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Remote sensing has considerable potential for providing accurate, up-to-date information in urban areas.
Urban remote sensing is complicated, however, by very high spectral and spatial complexity. In this paper,
Multiple Endmember Spectral Mixture Analysis (MESMA) was applied to map urban land cover using HyMap
data acquired over the city of Bonn, Germany. MESMA is well suited for urban environments because it
allows the number and types of endmembers to vary on a per-pixel basis, which allows controlling the large
spectral variability in these environments. We employed a hierarchical approach, in which MESMA was
applied to map four levels of complexity ranging from the simplest level consisting of only two classes,
impervious and pervious, to 20 classes that differentiated material composition and plant species. Lower
levels of complexity, mapped at the highest accuracies, were used to constrain spatially models at higher
levels of complexity, reducing spectral confusion between materials. A spectral library containing 1521
endmembers was created from the HyMap data. Three endmember selection procedures, Endmember
Average RMS (EAR), Minimum Average Spectral Angle (MASA) and Count Based Endmember Selection
(COB), were used to identify the most representative endmembers for each level of complexity. Combined
two-, three- or four-endmember models – depending on the hierarchical level – were applied, and the
highest endmember fractions were used to assign a land cover class. Classification accuracies of 97.2% were
achieved for the two lowest complexity levels, consisting of impervious and pervious classes, and a four class
map consisting of vegetation, bare soil, water and built-up. At the next level of complexity, consisting of
seven classes including trees, grass, bare soil, river, lakes/basins, road and roof/building, classification
accuracies remained high at 81.7% with most classes mapped above 85% accuracy. At the highest level,
consisting of 20 land cover classes, a 75.9% classification accuracy was achieved. The ability of MESMA to
incorporate within-class spectral variability, combined with a hierarchical approach that uses spatial
information from one level to constrain model selection at a higher level of complexity was shown to be
particularly well suited for urban environments.
© 2009 Elsevier Inc. All rights reserved.
1. Introduction

Current and accurate information about urban composition is
critical for urban planning, disaster response and improved environ-
mental management. Remote sensing has the potential to provide the
necessary information about urban infrastructure, socio-economic
attributes and environmental conditions at a diversity of scales
(Jensen & Cowen, 1999; Small, 2001). As a result, an increasing num-
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ber of studies have focused on remote sensing of urban environments
and their land cover (e.g., Ben-Dor et al., 2001, Herold & Roberts, 2005;
Powell et al., 2007; Small, 2001, 2003, 2005).

Urban remote sensing is complicated by the complexity of urban
environments which includes considerable spectral diversity at very
fine spatial scales (Powell et al., 2007; Small, 2001, 2005). Spectrally,
urban areas are complicated by the presence of numerous spectrally
unique materials, and the presence of spectrally ambiguous materials,
such as dark-shingles and asphalt roads (Herold et al., 2003a). Other
factors further complicate analysis, including non-Lambertian beha-
vior of urban materials that leads to high within-class spectral
variability (Herold et al., 2004), 3-dimensional heterogeneity of urban
areas (Herold et al., 2003a) and material aging, which causes spectral
changes (Herold & Roberts, 2005). As a result, urban environments
exhibit a high dimensionality in spectral space (Small, 2001, 2005).
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Fig. 1. Location of the study area of Bonn in Germany. Shaded relief data set with the
river Rhine given in blue, combined with a swath of true-color HyMap data acquired on
May 28, 2005 indicating the landscape structure.

Fig. 2. Hierarchical structure of the Multiple Endmember Spectr
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Some studies, therefore, have focused on the spectral separability of
urban materials for land cover mapping, using sensors such as the
Airborne Visible Near Infrared Imaging Spectrometer (AVIRIS)
(Hepner et al., 1998; Hepner & Chen, 2001; Herold et al., 2004) or
the Compact Airborne Spectrographic Imager (CASI) (Ben-Dor et al.,
2001). Herold et al. (2004) concluded that the current knowledge
about urban materials and their separation based on spectral
characteristics is inadequate. In addition to the large diversity of
urban materials, improved knowledge about spatio-temporal changes
in urban vegetation cover is important to determine and model urban
environmental conditions (Ridd, 1995; Small, 2001).

Limitations of remote sensing techniques for urbanmapping in the
spatial dimension, as observed in previous studies (Powell et al., 2007;
Small, 2001, 2005), resulting from coarse spatial resolutions of sensors
such as Landsat Enhanced Thematic Mapper (ETM+), can potentially
be overcome by novel analysis techniques. For urban applications, a
spatial resolution of at least 5 m is required, in order to adequately
capture urban structures (Small, 2003). However, due to the high
spatial variability of urban structure with spectrally heterogeneous
materials close to each other, mixed pixels are still common in images
covering urban areas (Powell et al., 2007). Spectral mixture analyses
(SMA) can potentially solve some of the problems associated with the
spectral heterogeneity of urban surfaces (Small, 2001). However,
simple mixing models, which consist of a single set of endmembers
applied to an entire scene, are potentially not appropriate for urban
areas because they cannot account for considerable within-class
variability (Rashed et al., 2003; Roessner et al., 2001). To overcome
this limitation, Song (2005) proposed Bayesian spectral mixture
analysis (BSMA), in which endmembers are not treated as constants.
Multiple Endmember Spectral Mixture Analysis (MESMA; Roberts
et al., 1998) represents an alternative approach, in which the number
and types of endmembers are allowed to vary on a per-pixel basis,
thereby accounting for urban spectral heterogeneity. For example,
al Mixture Analysis giving 4 levels of different complexity.
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MESMA has been used to map vegetation, impervious and soil frac-
tions in a number of urban areas, including the city of Manaus, Brazil
(Powell et al., 2007) and Los Angeles (Rashed et al., 2003).

Object-oriented approaches also have considerable potential for
mapping urban areas at high accuracy (Herold et al., 2003b).
Benediktsson et al. (2005) also discuss the importance of spatial and
spectral information describing a morphological method for a joint
spatial/spectral classifier for urban environments. Roessner et al. (2001)
incorporated spatial context to improve endmember selection to
iteratively unmix hyperspectral data covering an urban area. In this
study, we propose hierarchical MESMA, in which different models are
used for different levels of complexity, and in which highly accurate
models at the lowest level of complexity are used to spatially constrain
models at higher levels of complexity. We tested this approach using
HyMap data acquired over the city of Bonn, Germany. Our objectives
were thereby to (i) demonstrate the potential of MESMA for mapping
urban land cover at various levels of detail ranging from imperviousness
tomaterial discrimination, (ii) determinematerials or landcoverswith a
high degree of spectral confusion (iii) incorporate spatial constraints
into MESMA to improve classification accuracies and thus (iv) to prove
this hierarchical MESMA approach for urban environments.

2. Methodology

2.1. Study area and data

This study focused on an urban transect in the region of
Bonn, Germany. The city of Bonn is located in Western Germany
Fig. 3. Workflow of the h
along the river Rhine, approximately 30 km southeast of the city of
Cologne. Bonn represents a typical large German city with a popu-
lation of 320,000. The city dates from Roman times and contains a
medieval city center with large 19th and 20th century urban exten-
sions. Bonn is situated in generally level terrain at an average elevation
of 55 m above sea level. Although the city includes a few taller
buildings (e.g., the 165 m Posttower) it is dominated by 3–5 stories
commercial and residential structures as well as 1 and 2 floor family
houses, principally located in residential areas that are concentrically
arranged around the town center. The Bonn area is characterized
by highly diverse land cover types and complex urban material
compositions.

Fig. 1 shows the Bonn study site location and an airborne
Hyperspectral Mapper (HyMap) subscene acquired on 28/05/2005
covering a representative NW–SE cross-section of the city, emphasiz-
ing the highly diverse land use regime present within the study area. A
number of urban land covers are shown: residential areas (with
differing densities and socio-economic structures), mixed-use areas,
and commercial and industrial districts. Non-urban land cover types
include water bodies, green vegetation and bare soils. The specific
urban materials present in the Bonn region result from centuries of
urban development combined with local traditional influences. The
diversity of building materials found in the area includes asphalt and
cobblestone road surfaces, as well as roofs composed of slate, metal,
glass, gravel, bitumen, plastics and a number of types and colors of
composite shingles. Old houses in the historic town center typically
have shingle roofs composed of dark slate from the nearby Rhenish
Slate Mountains. Predominant vegetation types in the study area
ierarchical MESMA.
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include European chestnut, linden and other mixed deciduous trees,
as well as riparian areas that are mostly covered with grass.

Airborne Hyperspectral Mapper (HyMap) data were acquired on
28/05/2005. The HyMap-system is a whisk-broom scanner with an
ax-head double mirror which acquires 126 spectral bands with a
bandwidth of 16 nm (in the VIS and NIR region) in the spectral range
between 450 nm and 2480 nm. HyMap is typically operated at
altitudes between 2000 and 5000 m agl and has an instantaneous
field of view (IFOV) of 2.5 mr along track and 2.0 mr across track by a
field of view (FOV) of ±30° (Cocks et al., 1998). The chosen configura-
tion resulted in a nominal ground IFOV of 4.0 m. HyVista Corp. and the
German Aerospace Center (DLR) carried out the pre-processing of the
HyMap data. The validation of the atmospheric corrections using
ATCOR 4 (Richter and Schlaepfer, 2002) was performed against in-situ
measurements obtainedwith an ASD FieldSpec Pro spectroradiometer
(Analytical Spectral Devices Inc., Boulder, Co, USA). During further
pre-processing, 26 bands showing high levels of noise, especially
those near the water absorption features at 1400 and 1900 nm, were
removed from the data to improve overall image quality.

2.2. Endmember selection

The quality of SMA results, in general, is highly dependent on the
availability of representative endmembers (Tompkins et al., 1997).
Endmembers used in SMA can either be derived from image pixels or
from a spectral library that contains reference endmembers derived
from measurements taken in the field, laboratory, from radiative trans-
fer models (Sonnentag et al., 2007) or derived from other images. The
advantage of image endmembers is that they can be collected at the
Fig. 4. Merged classification result of level 1 as derived from two- and three-endmember m
overall classification accuracy of 97.2%.
same scale as the image and are easier to associate with image features
(Rashed et al., 2003). In addition, image endmembers have the
advantage of being canopy-scale spectra, incorporating the effects of
non-linear mixing which may be present, especially in vegetation
surfaces, at the leaf-scale. Several approaches for the selection of
optimal/representative endmembers from images have been devel-
oped. One example is the Pixel Purity Index (PPI), described by
Boardman et al. (1995). Recently, several endmember selection
approaches have been proposed for MESMA, in which a spectral library
is analyzed to identify the subset of spectra that aremost representative
of a specific class, and least confused with members outside that class.
Examples include Count-based Endmember Selection (CoB) (Roberts
et al., 2003), Endmember Average Root Mean Square Error (EAR)
(Dennison & Roberts, 2003) and the Minimum Average Spectral Angle
(MASA) (Dennison et al., 2004). In contrast to the PPI, these approaches
require knowledge about the spectral characteristics to assign each
spectrum to a particular class. Using CoB, optimal endmembers are
identified as those spectra within a spectral library that model the
greatest number of spectra within a specific class while meeting other
selection criteria, including fractional constraints (i.e. fractions are
required to be between 0 and 100%), and fit constraints based on RMSE
and spectral residuals (Roberts et al., 2003). CoBprovides several quality
parameters that allow for a ranking of representative endmembers. The
in-CoB parameter reports the total number of spectra modelled within
the class, whereas the out-CoB reports the total number of models
outside of the class. A high in-CoB with a low out-CoB represents an
excellent endmember choice. EAR calculates the average RMSE
produced by a spectrum when it is used to model all other members
of its class. The optimum spectrum produces the lowest average RMSE.
odel MESMA, showing impervious and pervious surfaces in the area of Bonn with an
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The MASA calculates the average spectral angle between a reference
spectrum (candidatemodel) and all other spectrawithin the same class.
The best endmember is selected as the one that produces the lowest
average spectral angle (Dennison et al., 2004).

In this study, a comprehensive survey of the area of Bonn was
conducted, in order to identify representative surface types and to find
locations suitable for developing a spectral library from the image. A
Differential Global Position System (Trimble GeoExplorerXT with a
Trimble GeoBeacon receiver) was used to collect reference datawith a
high spatial accuracy. Three to five Regions of interest (ROI),
consisting of around 30 pixels per ROI were selected in the HyMap
image for each endmember type. A random sample of all ROIs was
extracted, to develop a spectral library consisting of 1521 spectra with
1384 pixels set aside for validation of the MESMA results. The spectral
library was developed using ‘VIPER-tools’, an ENVI add on (www.
vipertools.org), and all relevant metadata added. For each hierarchical
MESMA level, separate spectral libraries were created containing
optimal/most representative endmembers with low probability of
confusionwith other endmember classes, characterized by low EAR or
MASA values or high in-Cob values. These metrics were calculated
with the ‘VIPER-tools’ and endmembers were consecutively sorted by
their metric values. The spectra selection should be done on a case by
case basis, depending on the users' objective. A number of different
strategies may be employed. In our study, most of our selections were
from the top candidates of each metric.

2.3. Hierarchical Multiple Endmember Spectral Mixture Analysis (MESMA)

Linear SMA assumes that a mixed spectrum can be modeled as a
linear combination of pure spectra, known as endmembers (Adams
Fig. 5. Classification result of level 2 displays the land cover classes ‘Vegetation’, ‘Built-up’, ‘Ba
of 97.2%.
et al., 1986). Under ideal conditions, the most accurate fractional
estimates can be achieved using the minimum number of end-
members required to account for spectral variability within a mixed
pixel (Sabol et al., 1992). Fractional errors occur either when too few
endmembers are used, resulting in spectral information that cannot
be accounted for by the existing endmembers, or too many, in which
case minor departures between measured and modelled spectra are
often assigned to an endmember that is used in the model, but not
actually present (Roberts et al., 1998). Urban environments are
particularly difficult for a simple mixture model because a single
endmember cannot account for considerable spectral variationwithin
a class. In contrast, MESMA can account for within-class variability
and thus is likely to be more suitable for urban remote sensing.
Typically, MESMA is applied by running numerous models for a pixel
and selecting one model based on its ability to meet selection criteria
and produce the best fit, typically a minimum RMS (Painter et al.,
1998). Selection criteria include fractional constraints (minimum
and maximum fraction constrains), maximum allowable shade
fraction, RMSE constraints and a residual constraint set to remove
anymodel that exceeds a threshold over a range of wavelengths. Using
this approach, pixel-scale limits in spectral dimensionality are
recognized while also accounting for considerable spectral variability
within a scene. The constraints for the models are variably selectable,
whereby MESMA can also be run in an unconstrained mode.
Roberts et al. (1998) found that with the flexible MESMA approach,
a majority of pixels in an image could be modeled with only two-
endmember models. Powell and Roberts (2008) found that natural
landscapes in Brazil required only two-endmember models, disturbed
regions required three- and urban areas required four-endmember
models.
re soil’ and ‘Water body’ in the urban area of Bonnwith an overall classification accuracy

http://www.vipertools.org
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In this study, a hierarchically structured MESMA was realized,
whereby two-, three- or four-endmember models were uniquely
tailored for four different levels of complexity (Fig. 2). At the lowest
level only two broad classes were mapped, impervious and pervious.
At level 2, four land cover classes were mapped; at the third level, the
land cover classes were subdivided into up to two categories, such as
grass and trees, roads vs. roof materials and lake vs. river. At the
highest level of complexity, 20 classes of specific materials or tree
species were mapped (Fig. 2).

The basic idea of hierarchical MESMA was to use the result from
one level as a spatial constraint for the next level, taking advantage of
higher classification accuracies achieved at lower levels of complexity
to improve accuracies at higher levels. For example, models for level 2
were constrained by results from level one, where vegetation, bare soil
and water bodies are restricted to areas mapped as pervious, and
built-up is restricted to the impervious class. In this case, the results
for level 1 and level 2 are the same for impervious and built-up.
MESMAs of levels 1 and 2 were run unconstrained and as spatial
constraints only those masks were used, in cases when classification
accuracy was greater than 85% at a lower level. MESMAs of level 3
were run partially constrained (minimum and maximum allowable
fractions were constrained). By using spatial information at one level
for the analysis of the next level, high classification accuracies
achieved at the lower levels should therefore improve accuracies at
higher levels. The workflow of this hierarchical MESMA is displayed in
Fig. 3.

For MESMA of the imperviousness at level 1, 30 two-endmember
models were used, whereby the first spectral library contained 30
representative endmembers (15 representing pervious and 15
representing impervious surfaces) determined by EAR, MASA and
Fig. 6. Classification result of level 3 as derived from two- and four-endmember model MESM
and roofs/buildings with an overall classification accuracy of 81.7%.
Cob and the second spectral library contained shade. In addition, a
three-endmember model was applied with 15 pervious endmembers
in the first library, 15 impervious endmembers in the second and
shade in the third spectral library resulting in 225 models. The RMSE
change between the results of the two- and three-endmember model
results was calculated afterwards. In cases where the RMSE did not
change more than 0.1 between both results, the result of the two-
endmember model was chosen. The three-endmember model was
only selected where a third endmember was needed to drop the RMSE
(RMSE change N0.1). Both MESMA classification results (classes were
assigned to the highest endmember fraction) were merged to the two
final classes impervious and pervious.

MESMA of the second level discriminated 4 different land cover
classes by the use of 30 two-endmember models similar to level 1.
MESMAwas run in an unconstrained mode, whereas the analysis was
spatially constrained, because the land cover classes vegetation, bare
soil and water body were only analyzed for pervious areas as
identified at the first level. Due to the fact that spatial constraints
were used, the land cover class ‘Built-up’ at level 2 is the same as the
impervious class from level 1. Over most parts of the region RMSE
values at level 2 were low, which indicates that this level could be
successfully modeled with only two-endmember models.

MESMA at the third level determined dominant surface types
including trees, grass, bare soils, rivers, lakes/basins, roads and roofs/
buildings. First, 69 two-endmember models were used, applied to
each land cover mask as derived from the results of level 2 (excepting
bare soil). MESMAwas run in a partially constrained mode (minimum
and maximum allowable fraction values were constrained). A four-
endmember model was run additionally in order to improve discrimi-
nation between vegetation types as well as roads and roofs/buildings.
A that gives the dominant surface types trees, grass, bare soils, rivers, lakes/basins, roads
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The so called V–I–S model was proposed by Ridd (1995), which
divides urban areas into three physically based classes, vegetation,
impervious surfaces and soil. In the present study, the first spectral
library contained 12 vegetation endmembers, the second library
contained 14 endmembers representing impervious surfaces, the
third library contained 3 soil endmembers and the fourth spectral
library contained shade resulting in 504 models. Classes were
assigned to the highest endmember fractions. The RMSE was used
as a constraint for each class. Due to a significant confusion between
soil and red-shingle roofs, a maximum RMSE of 0.025 was applied as a
constraint for the soil class. All pixels with dominant soil fractions and
RMSE values greater than 0.1, were assigned to the roof class. If no
model met all these constraints, the pixel was left unmodeled/
unclassified. The classification result of level 3 was merged from the
results of the two-endmember and four-endmember models.

MESMA of level 4 discriminated 20 different materials or
vegetation species as shown in Fig. 2. Due to the fact that the classes
‘River’, ‘Lakes/Basins’ and ‘Bare soil’ were already final classes at level
2 or 3 with classification accuracies higher than 85%, the information
for these classes was taken from those levels, respectively. 212 two-
endmember models were used for the MESMA applied at level 4.
MESMAwas run in an unconstrained mode similar to level 2. 48 two-
endmember models were used for all vegetated pixels as identified at
level 3 and 164 two-endmember models were used for all pixels not
classified as water, vegetated or bare soil at level 3. Results of the
discrimination of vegetation species and urban materials as obtained
from MESMAs of level 4 were merged with final classes already
obtained at levels 2 and 3. Minor classification errors were present in
some buildings, represented by individual pixels of a different class
Fig. 7. Classification result of level 4 that shows different materials and vegetation species
imbedded within an otherwise compact building object. To reduce
this type of error, the building classes were smoothed using a 3⁎3
majority filter to remove single-pixel errors within buildings. All other
classes remained unfiltered.

Classification results of each hierarchical level were compared to
the random sample of validation pixels, in order to assess classification
accuracy, whereby the total sample size of 1384 pixel splits –

depending on the hierarchical level – to the final classes.

3. Results and discussion

Figs. 4–7 show the classification results of the 4 hierarchical levels.
The MESMA results of levels 1 to 3 (Figs. 4–6) reveal the spatial
structure of the urban area of Bonn with mostly impervious areas in
the central business district (CBD) in the northern part of the scene
close to the Rhine River and in the strongly industrial area in the
northwest. Residential areas, in contrast, are clearly distinguishable by
a higher percentage of vegetated areas. In the southern part of the
scene, the densely vegetated recreation area ‘Rheinaue’ is obvious,
which also acts as a natural floodplain for the Rhine River, which
occasionally floods. Observing the result of hierarchical MESMA level
4 (Fig. 7), a detailed insight into the urban spatial structure is given.
Considering object sizes and roof materials, the industrial area in the
northwest is clearly distinguishable from the CBD. In addition, larger
objects with different roof materials are obvious in the southern part
of the scene as well, that indicate the area of governmental buildings,
museums, headquarters of organizations and companies etc. The
spatial distribution of vegetation species also gives detailed informa-
tion about urban environmental condition. The V–I–S model as
in 20 classes of the urban area of Bonn with an overall classification accuracy of 75.9%.



Fig. 8. False-color image giving the fractions of vegetation, impervious surfaces and soil as derived from MESMA by using four-endmember models (V–I–S model) at level 3. Black
pixels give areas where the maximum allowable fractions or the RMSE exceed the set constraints.
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described above is displayed in Fig. 8, which shows the fractions of
vegetation, impervious surfaces and soil as a false-color RGB as
derived by the four-endmembermodels at level 3. A mask considering
maximum allowable fractions and RMSE constraints was thereby
applied.

Errormatriceswere calculatedusing ground reference data for each
hierarchical level (Tables 1–4). The overall classification accuracies
were 97.2% for level 1 (kappa coefficient of 0.94) and level 2 (kappa
coefficient of 0.95), 81.7% for level 3 (kappa coefficient of 0.75) and
75.9% (kappa coefficient of 0.74) for hierarchical level 4. Only minor
confusion occurred at level 1 between the classes impervious and
pervious (Table 1). The high accuracies of 95.4% and 100% respectively
could be on the one hand achieved due to the selection of highly
representative endmembers using EAR, MASA and CoB and on the
other hand due to the fact that results of the two- and three-
endmember models were merged, depending on the RMSE change.
The endmember selection approaches selected the following repre-
sentative endmembers: for pervious surfaces, 10 vegetation end-
members, 2 water and 3 soil endmembers (Fig. 9a); for impervious
Table 1
Error matrix of the level 1 classification result and ground truth data gives the
percentage of classification accuracy and misfit.

Classified/ground truth Pervious Impervious

Sample size 513 871

Pervious 100.0 4.6
Impervious 0.0 95.4
surfaces, 3 road endmembers and 12 roof endmembers (Fig. 9b). Using
the RMSE change between the results of the two- and three-
endmember models was very suitable for identifying pixels that
required a third endmember to drop the RMSE and improved ac-
curacies. In particular, the models cardboard roof/shade as well as
grass/shade in the two-endmember MESMA had the highest
frequency within these pixels with high RMSE change.

At level 2, 4 different land cover classes were discriminated by 30
two-endmember models, whose endmembers were specifically
selected by the mentioned endmember selection procedures. Some
confusion was evident for bare soil, in which 23.4% of the cases were
mis-classified as built-up area (Table 2). The class ‘Bare soil’ had a
comparatively low sample size in the validation data (47) since it
already is a final class at level 2 (total sample size splits down to the
final classes). Almost no confusion occurred for the other classes at
level 2, whereby the classes ‘Vegetation’ and ‘Water body’were almost
perfectly classified with accuracies of 99.8% and 100%.
Table 2
Error matrix of the level 2 classification result and ground truth data gives the
percentage of classification accuracy and misfit.

Classified/ground truth Vegetation Bare soil Built-up Water body

Sample size 398 47 871 68

Vegetation 99.7 0.0 0.9 0.0
Bare soil 0.0 76.6 2.2 0.0
Built-up 0.3 23.4 96.9 0.0
Water body 0.0 0.0 0.0 100.0



Table 3
Error matrix of the level 3 classification result and ground truth data gives the
percentage of classification accuracy and misfit.

Classified/
ground truth

Road Grass Trees River Lakes/basins Roof/building Bare soil

Sample size 161 141 257 50 18 710 47

Unclassified 1.9 0.0 0.0 0.0 0.0 7.9 0.0
Road 78.3 0.0 0.0 0.0 0.0 15.8 12.8
Grass 0.0 85.8 7.0 0.0 0.0 0.6 0.0
Trees 0.0 14.2 93.0 0.0 0.0 0.1 0.0
River 0.0 0.0 0.0 100.0 0.0 0.0 0.0
Lakes/basins 0.0 0.0 0.0 0.0 100.0 0.0 0.0
Roof/building 19.8 0.0 0.0 0.0 0.0 75.5 2.1
Bare soil 0.0 0.0 0.0 0.0 0.0 0.1 85.1
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In order to determine different surface types, two- and four-
endmember models were run at level 3 using specifically selected
endmembers. Results of the four-endmember models were picked
where classification accuracies resulting from the two-endmember
models were low. The classes ‘River’ and ‘Lakes/Basins’ could be
perfectly discriminated by the two-endmember model, whereas
results of the four-endmember model were used for the other classes.
Major confusion in the merged results at level 3, particularly occurred
between the classes ‘Roof/Building’ and ‘Road’ with mis-classification
rates of 19.9% and 15.8% respectively. This result is consistent with
previous work by Herold et al. (2004) and Herold and Roberts (2006),
who found considerable confusion between roofs and roads due to
spectral ambiguity. In that study, vertical height information derived
from LiDAR datawas used to remove this confusion (Herold & Roberts,
2006). In addition, confusion between ‘Grass’ and ‘Trees’ occurred
with mis-classification rates of 14.2% and 7.0%, respectively. However,
a high overall classification accuracy of 81.7% was achieved in a range
from 75.5% (Roof/Building) to 100% (River and Lakes/Basins).
Benediktsson et al. (2005) as well as Roessner et al. (2001) reported
similar accuracies for some classes defined in their studies that are
similar to the land cover classes defined in the present study. As
discussed previously in the methods, considerable confusion occurred
between soil and the red-shingle roof endmembers, resulting in mis-
classification of soil as an impervious surface and a high RMSE.
Detailed analysis of endmembers selected in the high RMSE pixels
showed that a four-endmember model consisting of grass/gravel-
roof/soil/shade was most common in these areas.

At hierarchical level 4, a further discrimination of 20 classes of
different urban materials or vegetation species was accomplished. 48
two-endmember models were applied to all vegetated pixels as
identified at level 3 and 164 two-endmember models to those areas
which were not defined as final classes at previous levels. Using a
spatially constrained MESMA, an overall accuracy of 75.9% was
achieved, whereby for 12 classes, accuracies exceeded 80%, with 8
exceeding 90%. By applying a majority filter to all building classes, the
overall accuracy could be improved by 2.2%. For the vegetation classes,
major confusion occurred between the tree species European chestnut
and mixed deciduous (55.7% misfit), whereas Linden and grass were
mapped at accuracies exceeding 84%. One challenge in developing a
spectral library of optimal tree species endmembers in urban areas
was changes in below canopy substrates, with the same tree species
occurring on different backgrounds with different amounts of sub-
pixel mixing, resulting in a change in spectral shape. Of the imper-
vious materials, slate showed the greatest confusion with other
materials such as asphalt, cobblestone, dark-shingle and metal roofs.
Slate is widely used roof material in the area of Bonn. It is also very
dark, which most likely led to confusion with other low reflectance,
spectral similar materials including asphalt, cobblestone and dark-
shingle (Herold et al., 2004).

Most materials weremapped at relatively high accuracies at level 4
using only two endmembers to map materials and discriminate



Fig. 9. a: Spectral library as used in level 1 for MESMA showing the selected pervious endmembers. b: Spectral library as used in level 1 for MESMA showing the selected impervious
endmembers.
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vegetation species. The advantage of two-endmember models has
already been discussed by Rashed et al. (2003). Uncertainties in these
results can be caused by various factors. First of all, even though the
endmembers were derived from the image, it can still be very difficult
to locate enough endmembers to represent the heterogeneity of urban
surfaces over the entire image. The same material can, in some cases,
have varying spectral characteristics due to, for instance, aging or
atmospheric effects (Rashed et al., 2003). Song (2005) stated that a
spectrum that adequately models other spectra in the library does not
necessarily model its class of material in the image adequately. The
wide field of view (FOV) of the most airborne hyperspectral imaging
sensors leads to brightness artifacts caused by anisotropic, bidirec-
tional reflectance that is exacerbated by large viewing angles.
This effect is particularly prevalent when the flight direction is per-
pendicular to the sun-target-sensor-plane resulting in an across-track
brightness gradient (Schiefer et al., 2006). In addition, shade fractions
are highly sensitive to topographic effects and solar zenith angle
(Rashed et al., 2003). In particular in urban areas, shade fractions
show considerable variability due to the presence of sub-pixel
shadows and numerous steeply inclined surfaces. To overcome this
problem, Powell et al. (2007) shade normalized each image pixel. In
contrast to previous studies, brightness-effects do not appear to
have had a major impact in this study, since MESMA incorporates
shade as an endmember while allowing the model to select a different
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endmember if needed based on spectral shape. The presented hier-
archical MESMA approach improved classification accuracies, since
spatial constraints were used for MESMA that minimized spectral
confusion. By including a spatial component in MESMA, accuracies of
20 distinct urbanmaterial/vegetation species classes were achieved at
level 4 that are comparably high (e.g., Herold et al., 2003a). The novel
approach of applying simple two-endmember models and – depend-
ing on the requirements – additionally three- or four-endmember
models to produce high classification accuracies at low complexity
levels, allows using these results to improve accuracies for higher
complexity levels. Hence, this hierarchical MESMA approach accounts
for the spectral pixel-to-pixel variability of urban areas by the
simultaneous control of the spatial dimension. Contemplating the
discrete classes that can be derived from MESMA as done in the
present study, the importance of the per-pixel-fractions of the end-
members as shown in Fig. 8 has to be recalled. In contrast to
classification algorithms, MESMA provides physical measurement of
material or vegetation abundance that is useful information for urban
studies. Further studies are nevertheless desirable, to evaluate the
performance of other classifiers and compare them to classification
results derived from hierarchical MESMA. In addition, future studies
might focus on improving model choice in MESMA depending on
complexity levels as well as testing our hierarchical MESMA in dif-
ferent urban areas.
4. Conclusions

In the present study, a hierarchical MESMAwas applied to airborne
HyMap data by the use of spatial constraints, in order to analyze the
urban environment of Bonn in Germany. The high potential of MESMA
for mapping urban land cover at various levels of detail was
demonstrated. The hierarchical structure of MESMA, whereby results
with appropriate classification accuracies from one level were used as
spatial constraints for the next level, further improved accuracy. The
control of the spatial dimension for different land cover classes in
MESMA at higher levels of complexity allowed for a more focused and
spatially adjusted spectral unmixing procedure and resulted in a
minimization of spectral confusion. Themost crucial factor in any SMA
approach is the selection of representative endmembers. With the
applied endmember selection approaches EAR, MASA and CoB,
various quality parameters were available to filter candidate end-
members from a spectral library that contained 1521 potential
endmembers. This selection procedure proved to be highly suitable
for most endmember classes. Only optimal tree endmembers were
difficult to derive from image spectra, due to a high variability of the
background surfaces in urban environments, ranging from vegetated-
over bare soil to impervious surfaces, which caused a high variability
of mixed fractions. For an improved MESMA – or SMA in general – of
vegetated areas in urban environments, superior endmembers maybe
required derived from other sources. Another spectral confusion was
evident between low reflectance materials such as slate, asphalt,
cobblestone and dark-shingle. This did not result from the lack of
optimal endmembers, but rather from a lack of diagnostic absorption
features. However, uncertainties in endmember fraction estimates
that are usually caused by brightness differences due to the wide FOV
of airborne sensors or particularly due to the complex structure of
urban objects were minimized by MESMA. Shade fractions are always
included in every MESMA model. Classification results derived from
endmember fractions of hierarchical levels 1 to 4 with accuracies of
97.2%, 97.2%, 81.7% and 75.9%, respectively, demonstrated that the
flexible MESMA approach combined with a spatially hierarchical
structure is particularly suitable to analyze complex urban environ-
ments. Different levels of spatial information about urban infrastruc-
ture and environment could be derived, in 20 land cover classes at the
highest level, which can be valuable for urban management.
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