((1 — n), n). We want to size n such that this performance is no
worse than 1.5X that of static LSH. For 10M entries, query time
for static LSH =1.4 ms and for streaming LSH = 6 ms (Section 8),
giving us n < 0.15. We choose n = 0.1.

Note that nodes are not always in this worst-case state. Most of
the time, the static tables on nodes where inserts happen are not full.
We show in Section 8 that in the average case when the static tables
are 50% full, i.e. (0.50, 0.10), query times are slightly lower than
1.4 ms. Hence in many average case scenarios, the performance of
static LSH on the non-inserting nodes is actually the bottleneck!

7. PERFORMANCE MODEL

In this section, we present a hardware-centric performance model
for the core components of LSH namely, time taken to insert a tu-
ple into a hash table, and time taken to query (retrieve a single entry
from the hash table, find unique entries from the set of retrieved en-
tries, filter the unique entries). We then discuss the overall perfor-
mance model. These models are important because they allow us
to determine the optimal setting of PLSH parameters on different
hardware. We show in Section 8 that this model is quite accurate.

7.1 Model for fundamental operations

We first provide a model for LSH query, and then for LSH initial-
ization. We will use the LSH query model to provide a framework
for selecting LSH parameters in the remainder of this section. We
use LSH initialization model in Section 6 while discussing stream-
ing merge operations.

7.1.1 LSH query

LSH query consists of four main steps detailed as Q1-Q4 in Sec-
tion 5.2. Of these, Steps Q1 (hashing queries) and Steps Q4 (writ-
ing out neighbors within the input radius to the output array) take
little time and are ignored. Step Q2 involves (1) reading the indexes
from the hash tables and forming a bit-vector to remove duplicates
among them, and (2) scanning this bit-vector and writing out the
non-zeros to an array for ease of later prefetching. Reading the data
indexes involves 4 bytes of memory traffic per index read. On our
part, we obtain around 12.3 bytes/cycle (around 32 GBps achieved
bandwidth and 2.6 GHz frequency). The bandwidth limit is 4/12.3
= 0.3 cycles per index.

We now describe computation requirements. To update the bit-
vector, first the specific 32-bit word within which the bit is to up-
dated has to be computed (2 operations), the word read (2 ops), the



specific bit extracted (shift & logical and - 2 ops), checked with 0
(2 op) and then if it is zero, set the bit (2 ops). Further, there is a
loop overhead of about 3 operations, leading to a total average of
around 11 ops per index. Performing about 1 operation per cycle,
this takes 11 cycles per index. With 8 cores, this goes down to 11/8
= 1.4 cycles per index. Further, scanning the bit-vector consumes
about 10 ops per 32-bits of the bit-vector to load, scan and write the
data, and another 4 ops for loop overheads. Hence this takes about
14/8 = 1.75 cycles per 32-bits of N, or 0.6M cycles for N=10M.
This is independent of number of indexes read. Thus Step Q2 re-
quires a total of Tg2 = 1.4 cycles/duplicated index + 0.6M cycles,
and is compute bound.

Step Q3 requires the reading of the tweet data for the specific
data items to be compared to the tweet. This is only required for
the unique indexes obtained in Step Q2. However, each data item
read involves high bandwidth consumption of around 4 cache lines
or about 256 bytes. To understand this, consider that transfers be-
tween the memory and processor caches are done in units of cache
lines (or 64 bytes), where entire lines are brought into cache even if
only part of it is accessed. In our case, there are three data structures
accessed (CRS format [17]). Of these, two data loads for a given
tweet are typically only 30 bytes (half a cache line). However, they
are not aligned at cache line boundaries. In case the start address is
in the last 30 bytes of the 64 bytes, then the access crosses a cache
line — requiring 2 caches line reads. On average, each of the ar-
rays requires 1.5 cache lines read, hence a total of 4 along with the
cache line from the third array. These 256 bytes of read result in
256/12.3 = 20.8 cycles per data item accessed. Hence Tg3 = 21.8
cycles/unique index (or call to sparse dot product).

7.1.2 LSH initialization

LSH initialization involves two main steps - hashing the input
data and insertion into the hash tables. As per Section 5.1, hashing
is compute intensive, and performs operations for each non-zero
element. The total cost is equal to N*NNZ, where the average
number of non-zeros NNZ ~ 7.2 for Twitter data. For each such
element, steps H1 and H2 are performed with each of the m*k/2
hash values for that dimension. Each such operation involves load
of the hash (2 ops), multiply (1 ops), load output value (2 ops), add
to output (1 op), store output (2 ops). In addition, about 3 opera-
tions are required for handling looping. Thus a total of 11 ops for
each hash and non-zero data item combination. These operations
parallelize well (11/8 ops in parallel), and also vectorize well (close
to 8X speedup using AVX), resulting in (11/8/8) ops/hash/non-zero
data. For k=16 and m=40, and assuming one cycle per operation,
hashing takes a total of Tr = 412 cycles/tweet.

Insertion into the hash table itself involves three steps - Steps
I1-13 (Section 5.1). Step I1 involves reading of each hash twice (8
bytes), reading the data index (4 bytes), writing out the rearranged
data indexes (4 bytes) and writing the offsets (4 bytes). Each write
also involves a read for cache coherence, hence total memory traffic
of 8 + 4%2 + 4*2 = 24 bytes per data item per first-level hash ta-
ble. This phase is bandwidth limited, with a performance of 17, =
24/12.3 = 1.96 cycles * m = 1.96m cycles/tweet. With m=40, this
is around 78 cycles/tweet. Step 12 involves creating each hash used
in second-level insert. For each of the L hash tables obtained us-
ing pairs of hash functions (u;, u;), computing bandwidth require-
ments shows that 16 bytes of traffic is required. Step I3 performs
second level insertions into the L hash tables, and takes another
16 bytes traffic per table. For m=40, L=780, hence 112 = 113 =
16%780 /12.3 = 1015 cycles/tweet. Hence total insertion time is
Tr =T + Tr2 + Trs = 2108 cycles/tweet.

Total construction takes 7w + 17 = 2520 cycles/tweet. More

than 80% of the time is spent in steps 772 and 7’73, which are band-
width limited with about 32 bytes of traffic per tweet per hash table.
Section 8 shows that this is fast enough to use in streaming merge.

7.2 Overall PLSH performance model

Here, we put things together with the overall LSH algorithm pa-
rameters such as (number of entries expected to be retrieved from
the hash tables, number of unique entries) to give the overall model.
This uses the k, L (or m),R parameters together with the funda-
mental operation times above.

We describe how to select the parameters required by the LSH
algorithm. First, we set the failure probability § (i.e., the probability
of not reporting a particular near neighbor) to 10%. This guarantees
that a vast majority (90%) of near neighbors are correctly reported.
As seen in Section 8, this is a conservative estimate - in reality the
algorithm reports 92% percent of the near neighbors.

Second, we choose the radius R. Its value is tailored to the par-
ticular data set, to ensure that the points within the angular distance
R are indeed “similar”. We have determined empirically that for
the Twitter data set the value R ~ 0.9 satisfies this criterion.

Given R and 4, it remains to select the parameters k& and L of
the LSH algorithm, to ensure that each R-near neighbor is reported
with probability at least 1 — §. To this end, we need to derive a
formula that computes this probability for given k and L (or m).

Fast LSH Consider a query point ¢ and a data point v. Let ¢ be
the distance between ¢ and v, and p = p(¢). We need to derive an
expression for the probability that the algorithm reports a point that
is within the distance R from the query point. With functions g;,
the point is not retrieved if ¢ and v collide on only zero or one of
the functions u;. The probability of the latter event is equal to

P/t k,m) = 1— (1 - p(t)k/Q)m—m~p(t)k/2- (1 - p(t)k/Q)

The algorithm chooses k and m such that P’ (R, k,m) > 1 — 6.

m—1

7.3 Parameter selection

The values of k, L are chosen as a function of the data set to
minimize the running time of a query while ensuring that each R-
near neighbor is reported with probability 1 — §. Specifically, we
enumerate pairs (k,m) such that P'(R,k,m) > 1 — §, and for
each of the pair we estimate the total running time.

We decompose the running time of the query into 4 components
as mentioned in Section 5.2. Of the 4 steps, steps Q2 and Q3 dom-
inate the runtime, so we focus on those components only. Step
Q2 concatenates the indices of the points found in all L buckets,
and determines the unique data indexes. This takes time T2 -
#collisions, where #collisions is the number of collisions of points
and queries in all of the L buckets. Note that a point found in mul-
tiple buckets is counted multiple times.

The expected value of #collisions for query q is

El#collisions] = L - Z p* (distance(g, v)) (7.1)
veEP

Step Q3 uses the unique indices to look up the full data table,
and computes the actual distance between the query and the data
item. This takes time T3 - #unique where #unique is the number
of unique indices found. The expected value of #unique for q is

E[#unique] = Z P’(distance(q, v), k, L) (7.2)
veP

In summary, the parameters k and m (and therefore L = m(m—
1)/2) are selected such that the expression

To2 El#collisions] + T3 E[#unique]

1938



is minimized, subject to

P'(R,k,m)>1-46 (7.3)
(L- N +2*. L)« 4 < Memory in bytes (7.4)
This can be done by enumerating &k = 1,2,... ka2, and for

each k selecting the smallest value of m satisfying Equation 7.3.
The values of E[#unique] and E/[#collisions] can be estimated from
a given dataset using equations 7.1 and 7.2 through sampling. We
use a random set of 1000 queries and 1000 data points for generat-
ing these estimates.

For small amounts of data, we can set kp,q. to 40, as for larger
k the collision probability for two points within distance R would
be less than p(t)* = 0.71%° < 1075, For large amounts of data,
kmag is determined by the amount of RAM in the system. The
storage required for the hash tables increases with L, which in turn
increases super-linearly with k. The L - N term in Equations 7.4
dominates memory requirements. For 10 million points in a ma-
chine with 64GB of main memory, we can only store 1600 hash
tables (excluding other data structures). Typically, we want to store
about 1000 hash tables. This fixes the maximum value of m to be
44 and the largest k to satisfy Equation 7.3 then is 16. Enumeration
can proceed as earlier and the best value of (k,m) is chosen.

8. EVALUATION

We now evaluate the performance of our algorithm on an Intel®
Xeon® processor E5-2670 based system with 8 cores running at 2.6
GHz. Each core has a 64 KB L1 cache and a 256 KB L2 cache, and
supports 2-way Simultaneous Multi-Threading (SMT). All cores
share a 20MB last level cache. Bandwidth to main memory is 32
GB/s. Our system has 64 GB memory on each node and runs RHEL
6.1. We use the Intel® Composer XE 2013 compiler for compiling
our code'. Our cluster has 100 nodes connected through Infiniband
(IB) and Gigabit Ethernet (GigE). All our multi node experiments
use MPI to communicate over IB.

Benchmarks and Performance Evaluation: We run PLSH on

1.05 billion tweets collected from September 2012 to February 2013.

These tweets were cleaned by removing non-alphabet characters,
duplicates and stop words. Each tweet is encoded as a sparse vec-
tor in a 500,000-dimensional space corresponding to the size of the
vocabulary used. In order to give more importance to less common
words, we use an Inverse Document Frequency (IDF) score that
gives greater weight to less frequently occurring words. Finally we
normalize each tweet vector to transform it into a unit vector. For
single node experiments, we use about 10.5 million tweets. The op-
timal LSH parameters were selected using our performance model.
We use the following parameters: k = 16, m = 40, L = 780, D =
500,000, R = 0.9, = 0.1.

For queries, we use a random subset of 1000 tweets from the
database. 0-length queries are possible if the tweet is entirely com-
posed of special characters, unicode characters, numerals, words
that are not part of the vocabulary etc. Since these queries will
not find any meaningful matches, we ignore these queries. Even
though we use a random subset of the input data for querying, we
have found empirically that queries generated from user-given text
snippets perform equally well.

8.1 PLSH vs exact algorithms

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are
not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSE3 instruction sets and other opti-
mizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors
not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel micro-
processors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please
refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets
covered by this notice. Notice revision #20110804

1939

[ Algorithm [ # distance computations [ Runtime l
Exhaustive search 10,579,994 115.35 ms
Inverted index 847,027.9 > 21.81 ms
PLSH 120,345.7 1.42 ms

Table 2: Runtime comparison between PLSH and other deterministic
nearest neighbor algorithms. Inverted index excludes time to generate
candidate matches, only including the time for distance computations.

In order to prove empirically that PLSH does indeed perform
significantly better than other algorithms, we perform a compari-
son against an exhaustive search and one based on an inverted in-
dex. The exhaustive search algorithm calculates the distance from a
query point to all the points in the input data and reports only those
points that lie within a distance R from the query. An inverted in-
dex is a data structure that works by finding a set of documents that
contain a particular word. Given a query text, the inverted index
is used to get the set of all documents (tweets) that contain at least
one of the words in the document. These candidate points are fil-
tered using the distance criterion. Both the exhaustive search and
inverted index are deterministic algorithms. LSH, in contrast, is a
randomized algorithm with a high probability of finding neighbors.

Table 2 gives the average number of distance computations that
need to be performed for each of the above mentioned algorithms
for a query (averaged from a set of 1000 queries) and their runtimes
on 10.5 million tweets on a single node. Since we expect that all
these runtimes are dominated by the data lookups involved in dis-
tance computations, it is clear that PLSH performs much better than
both these techniques. For inverted index, we do not include the
time to generate the candidate matches (this would involve lookups
into the inverted index structure), whereas for PLSH we include all
times (hash table lookups and distance calculations). Even assum-
ing lower bounds for inverted index, PLSH is about 15 faster than
inverted index and 81 x faster than exhaustive search while achiev-
ing 92% accuracy. Note that all algorithms have been parallelized
to use multiple cores to execute queries.

8.2 Effect of optimizations

We now show the breakdown of different optimizations performed
for improving the performance of LSH as described in Section 5.
Figure 4 shows the effect of the performance optimizations applied
to the creation (initialization) of LSH, as described in Section 5.1.
The unoptimized version performs hash table creation using a sep-
arate k-bit key for each of the L tables. Starting from an unop-
timized implementation (1-level partitioning), we achieve a 3.7x
improvement through the use of our new 2-level hash table and op-
timized PLSH algorithm, as well as use of shared hash tables and
code vectorization. All the versions are parallelized on 16 threads.

Figure 5 provides a breakdown of the effects of the optimizations
on LSH query performance described in Section 5.2. The series of
optimizations applied to the unoptimized implementation include
the usage of bitvector for removing duplicate candidates, optimiz-
ing the sparse dot product calculation, enabling prefetching of data
and the usage of large pages to avoid TLB misses. The unopti-
mized implementation uses the C++ STL set to remove duplicates
and uses the unoptimized sparse dot calculation (Section 5.2.3).
Compared to this, our final version gives a speedup of 8.3 x.

8.3 Performance Model Validation

In this section, we show that the performance model proposed
in Section 7 corresponds closely to the real world performance of
PLSH creation and querying. Figure 6 compares the estimated and
real runtimes of PLSH. Some of the error comes from the estimates
of El#collisions] and E[#unique] through sampling and other er-
rors from inaccurately modeling the PLSH component kernels. We



70000
60000 |
"
2
£ 50000 -
]
£ 40000 -
E ]
£ 30000
o
£ 20000 -
15
10000 -

I

No optimizations +2 level hashtable +shared tables +vectorization

Figure 4: PLSH creation performance breakdown. The optimizations
are described in Section 5.

demonstrate the performance model accuracy on an additional text
dataset obtained from 8 million Wikipedia article abstracts with a
500K vocabulary. We find that the error margin is less than 15% for
both PLSH creation and querying on Twitter data and less than 25%
for the Wikipedia data. Even more importantly, we can accurately
estimate relative performance changes correctly when parameters
change. Figure 7 demonstrates that our performance model can be
used for tuning LSH parameters (for R = 0.9,0 = 0.1 ). As men-
tioned earlier, given a main memory Twitter and Wikipedia data
respectively. In all cases, our model provides reliable estimates of
both relative and absolute performance numbers. These results sug-
gest that our model can be used both to estimate whether a given
hardware configuration can manage a particular query/insert load
and also to optimize parameter selection.

LSH Query
W Search
M Bitvector
T T
0 500 1000 1500 2000
Time in milliseconds
LSH Creation
M Hashing
W Step 11
Step 12
M Step I3
0 5000 10000 15000 20000

Time in milliseconds

Figure 6: Estimated vs actual runtimes for PLSH creation & querying
(1000 queries).

8.4 Scaling

In this section, we discuss the scaling performance of PLSH.
First, Figure 8 shows how the performance of PLSH improves on a
single 8-core node with increasing number of threads. We see that
we achieve a speedup of 7.2x for PLSH initialization and 7.8 x for
querying.These performance numbers have already been shown to
be very close to the achievable bandwidth and compute limits of
the hardware.

Figure 9 shows the performance of PLSH as we add more data
and nodes to our problem. Here, we keep the amount of work per
processor constant and increase the number of processors (and cor-
respondingly, the amount of data). This demonstrates that our im-
plementation is indeed scalable to more than a billion tweets with-
out any load balancing or communication problems. We define load
balance as the ratio of the maximum to average runtime. Results in-
dicate that this ratio is smaller than 1.3 (ideal is 1.0) for both PLSH
creation and querying even at the largest scale. We also found that

Time in milliseconds

12000

10000 -
8000
6000 -
4000

2000 .
0 N N B .

No +bitvector +optimized  +sw prefetch +large pages
optimizations sparse DP

Figure 5: PLSH query performance breakdown (for 1000 queries).
The optimizations are described in Section 5.

M Estimated Query runtime (Twitter)
5000 - Actual Query runtime (Twitter)
4500 - M Estimated Query runtime (Wikipedia)
4000 - M Actual Query runtime (Wikipedia)
3500 -
3000 -
2500 -
2000 -
1500 -
1000 -
500 -

Time in milliseconds

(12,21) (14,29) (16, 40) (18, 55)
PLSH parameters (k,m)

Figure 7: Estimated vs actual runtimes for varying k£ and m (1000 queries)
120000

1%]
2 100000
g 80000 ] I|j1itialization
= time
E 60000 B Query time
.S 40000
(]
£ 20000
=

0

1 2 4 8 16 (SMT)
Number of threads

Figure 8: Scaling performance with increasing threads on a single node.

the query communication time is less than 20 ms in all cases (less
than 1% of overall runtime).

20000
M—o—lnitialization

] = % (max)
E 15000 | 7 - -=-Initialization (min)
o
Q
2 —+=Initialization (avg)
T 10000 -
£ =<Query (max)
U
£ 5000 .
= ==Query (min)

0 ‘ ‘ : : : ~——=%-Query (avg)

1 2 4 8 16 32 64 100
Number of nodes

Figure 9: Scaling performance on multiple nodes. The data per node is
fixed at 10.5 million tweets, so flat lines indicate perfect scaling.

8.5 Latency vs Throughput

So far in this section, we have measured query performance on a
set of 1000 queries. We do this for 2 reasons. (1) We believe that
while performance for an isolated query is important, most analyt-
ics workloads would need to support multiple queries at the same
time. Techniques like flu tracking using Twitter [29] rely on de-
tecting several concepts i.e. searching for several terms/concepts.
(2) Using multithreading to process multiple queries works well in
practice compared to multithreading a single query search. Tight
synchronization is needed for processing a single query whereas
multiple independent queries can be processed simultaneously with-
out the need for synchronization or locks.

Figure 10 shows the latency-vs-throughput behavior as we in-
crease the number of queries processed at a time. We see that as
we increase the number of queries processed simultaneously, there

1940



is an increase in both latency and throughput before the throughput
stabilizes around 700 queries/second with about 30 queries. The
throughput is relatively unaffected after this point.

800
700
600
500
400
300
200
100
0 T T
500 1000

q ‘*:‘:“WwwwooWMo

1e

ERd

Throughput in queries/s

!
1500
Latency in ms

Figure 10: Latency Vs Throughput for processing queries in LSH. The size
of the query set is varied from 10 to 1000 in steps of 10.

8.6 Streaming

As mentioned in Section 6, twitter is highly dynamic with about
400 million tweets added per day. We need to ensure that query
performance does not drop below 1.5X of static queries, while still
allowing for dynamic insertions. Our system achieves this.

Figure 11 shows the query performance of the system running
on a single node. The overall capacity C' of the node is 10.5 mil-
lion tweets. The maximum size of the delta table structure (n) is
10% of the total capacity - around 1 million. The two lines in the
graph represent query behavior under different amounts of data in
the static tables. With about 50% of the overall capacity in the static
structure, we achieve no performance degradation at all compared
to fully static tables at capacity. With 90% of the capacity in the
static structure, we encounter query runtimes going up to 1.3x that
of 100% static tables in the worst case. Under average conditions,
our streaming implementation will perform with no penalties.

2000 +

1500 1 100% Static LSH query

performance

1000 -——./-/4

Time in milliseconds

500 -=-Query time (50% static capacity)
Query time (90% static capacity)
0 T T T
0 20 40 60 80 100

% data in streaming LSH (Max streaming capacity=1M)

Figure 11: Streaming performance for 1000 queries with a constant amount
of data in static table while data is added to the streaming tables. The dotted
line represents the performance of 100% static LSH. Even in the worst case,
the performance does not drop below 1.5X of static performance.

Insertion into the streaming LSH tables happens in chunks of
100k tweets. Each such insertion takes about 400 ms. We merge
the streaming tables with the static tables when the streaming ta-
bles reach their capacity of 1 million tweets. This merge takes 15
seconds in the worst case (when static LSH is almost full). Hence,
processing 1 million streaming tweets takes 19 seconds. Given the
streaming rate of 400 million tweets/day and 4 nodes to handle the
streaming data, the insert/merge processing takes a total of about
30 minutes in 24 hours. In other words, about 2% of the time is
spent inserting and merging data.

9. DISCUSSION AND CONCLUSION

In this paper, we presented PLSH, a system to handle nearest
neighbor queries on large amounts of text data based on an effi-
cient parallel LSH implementation. PLSH is an in-memory, mul-
tithreaded distributed system capable of handling large amounts of
streaming data while delivering very high query performance. We
demonstrate its capabilities by running nearest neighbor queries

1941

on a billion tweet dataset on 100 nodes in 1-2.5 ms (per query),
while streaming 100’s of millions of tweets per day. We introduced
several optimizations and a new variant that improves the time to
build LSH tables by a factor of 3.7x and reduce query time by a
factor of 8.3x. To the best of our knowledge, this makes PLSH
the fastest LSH implementation currently available. We also intro-
duced a performance model that is able to predict the performance
of our implementation to within 15 —25%, showing we are close to
architectural limits and helping us pick the best PLSH parameters.

ACKNOWLEDGEMENTS

This work was supported by a grant from Intel, as a part of the Intel
Science and Technology Center in Big Data (ISTC-BD).

10. REFERENCES

[1] E2LSH. http://www.mit.edu/~andoni/LSH/.

[2] LikeLike. http://code.google.com/p/likelike/.

[3] LSH-Hadoop. https://github.com/LanceNorskog/LSH-Hadoop.

[4] LSHKIT. http://1lshkit.sourceforge.net.

[5] OptimalLSH. https://github.com/yahoo/Optimal-LSH.

[6] Twitter breaks 400 million tweet-per-day barrier, sees increasing mobile
revenue. http://bit.1ly/MmXObG.
A. Andoni and P. Indyk. Efficient algorithms for substring near neighbor
problem. In Proceedings of SODA, pages 1203-1212, 2006.
A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions. CACM, 58, 2008.
N. Askitis and J. Zobel. Cache-conscious collision resolution in string hash
tables. In SPIRE, pages 92-104, 2005.
B. Bahmani, A. Goel, and R. Shinde. Efficient distributed locality sensitive
hashing. In CIKM, pages 2174-2178. ACM, 2012.
J. L. Bentley. Multidimensional binary search trees used for associative
searching. CACM, 18(9):509-517, 1975.
C. Bohm, S. Berchtold, and D. A. Keim. Searching in high-dimensional spaces:
Index structures for improving the performance of multimedia databases. ACM
Computing Surveys, 33(3):322-373, Sept. 2001.
M. Charikar. Similarity estimation techniques from rounding. In Proceedings of
STOC, pages 380388, 2002.
L. Chen, M. T. Ozsu, and V. Oria. Robust and fast similarity search for moving
object trajectories. In Proceedings of SIGMOD, 2005.
A. S. Das, M. Datar, A. Garg, and S. Rajaram. Google news personalization:
scalable online collaborative filtering. In WWW, 2007.
A. Dasgupta, R. Kumar, and T. Sarl6s. Fast locality-sensitive hashing. In
SIGKDD, pages 1073-1081. ACM, 2011.
I. S. Duff, A. M. Erisman, and J. K. Reid. Direct methods for sparse matrices.
Oxford University Press, Inc., 1986.
P. C.-M. K. A. P. Haghani. Lsh at large — distributed knn search in high
dimensions. In WebDB, 2008.
M. Henzinger. Finding near-duplicate web pages: a large-scale evaluation of
algorithms. In SIGIR, 2006.
P. Indyk and R. Motwani. Approximate nearest neighbor: towards removing the
curse of dimensionality. In Proceedings of STOC, 1998.
C. Kim, E. Sedlar, J. Chhugani, T. Kaldewey, et al. Sort vs. hash revisited: Fast
join implementation on multi-core cpus. PVLDB, 2(2):1378-1389, 2009.
T. J. Lehman and M. J. Carey. A study of index structures for main memory
database management systems. In VLDB, 1986.
Y. Li, J. M. Patel, and A. Terrell. Wham: A high-throughput sequence
alignment method. TODS, 37(4):28:1-28:39, Dec. 2012.
F. Liu, C. Yu, W. Meng, and A. Chowdhury. Effective keyword search in
relational databases. In Proceedings of ACM SIGMOD, 2006.
G. S. Manku, A. Jain, and A. Das Sarma. Detecting near-duplicates for web
crawling. In Proceedings of WWW, 2007.
E. Mohr, D. A. Kranz, and R. H. Halstead. Lazy task creation: a technique for
increasing the granularity of parallel programs. IEEE Transactions on Parallel
and Distributed Systems, 2:185-197, 1991.
J. Pan and D. Manocha. Fast GPU-based locality sensitive hashing for k-nearest
neighbor computation. In SIGSPATIAL, 2011.
S. Petrovic, M. Osborne, and V. Lavrenko. Streaming first story detection with
application to twitter. In NAACL, volume 10, pages 181-189, 2010.
A. Sadilek and H. Kautz. Modeling the impact of lifestyle on health at scale. In
Proceedings of ACM ICWSDM, pages 637-646, 2013.
N. Satish, C. Kim, J. Chhugani, et al. Fast sort on CPUs and GPUs: a case for
bandwidth oblivious SIMD sort. In SIGMOD, 2010.
M. Slaney, Y. Lifshits, and J. He. Optimal parameters for locality-sensitive
hashing. Proceedings of the IEEE, 100(9):2604-2623, 2012.
X. Yan, P. S. Yu, and J. Han. Substructure similarity search in graph databases.
In Proceedings of SIGMOD, 2005.

(7]
[8]
[9]
[10]
(1]

[12]

[13]
[14]
[15]
(16]
[17]
(18]
[19]
[20]
[21]
[22]
(23]
[24]
[25]

[26]

[27]
(28]
[29]
[30]
(31]

[32]



