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Abstract

Fault detection and diagnosis is an important problem in process engineering. It is the central component of abnormal event

management (AEM) which has attracted a lot of attention recently. AEM deals with the timely detection, diagnosis and correction

of abnormal conditions of faults in a process. Early detection and diagnosis of process faults while the plant is still operating in a

controllable region can help avoid abnormal event progression and reduce productivity loss. Since the petrochemical industries lose

an estimated 20 billion dollars every year, they have rated AEM as their number one problem that needs to be solved. Hence, there is

considerable interest in this field now from industrial practitioners as well as academic researchers, as opposed to a decade or so ago.

There is an abundance of literature on process fault diagnosis ranging from analytical methods to artificial intelligence and statistical

approaches. From a modelling perspective, there are methods that require accurate process models, semi-quantitative models, or

qualitative models. At the other end of the spectrum, there are methods that do not assume any form of model information and rely

only on historic process data. In addition, given the process knowledge, there are different search techniques that can be applied to

perform diagnosis. Such a collection of bewildering array of methodologies and alternatives often poses a difficult challenge to any

aspirant who is not a specialist in these techniques. Some of these ideas seem so far apart from one another that a non-expert

researcher or practitioner is often left wondering about the suitability of a method for his or her diagnostic situation. While there

have been some excellent reviews in this field in the past, they often focused on a particular branch, such as analytical models, of this

broad discipline. The basic aim of this three part series of papers is to provide a systematic and comparative study of various

diagnostic methods from different perspectives. We broadly classify fault diagnosis methods into three general categories and review

them in three parts. They are quantitative model-based methods, qualitative model-based methods, and process history based

methods. In the first part of the series, the problem of fault diagnosis is introduced and approaches based on quantitative models are

reviewed. In the remaining two parts, methods based on qualitative models and process history data are reviewed. Furthermore,

these disparate methods will be compared and evaluated based on a common set of criteria introduced in the first part of the series.

We conclude the series with a discussion on the relationship of fault diagnosis to other process operations and on emerging trends

such as hybrid blackboard-based frameworks for fault diagnosis.
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1. Introduction

The discipline of process control has made tremen-

dous advances in the last three decades with the advent

of computer control of complex processes. Low-level

control actions such as opening and closing valves,

called regulatory control, which used to be performed by
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human operators are now routinely performed in an

automated manner with the aid of computers with

considerable success. With progress in distributed con-

trol and model predictive control systems, the benefits to
various industrial segments such as chemical, petro-

chemical, cement, steel, power and desalination indus-

tries have been enormous. However, a very important

control task in managing process plants still remains

largely a manual activity, performed by human opera-

tors. This is the task of responding to abnormal events

in a process. This involves the timely detection of an

abnormal event, diagnosing its causal origins and then
taking appropriate supervisory control decisions and

actions to bring the process back to a normal, safe,

operating state. This entire activity has come to be called

Abnormal Event Management (AEM), a key compo-

nent of supervisory control.

However, this complete reliance on human operators

to cope with such abnormal events and emergencies has

become increasingly difficult due to several factors. It is
difficult due to the broad scope of the diagnostic activity

that encompasses a variety of malfunctions such as

process unit failures, process unit degradation, para-

meter drifts and so on. It is further complicated by the

size and complexity of modern process plants. For

example, in a large process plant there may be as

many as 1500 process variables observed every few

seconds (Bailey, 1984) leading to information overload.
In addition, often the emphasis is on quick diagnosis

which poses certain constraints and demands on the

diagnostic activity. Furthermore, the task of fault

diagnosis is made difficult by the fact that the process

measurements may often be insufficient, incomplete

and/or unreliable due to a variety of causes such as

sensor biases or failures.

Given such difficult conditions, it should come as no
surprise that human operators tend to make erroneous

decisions and take actions which make matters even

worse, as reported in the literature. Industrial statistics

show that about 70% of the industrial accidents are

caused by human errors. These abnormal events have

significant economic, safety and environmental impact.

Despite advances in computer-based control of chemical

plants, the fact that two of the worst ever chemical plant
accidents, namely Union Carbide’s Bhopal, India,

accident and Occidental Petroleum’s Piper Alpha acci-

dent (Lees, 1996), happened in recent times is a

troubling development. Another major recent incident

is the explosion at the Kuwait Petrochemical’s Mina Al-

Ahmedi refinery in June of 2000, which resulted in

about 100 million dollars in damages.

Further, industrial statistics have shown that even
though major catastrophes and disasters from chemical

plant failures may be infrequent, minor accidents are

very common, occurring on a day to day basis, resulting

in many occupational injuries, illnesses, and costing the

society billions of dollars every year (Bureau of Labor

Statistics, 1998; McGraw-Hill Economics, 1985; Na-

tional Safety Council, 1999). It is estimated that the

petrochemical industry alone in the US incurs approxi-
mately 20 billion dollars in annual losses due to poor

AEM (Nimmo, 1995). The cost is much more when one

includes similar situations in other industries such as

pharmaceutical, specialty chemicals, power and so on.

Similar accidents cost the British economy up to 27

billion dollars every year (Laser, 2000).

Thus, here is the next grand challenge for control

engineers. In the past, the control community showed
how regulatory control could be automated using

computers and thereby removing it from the hands of

human operators. This has led to great progress in

product quality and consistency, process safety and

process efficiency. The current challenge is the automa-

tion of AEM using intelligent control systems, thereby

providing human operators the assistance in this most

pressing area of need. People in the process industries
view this as the next major milestone in control systems

research and application.

The automation of process fault detection and

diagnosis forms the first step in AEM. Due to the broad

scope of the process fault diagnosis problem and the

difficulties in its real time solution, various computer-

aided approaches have been developed over the years.

They cover a wide variety of techniques such as the early
attempts using fault trees and digraphs, analytical

approaches, and knowledge-based systems and neural

networks in more recent studies. From a modelling

perspective, there are methods that require accurate

process models, semi-quantitative models, or qualitative

model. At the other end of the spectrum, there are

methods that do not assume any form of model

information and rely only on process history informa-
tion. In addition, given the process knowledge, there are

different search techniques that can be applied to

perform diagnosis. Such a collection of bewildering

array of methodologies and alternatives often pose a

difficult challenge to any aspirant who is not a specialist

in these techniques. Some of these ideas seem so far

apart from one another that a non-expert researcher or

practitioner is often left wondering about the suitability
of a method for his or her diagnostic situation. While

there have been some excellent reviews in this filed in the

past, they often focused on a particular branch, such as

analytical models, of this broad discipline.

The basic aim of this three part series of papers is to

provide a systematic and comparative study of various

diagnostic methods from different perspectives. We

broadly classify fault diagnosis methods into three
general categories and review them in three parts.

They are quantitative model based methods, qualitative

model based methods, and process history based

methods. We review these different approaches and
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attempt to present a perspective showing how these

different methods relate to and differ from each other.

While discussing these various methods we will also try

to point out important assumptions, drawbacks as well

as advantages that are not stated explicitly and are

difficult to gather. Due to the broad nature of this

exercise it is not possible to discuss every method in all

its detail. Hence the intent is to provide the reader with

the general concepts and lead him or her on to literature

that will be a good entry point into this field.

In the first part of the series, the problem of fault

diagnosis is introduced and fault diagnosis approaches

based on quantitative models are reviewed. In the

following two parts, fault diagnostic methods based on

qualitative models and process history data are re-

viewed. Further, these disparate methods will be com-

pared and evaluated based on a common set of desirable

characteristics for fault diagnostic classifiers introduced

in this paper. The relation of fault diagnosis to other

process operations and a discussion on future directions

are presented in Part III.

By way of introduction, we first address the defini-

tions and nomenclature used in the area of process fault

diagnosis. The term fault is generally defined as a

departure from an acceptable range of an observed

variable or a calculated parameter associated with a

process (Himmelblau, 1978). This defines a fault as a

process abnormality or symptom, such as high tempera-

ture in a reactor or low product quality and so on. The

underling cause(s) of this abnormality, such as a failed

coolant pump or a controller, is(are) called the basic

event(s) or the root cause(s) . The basic event is also

referred to as a malfunction or a failure . Since one can

view the task of diagnosis as a classification problem,

the diagnostic system is also referred to as a diagnostic

classifier. Fig. 1 depicts the components of a general

fault diagnosis framework. The figure shows a con-

trolled process system and indicates the different sources

of failures in it. In general, one has to deal with three

classes of failures or malfunctions as described below:

1.1. Gross parameter changes in a model

In any modelling, there are processes occurring below

the selected level of detail of the model. These processes
which are not modelled are typically lumped as para-

meters and these include interactions across the system

boundary. Parameter failures arise when there is a

disturbance entering the process from the environment

through one or more exogenous (independent) variables.

An example of such a malfunction is a change in the

concentration of the reactant from its normal or steady

state value in a reactor feed. Here, the concentration is
an exogenous variable, a variable whose dynamics is not

provided with that of the process. Another example is

the change in the heat transfer coefficient due to fouling

in a heat exchanger.

1.2. Structural changes

Structural changes refer to changes in the process

itself. They occur due to hard failures in equipment.
Structural malfunctions result in a change in the

information flow between various variables. To handle

such a failure in a diagnostic system would require the

removal of the appropriate model equations and re-

structuring the other equations in order to describe the

current situation of the process. An example of a

structural failure would be failure of a controller. Other

examples include a stuck valve, a broken or leaking pipe
and so on.

1.3. Malfunctioning sensors and actuators

Gross errors usually occur with actuators and sensors.

These could be due to a fixed failure, a constant bias

(positive or negative) or an out-of range failure. Some of

the instruments provide feedback signals which are
essential for the control of the plant. A failure in one

of the instruments could cause the plant state variables

to deviate beyond acceptable limits unless the failure is

detected promptly and corrective actions are accom-

plished in time. It is the purpose of diagnosis to quickly

detect any instrument fault which could seriously

degrade the performance of the control system.

Outside the scope of fault diagnosis are unstructured
uncertainties, process noise and measurement noise.

Unstructured uncertainties are mainly faults that are

not modelled a priori. Process noise refers to the

mismatch between the actual process and the predictions

from model equations, whereas, measurement noise

refers to high frequency additive component in the

sensor measurements.

In this series of review papers, we will provide a
review of the various techniques that have been pro-

posed to solve the problem of fault detection and

diagnosis. We classify the techniques as quantitativeFig. 1. A general diagnostic framework.
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model based, qualitative model based and process

history based approaches. Under the quantitative model

based approaches, we will review techniques that use

analytical redundancy to generate residuals that can be
used for isolating process failures. We will discuss

residual generation through diagnostic observers, parity

relations, Kalman filters and so on. Under the qualita-

tive model based approaches, we review the signed

directed graph (SDG), Fault Trees, Qualitative Simula-

tion (QSIM), and Qualitative Process Theory (QPT)

approaches to fault diagnosis. Further, we also classify

diagnostic search strategies as being topographic or
symptomatic searches. Under process history based

approaches we will discuss both qualitative approaches

such as expert systems and qualitative trend analysis

(QTA) techniques and quantitative approaches such as

neural networks, PCA and statistical classifiers.

We believe that there have been very few articles that

comprehensively review the field of fault diagnosis

considering all the different types of techniques that
have been discussed in this series of review papers. Most

of the review papers such as the one by Frank, Ding,

and Marcu (2000) seem to focus predominantly on

model based approaches. For example, in the review by

Frank et al., a detailed description of various types of

analytical model based approaches is presented. The

robustness issues in fault detection, optimized genera-

tion of residuals and generation of residuals for non-
linear systems are some of the issues that have been

addressed in a comprehensive manner. There are a

number of other review articles that fall under the

same category. A brief review article that is more

representative of all the available fault diagnostic

techniques has been presented by Kramer and Mah

(1993). This review deals with data validation, rectifica-

tion and fault diagnosis issues. The fault diagnosis
problem is viewed as consisting of feature extraction

and classification stages. This view of fault diagnosis has

been generalized in our review as the transformations

that measurements go through before a final diagnostic

decision is attained. The classification stage is examined

by Kramer and Mah as falling under three main

categories. (i) pattern recognition, (ii) model-based

reasoning and (iii) model-matching. Under pattern
recognition, most of the process history based methods

are discussed; under model-based reasoning most of the

qualitative model based techniques are discussed; and

symptomatic search techniques using different model

forms are discussed under model matching techniques.

Closely associated with the area of fault detection and

diagnosis is the research area of gross error detection in

sensor data and the subsequent validation. Gross error
detection or sensor validation refers to the identification

of faulty or failed sensors in the process. Data reconci-

liation or rectification is the task of providing estimates

for the true values of sensor readings. There has been

considerable work done in this area and there have also

been review papers and books written on this area.

Hence, we do not provide a review of this field in this

series of papers. However, as mentioned before, fault

diagnosis includes sensor failures also in its scope and

hence data validation and rectification is a specific case

of a more general fault diagnosis problem (Kramer &

Mah, 1993).
The rest of this first part of the review is organized as

follows. In the next section, we propose a list of ten

desirable characteristics that one would like a diagnostic

system to possess. This list would help us assess the

various approaches against a common set of criteria. In

Section 3, we discuss the transformations of data that

take place during the process of diagnostic decision-

making. This discussion lays down the framework for

analyzing the various diagnostic approaches in terms of

their knowledge and search components. In Section 4, a

classification of fault diagnosis methods is provided. In

Section 5, diagnosis methods based on quantitative

models are discussed in detail.

2. Desirable characteristics of a fault diagnostic system

In the last section, the general problem of fault

diagnosis was presented. In order to compare various

diagnostic approaches, it is useful to identify a set of

desirable characteristics that a diagnostic system should

possess. Then the different approaches may be evaluated

against such a common set of requirements or stan-

dards. Though these characteristics will not usually be

met by any single diagnostic method, they are useful to

benchmark various methods in terms of the a priori

information that needs to be provided, reliability of

solution, generality and efficiency in computation etc. In

this context, one needs to understand the important

concepts, completeness and resolution, before proceed-

ing to the characteristics of a good diagnostic classifier.

Whenever an abnormality occurs in a process, a general

diagnostic classifier would come up with a set of

hypotheses or faults that explains the abnormality.

Completeness of a diagnostic classifier would require

the actual fault(s) to be a subset of the proposed fault

set. Resolution of a diagnostic classifier would require

the fault set to be as minimal as possible. Thus, there is a

trade-off between completeness and resolution. The

trade-off is in the accuracy of predictions. These two

concepts would recur whenever different classifier de-

signs are compared. The following presents a set of

desirable characteristics one would like the diagnostic

system to possess.
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2.1. Quick detection and diagnosis

The diagnostic system should respond quickly in

detecting and diagnosing process malfunctions. How-
ever, quick response to failure diagnosis and tolerable

performance during normal operation are two conflict-

ing goals (Willsky, 1976). A system that is designed to

detect a failure (particularly abrupt changes) quickly will

be sensitive to high frequency influences. This makes the

system sensitive to noise and can lead to frequent false

alarms during normal operation, which can be disrup-

tive. This is analogous to the trade-off between robust-
ness and performance noticed in the control literature.

2.2. Isolability

Isolability is the ability of the diagnostic system to

distinguish between different failures. Under ideal con-

ditions free of noise and modelling uncertainties, this

amounts to saying that the diagnostic classifier should

be able to generate output that is orthogonal to faults
that have not occurred. Of course the ability to design

isolable classifiers depends to a great extent on the

process characteristics. There is also a trade-off between

isolability and the rejection of modelling uncertainties.

Most of the classifiers work with various forms of

redundant information and hence there is only a limited

degree of freedom for classifier design. Due to this, a

classifier with high degree of isolability would usually do
a poor job in rejecting modelling uncertainties and vice

versa.

2.3. Robustness

One would like the diagnostic system to be robust to

various noise and uncertainties. One would like its

performance to degrade gracefully instead of failing
totally and abruptly. Robustness precludes deterministic

isolability tests where the thresholds are placed close to

zero. In the presence of noise, these thresholds may have

to be chosen conservatively. Thus, as noted earlier,

robustness needs are to be balanced with those of

performance.

2.4. Novelty identifiability

One of the minimal requirements of a diagnostic

system is to be able to decide, given current process

conditions, whether the process is functioning normally

or abnormally, and if abnormal, whether the cause is a

known malfunction or an unknown, novel, malfunction.

This criterion is known as novelty identifiability. In

general, sufficient data may be available to model the
normal behavior of the process. However, one typically

does not have such historic process data available for

modelling the abnormal regions satisfactorily (of course,

if one has access to a good dynamic model of the

process, then generating such data is much easier). Only

a few data patterns may be available covering portions

of the abnormal region. Thus, it is possible that much of
the abnormal operations region may not have been

modelled adequately. This will pose serious challenges in

achieving novelty identifiability. Even under these

difficult conditions, one would like the diagnostic

system to be able to recognize the occurrence of novel

faults and not misclassify them as one of the other

known malfunctions or as normal operation.

2.5. Classification error estimate

An important practical requirement for a diagnostic

system is in building the user’s confidence on its

reliability. This could be greatly facilitated if the

diagnostic system could provide a priori estimate on

classification error that can occur. Such error measures

would be useful to project confidence levels on the

diagnostic decisions by the system giving the user a

better feel for the reliability of the recommendations by
the system.

2.6. Adaptability

Processes in general change and evolve due to changes

in external inputs or structural changes due to retro-

fitting and so on. Process operating conditions can

change not only due to disturbances but also due to

changing environmental conditions such as changes in
production quantities with changing demands, changes

in the quality of raw material etc. Thus the diagnostic

system should be adaptable to changes. It should be

possible to gradually develop the scope of the system as

new cases and problems emerge, as more information

becomes available.

2.7. Explanation facility

Besides the ability to identify the source of malfunc-
tion, a diagnostic system should also provide explana-

tions on how the fault originated and propagated to the

current situation. This is a very important factor in

designing on-line decision support systems. This re-

quires the ability to reason about cause and effect

relationships in a process. A diagnostic system has to

justify its recommendations so that the operator can

accordingly evaluate and act using his/her experience.
One would like the diagnostic system to not only justify

why certain hypotheses were proposed but also explain

why certain other hypotheses were not proposed.
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2.8. Modelling requirements

The amount of modelling required for the develop-

ment of a diagnostic classifier is an important issue. For
fast and easy deployment of real-time diagnostic classi-

fiers, the modelling effort should be as minimal as

possible.

2.9. Storage and computational requirements

Usually, quick real-time solutions would require

algorithms and implementations which are computa-

tionally less complex, but might entail high storage
requirements. One would prefer a diagnostic system that

is able to achieve a reasonable balance on these two

competing requirements.

2.10. Multiple fault identifiability

The ability to identify multiple faults is an important

but a difficult requirement. It is a difficult problem due
to the interacting nature of most faults. In a general

nonlinear system, the interactions would usually be

synergistic and hence a diagnostic system may not be

able to use the individual fault patterns to model the

combined effect of the faults. On the other hand,

enumerating and designing separately for various multi-

ple fault combinations would become combinatorially

prohibitive for large processes.

3. Transformations of measurements in a diagnostic

system

To attempt a comparative study of various diagnostic

methods it is helpful to view them from different

perspectives. In this sense, it is important to identify
the various transformations that process measurements

go through before the final diagnostic decision is made.

Two important components in the transformations are

the a priori process knowledge and the search technique

used. Hence, one can discuss diagnostic methods from

these two perspectives. Also, one can view diagnostic

methods based on different solution philosophies like

knowledge-based systems, pattern recognition, and
analytical model-based methods. These methods have

distinct diagnostic architectures and utilize different

combinations of a priori knowledge and search techni-

ques. Though these are fundamentally different view-

points, it is hard to draw clear demarcation between

these viewpoints and hence a certain amount of overlap

is unavoidable.

In general, one can view the diagnostic decision-
making process as a series of transformations or

mappings on process measurements. Fig. 2 shows the

various transformations that process data go through

during diagnosis. The measurement space is a space of

measurements x1, x2,. . .,xN with no a priori problem

knowledge relating these measurements. These are the

input to the diagnostic system. The feature space is a

space of points y�/(y1,. . .,yi) where yi is the ith feature

obtained as a function of the measurements by utilizing

a priori problem knowledge. Here, the measurements

are analyzed and combined with the aid of a priori

process knowledge to extract useful features about the

process behavior to aid diagnosis. The mapping from

the feature space to decision space is usually designated

to meet some objective function (such as minimizing the

misclassification). This transformation is achieved by

either using a discriminant function or in some cases

using simple threshold functions. The decision space is a

space of points d�/[d1,. . .,dK ], where K is the number of

decision variables, obtained by suitable transformations

of the feature space. The class space is a set of integers

c�/[c1, . . ., cM ], where M is the number of failure

classes, indexing the failure classes indicating categori-

cally to which failure class (or classes) including normal

region a given measurement pattern belongs. The class

space is thus the final interpretation of the diagnostic

system delivered to the user. The transformations from

decision space to class space is again performed using

either threshold functions, template matching or sym-

bolic reasoning as the case may be.
There are two ways of developing the feature space

from the measurement space, namely, feature selection

and feature extraction. In feature selection, one simply

selects a few important measurements of the original

measurement space. Feature extraction is a procedure

that facilitates, through the use of prior knowledge of

the problem, a transformation of the measurement space

into a space of fewer dimensions. For example, if a

relationship is known to exist between the samples of

one measurement and the samples of another measure-

ment, feature extraction is concerned with identifying

this relationship. Once this relationship is identified,

rather than having two sets of parameters characterizing

Fig. 2. Transformations in a diagnostic system.
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the two dimensions, it may be possible to represent them

with a single set of parameters.

To explain these transformations more clearly, let us

consider a simple example. Let there be four sensors x1,
x2, x3, x4 and let there be two fault classes c1 and c2 that

need to be distinguished. Let us suppose further that

fault 1 affects sensors 1 and 2 and fault 2 affects sensors

2 and 3. Let us also suppose x1ss , x2ss , x3ss , x4ss are the

steady-state values of these sensors. In this case, one

simple transformation to form a feature space would be

to drop sensor measurement x4. Hence the feature space

would be [y1 y2 y3]� [x1 x2 x3]: Now, there are
different ways in which one can transform this feature

space to a decision space. One transformation could be a

simple threshold function to form the decision space

[d1 d2 d3]: The threshold function would be: If ABS

(yi�/xiss )�/T then di�/1 else di�/0. The final transfor-

mation would be from the decision space to class space

[c1 c2] and it can be performed by symbolic logic. For

example, ‘‘IF (d1 AND d2) Then c1 and IF (d2 AND d3)
Then c2’’ would be a valid logic for this transformation.

To provide another example, consider the Bayes

classifier. The Bayes classifier for a two class problem,

assuming Gaussian density function for the classes, is

developed as follows (Fukunaga, 1972): measurements x

are first transformed using a priori model information

into features y . These features are then transformed into

the decision space*/which is a set of real numbers
indexed by fault classes. The real number corresponding

to fault class i is the distance di of feature y from the

mean mi of class i scaled by the covariance Si of class i .

For a two class problem, we have:

d1� (y�m1)
T

X�1

1
(y�m1)

d2� (y�m2)
T

X�1

2
(y�m2)

where [d1, d2] spans the decision space as x spans the

measurement space. A discriminant function h maps the

decision space to class space (with a priori probabilities

for the classes being the same).

h�d1�d2

hB/d ,x belongs to class I

h�d; x belongs to class II

d�log

�jP2 j
jP1 j

�
where d is the threshold of the classifier:

In a neural network based classifier, input nodes

represent the measurement space. Hidden nodes corre-
spond to the feature space. Output nodes map the

feature space to the decision space. An interpretation of

the outputs gives the mapping to class space. In

analytical model approaches (Gertler, 1991; Frank,

1990), the residuals from different models define the

feature space. From these, one may compute the like-

lihood of occurrence of various fault classes, which in
turn can be used to specify which fault classes are

actually present.

In most cases, the decision space and class space have

the same dimension. Still, it would be preferable to

maintain separate decision and class spaces because in

some cases one might not be able to force the diagnostic

classifier to come up with crisp solutions. Consider

neural networks as a diagnostic classifier as an example.
The output nodes represent the decision space. One

would still need a crisp solution based on some kind of

threshold function for the final interpretation to the

user.

The basic assumption in transforming the measure-

ment space to feature space is that the features cluster

better in the feature space than the measurements do in

the measurement space, thus facilitating improved
classification or better discrimination. The advantage

one gains in developing a feature space is the reduction

in the complexity of the discriminant function. The

transformation from measurement to feature space is

done using a priori process knowledge, whereas, the

transformation from feature space to decision space is

implemented as a search or learning algorithm. The

decision space is usually mapped to the class space using
simple threshold functions. If the process plant under

consideration is a well understood one, then one has

powerful a priori knowledge to work with. Such a strong

understanding would help one design an effective

mapping from the measurement space to a feature space

that has discriminating features. By simplifying the

problem using a priori knowledge to form a powerful

feature space, the burden on the search/learning algo-
rithm can be reduced greatly.

Thus, a priori process knowledge plays a crucial role

in diagnostic decision-making through the mappings.

There are different kinds of a priori knowledge that may

be available for this purpose depending on the user’s

understanding of the process. For example, a priori

knowledge could be available in the form of invariant

relationships between sensor outputs and actuator
inputs such as material and energy balances in a process

system (Mehra & Peschon, 1971; Kramer, 1987) or it

could be a suitably transformed model of the process,

resulting in a bank of filters (Willsky, 1976; Gertler,

1991; Frank, 1990). A priori knowledge can also be in

the form of distribution information in the measurement

space (Hoskins & Himmelblau, 1988).

By pursuing this theme of transformations between
spaces in diagnostic reasoning, a comparative study on

various approaches to fault diagnosis may be made

through an analysis of the different forms of a priori

knowledge used to develop the feature space and the
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search strategies used to arrive at the mapping to

decision/class space. This would shed some light on

how the different approaches relate to and differ from

one another within this framework of spatial mappings.

4. Classification of diagnostic algorithms

As discussed earlier two of the main components in a

diagnosis classifier are: (i) the type of knowledge and (ii)

the type of diagnostic search strategy. Diagnostic search

strategy is usually a very strong function of the knowl-

edge representation scheme which in turn is largely
influenced by the kind of a priori knowledge available.

Hence, the type of a priori knowledge used is the most

important distinguishing feature in diagnostic systems.

In this three part review paper we classify the diagnostic

systems based on the a priori knowledge used.

The basic a priori knowledge that is needed for fault

diagnosis is the set of failures and the relationship

between the observations (symptoms) and the failures. A
diagnostic system may have them explicitly (as in a table

lookup), or it may be inferred from some source of

domain knowledge. The a priori domain knowledge may

be developed from a fundamental understanding of the

process using first-principles knowledge. Such knowl-

edge is referred to as deep, causal or model-based

knowledge (Milne, 1987). On the other hand, it may

be gleaned from past experience with the process. This
knowledge is referred to as shallow, compiled, evidential

or process history-based knowledge.

The model-based a priori knowledge can be broadly

classified as qualitative or quantitative. The model is

usually developed based on some fundamental under-

standing of the physics of the process. In quantitative

models this understanding is expressed in terms of

mathematical functional relationships between the in-
puts and outputs of the system. In contrast, in qualita-

tive model equations these relationships are expressed in

terms of qualitative functions centered around different

units in a process.

In contrast to the model-based approaches where a

priori knowledge about the model (either quantitative or

qualitative) of the process is assumed, in process history

based methods only the availability of large amount of
historical process data is assumed. There are different

ways in which this data can be transformed and

presented as a priori knowledge to a diagnostic system.

This is known as the feature extraction process from the

process history data, and is done to facilitate later

diagnosis. This extraction process can mainly proceed as

either quantitative or qualitative feature extraction. In

quantitative feature extraction one can perform either a
statistical or non-statistical feature extraction. This

classification of diagnostic systems is shown in Fig. 3.

In this paper, we focus on diagnostic systems that are

built on quantitative models. The remaining two parts

will focus on diagnostic methods based on qualitative

models and process history data.

A bit of clarification on the classification is in order at
this point. It is clear that all models need data for

estimating some of the parameters in the model and all

the methods based on process data need to extract some

form of a model to perform fault diagnosis. The

classification of quantitative, qualitative and process

history in our view provides a classification in terms of

the manner in which these methods approach the

problem of fault diagnosis. As an example, though the
models for observers (classified under quantitative

approach) are based on input�/output data, the use of

these models in generating diagnostic results largely

follows a quantitative approach. However, a qualitative

approach such as QSIM, again based on a model (in

fact, a first principles quantitative model), uses a

distinctly qualitative framework for diagnostic explana-

tion generation. Similarly, neural networks approaches
for fault diagnosis have largely been approached from a

pattern recognition point of view and hence we have

classified these approaches under process history based

methods, though they are directly related to state�/space

models. We believe that in spite of the overlap this is a

good classification for fault detection and isolation

(FDI) strategies.

5. Quantitative model-based approaches

This section reviews quantitative model-based fault

diagnosis methods. The concept of analytical redun-

dancy is introduced first, followed by a description of

discrete dynamic system with linear models. The most

frequently used FDI approaches, including diagnostic

observers, parity relations, Kalman filters and para-
meter estimation are outlined. The recent effort of

generating enhanced residuals to facilitate the fault

isolation procedure is discussed. We will discuss the

principles behind these methods, summarize their main

applications, comment on their advantages, deficiencies

and tradeoffs, and review their most recent advances in

process monitoring and fault diagnosis. Our purpose is

to provide an overview of the basic concepts in model-
based fault detection. For the sake of brevity, we have

included only some of the many techniques and there-

fore the references listed in this review paper are by no

means exhaustive. However, we believe that they are

good resources to the interested readers for further

study.

Further, most of the work on quantitative model-

based approaches have been based on general input�/

output and state�/space models as discussed below.

However, there are a wide variety of quantitative model

types that have been considered in fault diagnosis such
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as first-principles models, frequency response models

and so on. The first-principles models (also classified as

macroscopic transport phenomena model (Himmelblau,

1978)) have not been very popular in fault diagnosis

studies because of the computational complexity in

utilizing these models in real-time fault diagnostic

systems and the difficulty in developing these models.
The most important class of models that have been

heavily investigated in fault diagnosis studies are the

input�/output or state�/space models and hence the

focus is on these types of models.

5.1. Analytical redundancy

In the area of automatic control, change/fault detec-

tion problems are known as model-based FDI. Relying

on an explicit model of the monitored plant, all model-

based FDI methods (and many of the statistical

diagnosis methods) require two steps. The first step
generates inconsistencies between the actual and ex-

pected behavior. Such inconsistencies, also called resi-

duals , are ‘artificial signals’ reflecting the potential faults

of the system. The second step chooses a decision rule

for diagnosis.

The check for inconsistency needs some form of

redundancy. There are two types of redundancies,

hardware redundancy and analytical redundancy. The
former requires redundant sensors. It has been utilized

in the control of such safety-critical systems as aircraft

space vehicles and nuclear power plants. However, its

applicability is limited due to the extra cost and

additional space required. On the other hand, analytical

redundancy (also termed functional, inherent or artifi-

cial redundancy) is achieved from the functional depen-

dence among the process variables and is usually
provided by a set of algebraic or temporal relationships

among the states, inputs and the outputs of the system.

According to how the redundancy is accomplished,

analytical redundancy can be further classified into

two categories (Basseville, 1988; Chow & Willsky,

1984; Frank, 1990), direct and temporal.

A direct redundancy is accomplished from algebraic

relationships among different sensor measurements.

Such relationship are useful in computing the value of

a sensor measurement from measurements of other

sensors. The computed value is then compared with

the measured value from that sensor. A discrepancy

indicates that a sensor fault may have occurred.

A temporal redundancy is obtained from differential

or difference relationships among different sensor out-

puts and actuator inputs. With process input and output

data, temporal redundancy is useful for sensor and

actuator fault detection.

A general scheme of using analytical redundancy in

diagnostic systems is given in Fig. 4. The essence of

analytical redundancy in fault diagnosis is to check the

actual system behavior against the system model for

consistency. Any inconsistency expressed as residuals,

can be used for detection and isolation purposes. The

residuals should be close to zero when no fault occurs

but show ‘significant’ values when the underlying system

changes. The generation of the diagnostic residuals

requires an explicit mathematical model of the system.

Either a model derived analytically using first principles

or a black-box model obtained empirically may be used.

Fig. 3. Classification of diagnostic algorithms.

Fig. 4. General scheme for using analytical redundancy.
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Also, statistical methods are often required for the

decision making.

The first principles models are obtained based on a

physical understanding of the process. In a chemical
engineering process, mass, energy and momentum

balances as well as constitutive relationships (such as

equations of state) are used in the development of model

equations. In the past, models developed from first

principles were seldom used in process control and fault

diagnosis mainly because of their complexity. In addi-

tion, the chemical engineering processes are often non-

linear, which makes the design of fault diagnosis
procedures more difficult. However, owing to the

availability of better and faster computers and the

improved understanding of nonlinear controller design

and synthesis, this situation is improving.

The problem of fault diagnosis is one of identifying

the state of a process based on its behavior. The

behavior of a process is monitored through its sensor

outputs and actuator inputs. When faults occur, they
change the relationship among these observed variables

and therefore result in nonzero residuals. Most of the

FDI methods use discrete black-box plant models such

as input�/output or state�/space models and assume

linearity of the plant. The main difference between the

first principles and the black-box models is that the

parameters in the former bear certain physical mean-

ings, which can be very useful in the diagnostic
procedure or the controller design.

Although dynamic systems are continuous processes,

all the diagnostic tools use sampled data, and hence only

discrete models are included herein. However the basic

concepts, if not the detailed analysis, carry over to

continuous models. In addition, most of the model-

based approaches assume system linearity. Their appli-

cation to a non-linear system requires a model lineariza-
tion around the operating point.

Consider a system with m inputs and k outputs. Let

u(t)�/[u1(t). . .um(t)]
T be the process inputs and y(t)�

[y1(t) . . . yk(t)]
T be the process outputs, where t

denotes the discrete time. The basic system model in

the state�/space form is

x(t�1)�Ax(t)�Bu(t)

y(t)�Cx(t)�Du(t) (1)

where A, B, C and D are parameter matrices with

appropriate dimensions; x(t ) denotes the n dimensional

state vector.

The same system can be expressed in the input�/

output form

H(z)y(t)�G(z)u(t) (2)

where H(z ) and G(z) are polynomial matrices in z�1,

(the backward-shift operator), H(z) is diagonal; H(z )

and G(z ) are of the form

H(z)�I�H1z
�1�H2z

�2� . . .�Hnz
�n

G(z)�G0�G1z
�1�G2z

�2� . . .�Gnz
�n

Process models (1) and (2) describe an ideal situation

where there are no faults or any form of disturbances

and/or noise. Faults in the state�/space framework are

usually modelled as (Gertler, 1991, 1993)

x(t�1)�Ax(t)�Bu(t)�Ep(t)

y(t)�Cx(t)�Du(t)�E?p(t)�q(t) (3)

where input commands u(t) and measured outputs y(t)

are both observable. Included in p(t) are actuator faults,
certain plant faults, disturbances as well as input sensor

faults. q(t) represents output sensor faults. In the input�/

output framework, Eq. (2) is replaced with

H(z)y(t)�G(z)u(t)�H(z)q(t)�F(z)p(t) (4)

where q(t ) and p(t) are as defined above.

When developing models for the real situation, we

need to distinguish between two different forms of

faults, additive and multiplicative, both of which result

in additional terms in the process model (2). Multi-

plicative faults lead to changes in the parameters (i.e. in

matrices H(z ) and G(z)) and depend on the actual

values of the observed variables. With multiplicative
faults, the model (2) changes to (Gertler, 1992)

(H(z)�DH(z))y(t)�(G(z)�DG(z))u(t) (5)

Additive faults, on the other hand, appear as addi-

tional terms in the process model (2) and are indepen-

dent of the values of the observed variables. Unknown
disturbances are included in Eq. (2) as

H(z)y(t)�G(z)u(t)�H(z)q(t)�F(z)p(t)�K(z)v(t) (6)

where q(t) are the sensor faults; p(t) represent the

actuator faults; and v (t) are unknown disturbances.

Unknown disturbances include ‘unstructured uncertain-
ties’ such as components that are not modelled, mea-

surement noise and unknown faults. All these have been

incorporated into the process model as additive faults.

Observe that Eq. (4) and Eq. (6) are essentially the same

except for the noise term in the latter. A comparison of

Eq. (6) and Eq. (5) reveals another distinction between

additive and multiplicative faults. Additive faults occur

in the model as unknown functions of time multiplying
known matrices, whereas multiplicative faults occur in

the model as known functions of time (observable)

multiplying unknown matrices. These differences have a

bearing on how they are treated in the diagnostic

methodology (Gertler, 1992). Additive and multiplica-

tive faults are often referred to as uncertainties in

control literature and are distinguished for the same

reason (Morari & Zafiriou, 1989).
Methods based on analytical redundancy derive

residuals which are insensitive to uncertainties but are

sensitive to faults. One of the popular ways of doing this
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is the method of disturbance decoupling. In this

approach, all uncertainties are treated as disturbances

and filters (also known as unknown input observer

(UIO)) are designed (Frank & W.ünnenberg, 1989;
Viswanadham & Srichander, 1987) to decouple the

effect of faults and unknown inputs so that they can

be differentiated. In chemical engineering systems, a

tuples method that exploits the functional redundancy

using steady state mass and energy balance equations

was proposed by Kavuri and Venkatasubramanian

(1992). In this method, constraints are developed for

various set of assumptions using model equations and
these constraints are monitored for violation. While the

use of steady state model leads to a satisfactory

diagnostic scheme, the use of dynamic model would

reduce the modelling errors and improve the relations

between the tuple deviation and the corresponding

assumptions.

5.2. Residual generation in dynamic systems

The analytical redundancy schemes for fault diagnosis

are basically signal processing techniques using state

estimation, parameter estimation, adaptive filtering and

so on. Both of above models, state�/space or input�/

output alike, can be written as

y(t)� f (u(t);v(t); x(t); u(t))

where y(t ), u(t) denote the measurable outputs and

inputs, x(t) and v (t) represent (mostly unmeasurable)

state variables and disturbance, and u is the process

parameters. Process faults usually cause changes in the
state variables and/or changes in the model parameters.

Based on the process model, one can estimate the

unmeasurable x(t ) or u (t) by the observed y(t) and

u(t) using state estimation and parameter estimation

methods. Kalman filters or observers have been widely

used for state estimation (Frank & W.ünnenberg, 1989).

Least squares methods provide a powerful tool by

monitoring the parameter estimates online (Isermann,
1989). More recently, techniques relying on parity

equations for residual generation have also been devel-

oped (Chow & Willsky, 1984; Gertler, Fang & Luo,

1990). Parity equations are obtained by rearranging or

transforming the input�/output models, which are rela-

tively easy to generate from on-line process data and

easy to use. Several most frequently used residual

generation methods are discussed in this section.

5.2.1. Diagnostic observers for dynamic systems

The main concern of observer-based FDI is the

generation of a set of residuals which detect and

uniquely identify different faults. These residuals should
be robust in the sense that the decisions are not

corrupted by such unknown inputs as unstructured

uncertainties like process and measurement noise and

modelling uncertainties. The method develops a set of

observers, each one of which is sensitive to a subset of

faults while insensitive to the remaining faults and the

unknown inputs. The extra degrees of freedom resulting
from measurement and model redundancy make it

possible to build such observers. The basic idea is that

in a fault-free case, the observers track the process

closely and the residuals from the unknown inputs will

be small. If a fault occurs, all observers which are made

insensitive to the fault by design continue to develop

small residuals that only reflect the unknown inputs. On

the other hand, observers which are sensitive to the fault
will deviate from the process significantly and result in

residuals of large magnitude. The set of observers is so

designed that the residuals from these observers result in

distinct residual pattern for each fault, which makes the

fault isolation possible. Unique fault signature is guar-

anteed by design where the observers show complete

fault decoupling and invariance to unknown distur-

bances while being independent of the fault modes and
nature of disturbances.

To see how one constructs an UIO, consider a system

described by the following discrete time state�/space

equations.

x(t�1)�Ax(t)�Bu(t)�Ed(t)�Fp(t)

y(t)�Cx(t) (7)

where d(t ) stands for the unknown inputs. An observer

is a model that takes the form

x0(t)�Tx(t)

x0(t�1)�Hx0(t)�Ju(t)�Gy(t) (8)

The idea is to use a dynamic algorithm to estimate the

state variables from observed inputs and outputs. The

design of an observer amounts to the choices of matrices

T, H, J and G. Denote the estimation error (the state
estimation error) at instant t�/1 by e(t�/1) and the

residual by r(t). Then

e(t�1)�x0(t�1)�Tx(t�1)

r(t)�L1x0(t)�L2y(t) (9)

It is easy to show that

e(t�1)�Hx0(t)�(J�TB)u(t)�Gy(t)�TAx(t)

�TEd(t)�TFp(t) (10)

In order to make the observer track the system

independent of the unknown inputs d(t), we need to

choose such matrix T that TE�/0. Observer tracking is

unaffectedby the inputu(t) if thematrixJ is so chosen that

J�/TB. Substituting these conditions into Eq. (10) yields

e(t�1)�Hx0(t)�(GC�TA)x(t)�TFp(t) (11)

Choose matrix G so that GC�/TA�/�/HT, H stable

and L1T�/L2C�/0. Then
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e(t�1)�He(t)�TFp(t)

r(t)�L1e(t) (12)

In fault-free case, p(t)�/0 and

e(t�1)�He(t) (13)

If the absolute values of the eigen values of H are less

than 1, e(t)0/0 as t0/�. As a result, in fault-free case

the estimation error and consequently the residual will

track the process regardless of the unknown inputs d(t)

to the process. Therefore it is named the unknown input

observer .
When a sensor fault occurs, output y(t) in Eq. (7)

changes to

y(t)�Cx(t)�q(t) (14)

and the estimation error and residual become

e(t�1)�He(t)�Gq(t)

r(t)�L1e(t)�L2q(t) (15)

Consequently, the error and the residual carry the

‘signature’ of the sensor faults. ‘Signatures’ correspond-

ing to the actuator faults are reflected in estimation

error and residual as seen in Eq. (12).

We have shown, briefly, the basic idea behind the

generation of diagnostic observers. For a detailed

discussion on general diagnostic observer design for
linear systems, the reader is referred to Frank (1994).

One important issue to be noted, as pointed out by

Frank, is that the observer-based design does not need

the application of state estimation theory, instead, only

output estimators are needed which are generally

realized as filters.

It is interesting to see that the concepts of isolability,

rejection of modelling uncertainties and multiple fault
identifiability all come together in terms of the mathe-

matical treatment provided above. In the observer

design, some of the degrees of freedom are taken up

by the condition TE�/0 for rejecting modelling uncer-

tainties. The degrees of freedom lost depend on the size

and structure of the matrix E. The remaining degrees of

freedom can be used in decoupling fault effects for

isolability and multiple fault identifiability. This de-
pends on the structure of the H matrix too, which

specifies system characteristics for the different fault

scenarios.

Some earlier work using diagnostic observers ap-

proach can be found in (Clark, 1979; Massoumnia,

1986; Frank & W.ünnenberg, 1989) among others.

Frank (1990) presented a solution to the fundamental

problem of robust fault detection, that provides the
maximum achievable robustness by decoupling the

effects of faults from each other and from the effects

of modelling errors. It is desirable that the performance

of an FDI scheme is unaffected by conditions in the

operating system which may be different from what it

was originally designed. A major problem in the

robustness of an FDI scheme comes from uncertainties

in the physical parameters of the operating plant. It is
fair to say that the more complex the system model is

and the heavier the technique depends on the model, the

more important the robustness becomes (Willsky, 1976).

Robustness remains an important problem in fault

diagnosis.

Generation of diagnostic observers for nonlinear

systems have also been considered to certain extent in

the literature. An elegant approach for the generation of
diagnostic observers for nonlinear systems which are in

the fault-affine (similar to control-affine forms discussed

in control literature) form can be found in (Frank,

1990), where a continuous time model is given. Its

corresponding discrete system model can be written as

x(t�1)�Ax(t)�B(y(t); u(t))�Ed(t)�F(x(t))p(t)

y(t)�Cx(t)�K(x(t))p(t); (16)

where A, B, E, F, C, K are matrices of appropriate
dimensions. This nonlinear observer design problem

follows the same line as the linear observers and the

observer model takes the form

x0(t)�Tx(t)

x0(t�1)�Hx0(t)�J(y(t); u(t))�Gy(t)

r(t)�L1x0(t)�L2y(t) (17)

which leads to the observer design equations

TA�HT�GC

TE�0

J(y(t); u(t))�TB(y(t); u(t))

L1T�L2C�0 (18)

From Eq. (18) matrices T, H, J, G, L1, L2 can be

determined.

There have been other researchers who have looked at

the problem of nonlinear observer design for a restricted

class of nonlinear systems. Design of observers for
bilinear nonlinearity can be found in (Dingli, Gomm,

Shields, Williams, & Disdell, 1995). Observers based on

differential geometric methods for fault-affine model

forms can be found in (Yang & Saif, 1995). Another

approach that can be used in the design of nonlinear

observers follows the work done in the development of

Kalman filters for state estimation. In this approach, the

observer gain matrix becomes time-variant and is the
linearized gain matrix around the current operating

point. These observers work well for slowly varying

faults, but might have difficulty in identifying jump
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failures. More information on such observers can be

found in (Frank, 1990).

5.2.2. Remarks on residual evaluation

Most of the work on observer design focuses on the
generation of residuals for dynamic systems with

satisfactory decoupling properties. Residual evaluation

also plays an important role in subsequent fault detec-

tion and diagnosis. The residual evaluation part con-

siders the trade-off between fast and reliable detection.

In most of the work on observer design, simple thresh-

old function is used in residual evaluation. Statistical

classifiers can also be used in residual evaluation. A
neural network approach for residual evaluation is

presented in (Koppen-Seliger, Frank, & Wolff, 1995).

5.2.3. Parity relations

Parity equations are rearranged and usually trans-

formed variants of the input�/output or state�/space

models of the plant (Gertler, 1991; Gertler & Singer,

1990). The essence is to check the parity (consistency) of
the plant models with sensor outputs (measurements)

and known process inputs. Under ideal steady state

operating conditions, the so-called residual or the value

of the parity equations is zero. In real situations, the

residuals are nonzero due to measurement and process

noise, model inaccuracies, gross errors in sensors and

actuators, and faults in the plant. The idea of this

approach is to rearrange the model structure so as to get
the best fault isolation. Dynamic parity relations was

introduced by Willsky (1976). Further developments

have been made by Gertler et al. (1990), Gertler, Costin,

Fang, Kowalczuk, Kunwer and Monajemy (1995) and

Gertler and Monajemy (1995) among others. Vaclavek

(1984) suggested the use of short-term averages of the

steady state balance equation residuals. Almasy and

Sztano (1975) used residuals to identify gross bias faults.
Redundancy provides freedom in the design of residual

generating equations so that further fault isolation can

be achieved. Fault isolation requires the ability to

generate residual vectors which are orthogonal to each

other for different faults. Ben-Haim (1980) used redun-

dancy in the balance equations for generating orthogo-

nal residuals for different fault classes. He also extended

the approach (Ben-Haim, 1983) to dynamic systems to
guarantee isolability under ideal conditions. Chow and

Willsky (1984) proposed a procedure to generate parity

equations from the state�/space representation of a

dynamic system. By defining marginal sizes for fault

alarms, Gertler and Singer (1990) extended it to

statistical isolability under noisy conditions and general-

ized the isolability criteria by simultaneously minimizing

the sensitivity of the residuals to small drifts in cases
having only the additive plant faults. They are attractive

alternatives owing to their ability to determine, a priori,

isolability of different faults. However, it should be

noted that all these methods are limited to faults that do

not include gross process parameter drifts, and none of

them address the issue of significant uncertainties in

multiplicative parametric faults.
The idea of parity space approaches can be explained

as follows (Desai & Ray, 1984; Frank, 1990)). Let y �Rn

be the measurement vector; x �Rm be the true values of

the state variables. Redundancy exists if n�/m . Under

fault-free conditions, let y and x be related by

y(t)�Cx(t) (19)

When a fault occurs with one of the measurements

y(t)�Cx(t)�Dy(t) (20)

where C �Rn�m is the parameter matrix. Choose the
projection matrix V �R(n�m)�n satisfying

VC�0

VTV�In�C(CTC)�1CT (21)

Being a null space of C, the rows of V are required to

be orthogonal, i.e. VVT�/In�m . Combining the obser-

vation y into a parity vector p yields

p(t)�Vy(t)�VCx(t)�VDy(t)�VDy(t) (22)

p(t)�/Vy(t ) is the parity equation set whose residuals
carry the signature of the measurement faults. In the

fault-free case, p�/0. For a single ith sensor fault.

Dy�[0 0 0 . . . Dyi . . . 0]?

VDy�Dyi � (the i
th column of V): (23)

Thus the columns of V determine n distinct directions

associated with those n sensor faults, which enables the

distinction of the n fault signatures and hence their

isolability.
The above procedure assumes direct redundancy. Due

to Chow and Willsky (1984), the following procedure

provides a general scheme for both direct and temporal

redundancy. Consider the state�/space model (1). The

output at t�/1 is

y(t�1)�CAx(t)�CBu(t)�Du(t�1) (24)

For any s�/0, y(t�/s ) takes the form

y(t�s)�CAsx(t)�CAs�1Bu(t)� . . .�CBu(t�s�1)

�Du(t�s) (25)

Collecting the equations for s�/0, 1,. . ., n15/n and

writing it in a compact form yield

Y(t)�Qx(t�n1)�RU(t) (26)

Pre-multiplying Eq. (26) with a vector wT of appro-

priate dimension yields a scalar equation

wTY(t)�wTQx(t�n1)�wTRU(t) (27)

In general, this equation will contain input variables,

output variables and unknown state variables. It will
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qualify as a parity equation only if the state variables

disappear which requires

wTQ�0 (28)

This is a set of homogeneous linear equations. If the

system is observable, these m equations are indepen-

dent. It has been shown that once the design objectives

are selected, parity equation and observer-based designs

lead to identical or equivalent residual generators

(Gertler, 1991).

5.2.4. Kalman filters

The plant disturbances are random fluctuations and

oftentimes only their statistical parameters are known.

One solution (Basseville, 1988; Willsky, 1976) to the

fault diagnosis problem in such systems entails monitor-

ing the innovation process or the prediction errors. The

objective is to design a state estimator with minimum

estimation error. It involves the use of optimal state

estimate, e.g. the Kalman filter, which is designed on the
basis of the system model in its normal operating mode.

It is well known that the Kalman filter is a recursive

algorithm for state estimation and it has found wide

applications in chemical as well as other industrial

processes. The Kalman filter in state�/space model is

equivalent to an optimal predictor for a linear stochastic

system in the input�/output model. The essential Kal-

man filter theory can be summarized briefly as follows.
Describe a linear finite dimensional stochastic system

by a state�/space model

x(t�1)�Ax(t)�Bu(t)�v(t)

y(t)�Cx(t)�v(t); t]0 (29)

where x(t ) is n-dimensional vector, A, B and C are

matrices with suitable dimensions, x0 has mean x̄0 and

covariance a0; v (t) and v(t) are Gaussian white noise

sequences with means E{v (t)}�/0, E{v(t)}�/0 and the

covariance matrix

E
v(t)

n(t)

� �
(vT (t); nT (t))

� �
�

Q S

S? R

� �
dt�t; (30)

where dt�t is Kronecker’s delta, v (t), v(t) are indepen-

dent of s (xs :s5/t).
In estimating the state x(t�/1) based on the observed

data {y(t)} and {u(t)}, the optimal Kalman filter

minimizes the function

J� lim
t0�

E(eT (t)e(t)) (31)

where e(t) is the estimation error and is defined as

e(t)�/y(t)�/C/x̂/(t).

Assume the initial state and noise sequences are
jointly Gaussian. Consider the estimator x̂(t�1)�
Efx(t�1)jy(t); . . . ; y(0); u(t); . . . ; u(0)g: The filtered

state x̂/(t�/1) satisfies:

x̂(t�1)�Ax̂(t)�Bu(t)�K(t)[y(t)�Cx̂(t)]

x̂0� x̄0: (32)

The Kalman filter gain K (t) is given by

K(t)� [AS(t)CT�S][CS(t)CT�R]�1 (33)

where S(t) is a n�/n state error covariance matrix.

The statistical analysis of Kalman filter was pioneered

by Willsky and Jones (1976) and further explored by

Basseville and Benveniste (1986) and Basseville and

Nikiforov (1993) and the references therein. It has been
shown that a bank of Kalman filters (Basseville &

Benveniste) designed on the basis of all the available

possible system models under all possible changes can be

used for the isolation purpose. Fathi, Ramirez, and

Korbiez (1993) included adaptive analytical redundancy

models in the diagnostic reasoning loop of knowledge-

based systems. The modified extended Kalman filter

(EKF) is used in designing local detection filters in their
work. In a recent work, Chang and Hwang (1998)

explored the possibility of using sub optimal EKF in

order to enhance computation efficiency without sacrifi-

cing diagnosis accuracy.

5.2.5. Parameter estimation

Diagnosis of parameter drifts which are not measur-

able directly requires on-line parameter estimation

methods. Accurate parametric models of the process

are needed, usually in the continuous domain in the

form of ordinary and partial differential equations. The
system models represented by Eq. (1) and Eq. (7) assume

process parameters to be either constants or dependent

only on state variables. Faults which occur as time

dependent parameter drifts can be handled through

parameter estimation methods. This procedure (Iser-

mann, 1984) is described as follows: obtain process

model with only the measured inputs and outputs in the

form:

y(t)�f (u(t); u): (34)

Model parameters u are estimated as measurements

y(t) and u(t ) become available, u in turn are related to

physical parameters 8 in the process by u�/g (8 ).

Changes in the parameters 8 , D8 are computed from

this relationship. Using methods of pattern recognition,
one can relate the changes D8 to process faults.

Isermann (1984) and Young (1981) surveyed different

parameter estimation techniques such as least squares,

instrumental variables and estimation via discrete-time

models. These methods require the availability of

accurate dynamic models of the process and are

computationally very intensive for large processes. The

most important issue in the use of parameter estimation
approach for fault diagnosis is one of complexity. The

process model used could be either based on input

output data, nonlinear first principles model or a
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reduced order model. If the process model is complex

nonlinear first principles model, then the parameter

estimation problem turns out to be a nonlinear optimi-

zation problem. Real-time solution to complex non-
linear optimization problems is a serious bottleneck in

the application of such approaches. Reduced order or

input�/output data models could be used in the para-

meter estimation approach and in this case, the robust-

ness of the approach has to be addressed.

5.3. Hardware redundancy and voting schemes

Voting techniques are often used in systems that
possess high degrees of parallel hardware redundancy

(Willsky, 1976). For example, consider three identical

sensors measuring the same variable. If one of the three

signals differs markedly from the other two, the differ-

ing signal is identified as faulty. The difference between

the two signals in every pair of sensors in a redundant

group indicates a fault. Voting schemes are easy to

implement and are quick to identify mechanical faults in
instruments. An alternative approach (Desai and Ray,

1984) is to search, given error bounds on different

sensors, for subsets of sensor measurements with

different degrees of consistency. The most consistent

subset is used for estimating the measured quantity. The

least consistent subset is used for isolating the faulty

sensors. Broen (1974) has developed a class of voter-

estimators using parallel hardware redundancy to detect
sensor faults. The advantage is that the faulty sensors

are removed smoothly from consideration reducing the

number of false alarms. Voting systems in isolation do

not take advantage of singly or even doubly redundant

sensors and hence ignore potential information.

5.4. Generating enhanced residuals

The diagnostic residuals reflect the potential faults of

a system. The next step is to confirm the presence of a

fault and to identify it, i.e. to detect and to isolate the

fault. For the purpose of isolation, it is necessary to

generate such diagnostic residuals that are not only fault

sensitive but also fault-selective. To this end, the residual

generator must be able to produce a set of residuals

rather than a single one and make residuals respond
selectively to each potential fault. The residuals gener-

ated can thus serve not only as fault detector but also as

fault classifier.

There have been efforts to design residual generators

capable of generating ‘enhanced’ residuals which are

conducive to fault isolation. Two of such enhancement

methods, the directional residual approach (Gertler and

Monajemy, 1995) and the structural residual approach
(Gertler et al., 1990; Gertler and Singer, 1990) have

attracted much attention owing to their capability of

generating residuals having directional or structural

properties thereby facilitating the fault isolation process.

The structured residual generators are designed in such

a way that each residual responds to a subset of faults

selectively. Such design allows to form binary fault
signatures for further isolation. The directional residual

generators are capable of generating residuals that are

confined to a fault specific direction in the multidimen-

sional residual space. As a result, the fault isolation step

amounts to the determination of a predefined direction

to which the residuals lie the closest.

5.4.1. Directional residuals

The directional residual approach generates residual

vectors which are confined to a fault specific direction

that allows to isolate the faults from their locations in

the multidimensional residual space. The design of a
directional residual generator is based on linear time-

invariant finite dimensional systems. Consider the

system model (Yin, 1998):

h(z�1)y(t)�U(z�1)u(t)�V(z�1)p(t)�W(z�1)v(t);

t]1
(35)

where p(t ), v(t) denote faults and noise, respectively.

A residual generator is a linear dynamic operator

operating on the observable y(t) and u(t) and having a
form

r(t)�G(z�1)y(t)�H(z�1)u(t) (36)

Eq. (36) is the ‘computational form’ of the generator.

It was so designed that G(z�1) and H(z�1) are poly-

nomials. Such a generator is computationally simple and

is guaranteed to yield bounded residuals provided that

y(t) and u(t) are bounded. The residuals should not be

affected by the system input u(t), which leads to the

fundamental property of the generator

H(z�1)��h�1(z�1)G(z�1)U(z�1) (37)

Combining Eqs. (35)�/(37) yields

r(t)�F(z�1)p(t)�L(z�1)v(t) (38)

Eq. (38) is the ‘internal form’ of a residual generator,

which explains the sources of the residual.
The response of the directional residual vector r(t) to

the combined effects of all faults and noise is

r(t)�CD(z�1)p(t)�PM(z�1)v(t) (39)

where D(z�1) and M(z�1) describe the dynamics of the

fault and the noise, respectively; and the matrices C and

P govern the directions of the fault and the noise.

Gertler and Monajemy (1995) have shown that the

directional residuals in response to an arbitrary mix of

input and output faults can be generated by using

dynamic parity relations as well as by observer-based
designs. Their design relies on the input�/output model

of the monitored system, and the parity relations are

directly applied to the measurements of the input and
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output. A classification procedure which uses multi-

variate statistical anlysis to minimize the expected loss

from misclassification was designed in Yin and Gertler

(1995). To balance between optimality and robustness, a
minimax procedure (Yin, 1998) was proposed to deal

with more general situation.

5.4.2. Structured residuals

The structured residual approach produces residual

vectors so that each residual element, responds selec-

tively to a subset of faults. It is required that only a

fault-specific subset of the residual components is

nonzero in response to a fault. Equivalently, the

residuals corresponding to a specific fault will be

confined to a subspace of the entire residual space.
That allows to form binary fault signatures, or the so-

called residual structure for fault identification (isola-

tion) since each residual is completely unaffected by a

different subset of faults.

The structured residuals may be generated by struc-

tured parity equations in either ARMA or MA format,

or by state�/space equations. They can also be generated

using the direct eigenstructure assignment of the diag-
nostic observer. The following briefly describes how the

diagnostic residuals with structured properties can be

generated.

For a linear system, the observed input u(t) and

output y(t ) are related to their ‘true’ values u0(t) and

y0(t) by

u(t)�u0(t)�p(t)

y(t)�y0(t)�q(t)

where p(t) and q(t ) stand for actuator and sensor faults,

respectively. A residual is simply defined as

o(t)�H(z)y(t)�G(z)u(t) (40)

Rewrite Eq. (40) as

o(t)�H(z)(y0(t)�q(t))�G(z)((u0(t)�p(t)) (41)

Equivalently (from Eq. (2)):

o(t)�H(z)q(t)�G(z)p(t) (42)

The diagnosis residuals r(t ) having desirable struc-

tural properties are achievable with further transforma-

tions

r(t)�W(z)o(t) (43)

Observe that a proper choice of matrix W(z ) will

allow us to implement certain properties on r(t).

The residual structures are characterized by incidence

matrices, whose columns and rows are fault codes and
residuals, respectively. For a system with three possible

faults F�/[F1 F2 F3]?, for example, a possible incidence

matrix is (Gertler et al., 1990)

F1 F2 F3

r1 I I 0

r2 0 I I

r3 I 0 I

0
BB@

1
CCA (44)

where an I element indicates that the residual does

respond to the fault while a 0 means that it does not.

Columns of the incidence matrix are the signatures of

the particular fault. Therefore a fault is not detectable if

its corresponding column in the incidence matrix con-

tains all zeros, which means that no residuals are

responsive to the fault. Two faults are not distinguish-

able by a structure if their columns are identical.

5.5. Further discussion on quantitative model-based

diagnosis methods

It can be seen that one of the major advantages of

using the quantitative model-based approach is that we

will have some control over the behavior of the

residuals. However, several factors such as system
complexity, high dimensionality, process nonlinearity

and/or lack of good data often render it very difficult

even impractical, to develop an accurate mathematical

model for the system. This, of course, limits the

usefulness of this approach in real industrial processes.

The evaluation of residuals usually involves threshold

testing. Statistical tests have been utilized for residuals

generated from parity relation as well as observer-based
designs. The diagnostic residuals are correlated, that has

complicated the test design and execution procedures.

The correlation issue was addressed in (Gertler & Yin,

1996). To better handle the correlation issue, probability

distributions of the correlated residuals as well as their

moving averages were derived. The Generalized Like-

lihood Ratio test was applied to correlated residuals for

detection and isolation.
Many survey papers with different emphases on

various model-based approaches have been published

over the past two decades. The earliest was due to

Willsky (1976), that covers methods ranging from the

design of specific fault-sensitive filters to the use of

statistical tests on filter innovations and the develop-

ment of jump process formulations. The issue of

complexity vs. performance was also addressed therein.
Isermann (1984) reviewed the fault detection methods

based on the estimation of non-measurable process

parameters and state variables. Basseville (1988) ad-

dressed the problem of detection, estimation and

diagnosis of changes in dynamic properties of signals

or systems with emphasis on statistical methods. Frank

(1990) outlined the principles and the most important

techniques using parameter identification and state
estimation with emphasis on the robustness with respect

to modelling errors. Gertler (1991) presented several

residual generation methods including parity equations,
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diagnostic observers and Kalman filter in a consistent

framework. He showed that once the desired residual

properties have been selected, parity equation and

observer based design lead to identical and equivalent

residual generators. Frank et al. (2000), recently, have

reviewed the state-of-the-art developments in model-

based fault diagnosis in technical processes. Among the

books published in this area, the first one addressed the

issue of fault detection and diagnosis in chemical

industry and was written by Himmelblau (1978). The

first multi-authored book on fault diagnosis in dynamic

systems (Patton, Frank, & Clark, 1989), published in

1989, provided a wide coverage of various methods.

Theory and application of detection of abrupt changes

can be found in Basseville and Benveniste (1986) and

Basseville and Nikiforov (1993). Recent books on fault

detection and diagnosis have been written by Gertler

(1998) and Chen and Patton (1999) and Russell, Chiang,

and Braatz (2000). A number of other references can be

found in the survey papers and books cited above.

Most of the work on model-based diagnostic systems

has so far been concentrated in the aerospace, mechan-

ical and electrical engineering literature. There has not

been too much work on applications of observers for

fault diagnosis in chemical engineering systems. How-

ever, the idea and use of state estimators is quite

prevalent in the process control community (Soroush,

1998). This may be due to the fact that the objectives of

state/parameter estimation techniques when used in

process control are different from the objectives of fault

diagnosis as pointed out by Watanabe and Himmelblau

(1984). Further, the unavailability/complexity of high

fidelity models and the essential nonlinear nature of

these models for chemical processes render the design of

diagnostic observers for chemical engineering systems

quite difficult. Watanabe and Himmelblau (1982)

looked at the detection of instrument faults in non-

linear time-varying processes that include uncertainties

such as modelling error, parameter ambiguity and input/

output noise using state estimation filters. The same

authors later (Watanabe and Himmelblau, 1983a,b)

proposed a two-level strategy for fault detection and

diagnosis. The first-level consists of estimation of the

states of a nonlinear process by a linear state estimator

(Luenberger observer). The second level consisted of

fault parameter identification by using the estimated

state vector from the first-level through a least squares

procedure. This technique was applied to a chemical

reactor and shown to be faster that EKF as well as

yielding unbiased and precise estimates. Watanabe and

Himmelblau (1984) used a linear reduced order state

estimator and the EKF to reconstruct state variables

and to identify the unknown deteriorating parameters in

the same reactor. They show this to be more effective

that using just the EKF on the same process model.

Gertler and Luo (1989) presented a design procedure

to generate isolable parity equation models chosen from

a multitude of suitable models on the basis of sensitiv-

ities with respect to different failures and robustness
relative to uncertainties in selected parameters. They

illustrated the application of the technique on a distilla-

tion column. The application of EKF-based FDI system

for fault diagnosis in the Model IV FCCU case study

involving DAEs was reported by Huang, Dash, Reklai-

tis, and Venkatasubramanian (2000). The application of

three UIOs, one a linear , second an extended linear and

the third a non-linear UIO on a CSTR case study is
discussed in Dash, Kantharao, Rengaswamy, and Ven-

katasubramanian (2001). In their work, the performance

of these three observers are evaluated through extensive

simulation studies.

6. Conclusions

In this first part of the three part review paper, we
have reviewed quantitative model based approaches to

fault diagnosis. For the comparative evaluation of

various fault diagnosis methods, we first proposed a

set of desirable characteristics that one would like the

diagnostic systems to possess. This can serve as a

common set of criteria against which the different

techniques may be evaluated and compared. Further,

we provided a general framework for analyzing and
understanding various diagnostic systems based on the

transformations of the process data before final diag-

nosis is performed. For quantitative model based

diagnosis methods, we discussed and reviewed various

issues involved in the design of fault diagnosis systems

using analytical models.

In terms of the transformations in measurement

space, in quantitative model based approaches, the
residual equations act as the feature space. As an

example, if decoupled observers can be designed for a

system, then the residuals act as features that are

sensitive to only one fault at a time. Residual evaluation

using threshold logic maps the feature space to class

space. Transformation from the decision space to class

space depends on the type of observer design. If the

faults are all completely decoupled, then class space and
decision space are the same. Such a view of quantitative

model based approach decouples the task of observer

generation from that of observer evaluation and dis-

parate techniques can be used to solve these issues in

observer design.

Quantitative model based approaches can be evalu-

ated based on the ten desirable characteristics required

of a diagnostic classifier. These address important
issues, both theoretical and practical, such as how

quickly the system detects a fault, can it diagnose the

fault with minimum misclassification, its robustness to

V. Venkatasubramanian et al. / Computers and Chemical Engineering 27 (2003) 293�/311 309



noise and uncertainties, adaptability, explanation facil-

ity modelling effort, computational requirements and so

on.

The type of models the analytical approaches can
handle are limited to linear, and in some cases, to very

specific nonlinear models. For a general nonlinear

model, linear approximations can prove to be poor

and hence the effectiveness of these methods might be

greatly reduced. Another problem in this approach is the

simplistic approximation of the disturbances that in-

clude modelling errors. In most cases, the disturbance

matrix includes only additive uncertainty. However, in
practice, severe modelling uncertainties occurring due to

parameter drifts come in the form of multiplicative

uncertainties. This is a general limitation of all the

model-based approaches that have been developed so

far. In addition to difficulties related to modelling they

do not support an explanation facility owing to their

procedural nature. Further, a priori estimation of

classification errors can not also be provided using these
methods. Another disadvantage with these methods is

that if a fault is not specifically modelled (novelty

identifiability), there is no guarantee that the residuals

will be able to detect it. Adaptability of these ap-

proaches to varying process conditions has also not

been considered. When a large-scale process is consid-

ered, the size of the bank of filters can be very large

increasing the computational complexity, though, with
the recent increase in computational power and the

essential linear nature of these problems, this might not

be a serious bottle-neck.

Given the extensive literature on quantitative model

based methods, it is difficult to include all of them in a

review. However, we believe that the papers and books

cited in the review would serve the reader as good

resources for entry and further study. In the remaining
two parts of this series, we will review qualitative model

based methods and process history based techniques and

conclude with a comparison of all three groups of

methods.
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