
Estimating the Cost of Security for COTS
Software

Donald J. Reifer, Barry W. Boehm, and Murali Gangadharan

University of Southern California
Center for Software Engineering

Los Angeles, CA 90089
d.reifer@ieee.org

{boehm, murali}@usc.edu

Abstract. This paper describes enhancements being made to the Uni-
versity of Southern California’s COnstructive COTS (COCOTS) in-
tegration cost model to address security concerns. The paper starts by
summarizing the actions we have taken to enhance COCOMO II to model
the impact of security on development effort and duration. It then relates
the COCOMO II approach to the COCOTS estimating framework so
that the enhancements proposed can be incorporated into the COCOTS
model. After summarizing the team’s progress in developing counterpart
COCOTS security cost drivers and expert-consensus cost driver param-
eter values, the paper points to the steps that will be taken to validate
the findings and calibrate the model.

1 Introduction

As the software engineering community incorporates more and more COTS soft-
ware into its systems, security becomes a more important concern. The reason
behind this worry is that firms are becoming increasingly apprehensive that their
critical operations will be disrupted as they integrate and use more and more
commercial components into their systems. For example, spyware inserted in
commercial operating systems have made it easy for non-authorized parties to
collect proprietary information about an individual’s or firm’s usage habits. Ad-
ditionally, viruses, worms and Trojan horses inserted in COTS packages have
infected entire systems and brought them down for prolonged periods of time.
What’s worse, according to the National Research Council’s recent report of
Trust in Cyberspace [1], many of the threats posed by COTS components are
simply ignored by firms because they don’t know how to deal with them.

Understandably, there are many factors that make COTS security hard to
address [2]. Predominate among them is the fact that COTS software is provided
by third parties to firms in executable form without full disclosure of what the
software functionality and performance is. While it is relatively easy to analyze
source code for security flaws, checking binaries is a labor intensive and arduous
task. The situation is further confused by the fact that most COTS packages
are in a variable state of flux much of the time. This is due to the fact that

H. Erdogmus and T. Weng (Eds.): ICCBSS 2003, LNCS 2580, pp. 178–186, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595.276 841.889] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: AbbrechenEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Error /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile (Ø¯P) /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

Estimating the Cost of Security for COTS Software 179

new versions of the package are released frequently and inconsistencies between
vendor offerings only become apparent when usage patterns change over time
during operations.

Many COTS users would like to do more when it comes to security. But,
they don’t understand what factors drive the costs of additional assurance and
are concerned that the effort will be too time-consuming and expensive relative
to the benefits derived. They need help in understanding the consequences of
their actions in terms of dollars and cents. In response, the Center for Software
Engineering at the University of Southern California (USC/CSE) has mounted
an effort to address these concerns as part of its active COTS software integration
and maintenance cost modeling efforts. This paper reports the initial results of
our efforts to date in structuring and analyzing the effects of required security
on COTS integration effort.

2 The COCOTS Model

USC/CSE has been researching the topic of COTS costs for several years. We
have worked with clients to understand the factors that drive the cost. Using
this information, USC has developed a cost-estimating model called COCOTS
(COnstructive COTS integration cost model [3]). COCOTS builds on the pop-
ular USC/CSE COCOMO II model [4] to predict the effort involved in integrat-
ing COTS software products into applications using the activity-based approach
shown in Fig. 1. In the COCOTS model, the assessment activity refers to the
process by which COTS components are selected for use. Tailoring refers to those
activities undertaken to prepare the selected COTS packages for use. Glue code
development refers to development and testing of the connector software, which
integrates the COTS components into the larger application.

In Fig. 1, software systems are assumed to comprise of a mix of new, modified,
reused and COTS components. The central block in the diagram indicates that to
determine the total effort, the COCOTS estimate must be added to the numbers
predicted for the non-COTS software by the COCOMO II model. The relative
size of the effort in each of the blocks is a function of the size of the final
application. The terms Life Cycle Objective (LCO), Life Cycle Architecture
(LCA) and Initial Operational Capability (IOC) refer to project milestones in the
USC MBASE life cycle model. The COTS part of the estimate is developed for
each of these four activities using formulas that take component size and volume
of work into account. Cost drivers like staff experience and desired reliability are
used by the models to address variability of costs to operating conditions across
organizations.

The total cost of incorporating COTS packages into an application becomes
the linear sum of the three sources of effort as follows:

Total COTS Cost in COCOTS (staff-months of labor) =
Assessment Effort + Tailoring Effort + Glue Code Effort

180 D.J. Reifer, B.W. Boehm, and M. Gangadharan

Fig. 1. COCOTS Activity-Based Costing Elements

We have studied each of these activities in depth during the past three years.
Using data collected on 20+ projects, we were able to identify the significant
factors that influenced project effort and duration and determine their relative
impacts on cost [5].

3 Security Enhancements for COCOMO II and COCOTS

Neither the COCOMO II nor the COCOTS estimating model currently includes
security as a cost driver. This was not an oversight in either model’s design. Until
recently, security was considered a significant factor only for military projects.
Several cost models addressed security from this vantage point. But, none of
these models considers current threats posed by the current state-of-the-art of
information munitions. We all are familiar with the threats posed by viruses,
worms and denial-of-service attacks like those posed by Code Red. PC World
magazine [6] reports that as many as 200 to 300 such viruses circle the globe in
any given month. What’s worse, the Software Engineering Institute reports that
this number is rising with over 26,000 incidences reported just in the first quarter
of this year as compared with 21,756 incidences reported in the year 2000 (see
www.cert.org/stats/ for details). As the threat increases, our ability to deal with
attacks diminishes. For example, a recent article [7] reports that the conventional
“layered security” and “defense-in-depth” security strategies used by many firms
to combat current threats have major holes. As another example, spyware can
be covertly inserted into commercial applications via COTS software to perform

Estimating the Cost of Security for COTS Software 181

industrial espionage. As a final example, tampering with binaries and COTS
software represents yet another set of threats as adversaries try to exploit other’s
work and steal other’s technology (key algorithms, protection schemes, make
techniques, underlying frameworks, etc.). For these reasons, many commercial
firms now are now interested in determining how the costs of implementing
different security strategies.

To address security costs in traditional software developments, we have an-
alyzed how existing models addressed security and found them deficient. In re-
sponse, we proposed the use of an optional cost driver in COCOMO II [8] that
we developed especially for security. As Table 1 illustrates, this driver builds
on the large Body of Knowledge [9] that the security community has developed
over the past decade and the Common Criteria [10]. The motivating force behind
use of these techniques is the expansion of business into the world of systems
of systems (i.e., network-centric processing of applications in a geographically
distributed fashion). Such systems network organizations and applications to-
gether across the Internet, Virtual Private Networks, Intranets and Extranets
and permit wireless and mobile access to provide subscribers with instant access
to information through linkages with distributed, persistent knowledge bases.

Using the framework in Table 1, we conducted a Delphi exercise to obtain
some initial expert-based cost driver values for the relative cost of security for
the COCOMO II model. This scheme views security from a design, protection
and physical security perspective. We circulated a survey to USC-CSE’s Affili-
ates to rate the cost of implementing different strategies within organizations,
both aerospace and comercial. The goal was to develop and calibrate a secu-
rity cost driver that firms and government agencies could use if they needed
to. In the COCOMO II software that we freely distribute from our web site at
http://sunset.usc.edu, we permit users to employ a user-specified cost driver to
address the additional cost of parameters of interest. Because cost drivers are
chosen to be relatively independent random variables, variation in one can be
considered without considering conditional relationships with other parameters.
Using the information presented in Tables 1 and 2, the expert consensus indi-
cates that the delta cost per instruction for implementing software supporting
a layered defensive security strategy would be forty-one percent higher than for
taking the nominal passive defense strategy.

Unfortunately, the scheme we devised for COCOMO II will only apply to
the glue code portion of COCOTS. For completeness, we will have to determine
the delta effort associated with the two additional activities in this model as
illustrated in Table 3 and sum them to develop an estimate for the total security
effort associated with securing a COTS package in staff-months. As the Table
indicates, our initial poll of experts believes that security adds a nominal fifty
percent to the cost when of COTS. Furthermore, they believe the range of impact
on effort is between ten and ninety-five percent and schedule between five and
forty-three percent. Of course, there could be no impact. This would be true
if security was not a concern and protection did not have to be built into the
system to limit the negative impact.

182 D.J. Reifer, B.W. Boehm, and M. Gangadharan

Table 1. Proposed Security Cost Driver Rating Scheme for COCOMO II

Rating Design for Security Operational Security Development
Constraints

Extremely
High (XH)

Defense-in-depth strategy is
planned for. The design is
formally verified. The resulting
model is supplemented by a
formal specification of the
requirements and high-level
design. Evidence of developer
”white box” testing and com-
plete independent confirmation
of developer test results is
provided along with correspon-
dence proofs. Security controls
are supported by a measurable
life-cycle model that supports
selected protection mechanisms.

The defense-in-depth strategy
for protection is imple-
mented. The security policy
is represented as a formal
model. Protection against
insider and outsider attacks
is provided using intrusion
detection systems, proxy
servers and firewalls. Hard-
ware write-protected audit
trails are maintained to
capture forensic evidence.
Independent vulnerability
analysis and penetration
tests performed by external
teams. All communications
and storage are encrypted.

Physical security
is strengthened
even more to
include the most
biometric devices
and other modern
access control.

Very High
(VH)

Layered defense strategy is
planned for. The design is ver-
ified using a semi-formal repre-
sentation. Security is supported
by a modular and layered ap-
proach to design, and a struc-
tured presentation of the imple-
mentation. Independent search
for vulnerabilities is performed
to ensure high resistance to
penetration attack. Systematic
analysis of covert channels is
performed. Security controls are
supported throughout develop-
ment by a standardized life-
cycle model that embraces se-
lected protection mechanisms

A layered defense strategy is
implemented to protect the
system. Audit trails are main-
tained and access to the sys-
tem are strictly controlled.
All external communications
are encrypted. Message digests
and integrity verification pro-
grams used to monitor activi-
ties for penetration attempts.
Intrusion detection systems,
firewalls and proxy servers are
used to protect the network.

Specialized fa-
cilities are used
to provide even
more physical pro-
tection (SCIFs).
Facilities are
secured against
emissions of spu-
rious radiation.
High levels of
vigilance are
maintained.

High (H) A perimeter defense strategy is
planned for. The design is tested
and reviewed in depth to en-
sure security requirements are
satisfied. The low-level design
is analyzed to ensure proper
protection. Testing is supported
by an independent search for
obvious vulnerabilities. Security
controls are supported by the
life-cycle model selected, tools,
and the configuration manage-
ment system.

A perimeter defense strat-
egy is implemented to pro-
tect the system. An unclassi-
fied network is used for ex-
ternal communications with
no co-mingling of access with
the project’s secure networks.
An incidence response team
is put into practice. Audit
trails are maintained to track
incidences. Data redundancy
is used to ensure continuous
availability of sensitive infor-
mation.

Guards, cam-
eras and other
perimeter defense
measures are
put into place to
provide additional
physical security
protection.

Nominal
(N)

Security requirements are for-
mulated for the system and
its design using high- level
guidance documents. Developer
tests validating that these re-
quirements are satisfied are in-
dependently verified. Black box
and vulnerability analysis are
performed.

Security policies are well spec-
ified. Reasonable password
and virus protection practices
are put into place along with
database integrity and privacy
controls. Project has admin-
istrator to monitor security
controls and improve them
as needed. Proper guidance
documentation is in place for
both the administrators and
the users

Development per-
sonnel co-located
in single facility
with cipher lock or
other protection
to guard against
unauthorizedaccess.

Low (L) No security requirements. No
security protection other than
that provided by the vendors
built into either the product or
the software engineering envi-
ronment.

No organization-wide security
policies. Ad hoc use of security
practices. Some use firewalls
and virus protection, some
don’t.

No unique facility
requirements

Estimating the Cost of Security for COTS Software 183

Table 2. Security Cost Driver Values

Ad hoc

Defense

(L)

Active

Defense

(N)

Perimeter

Defense

(H)

Layered

Defense

(VH)

Defense in

Depth

(XH)

Average

Rating

0.94 1.02 1.27 1.43 1.75

Range of

Ratings

0.91 to 1.0 1.0 to 1.05 1.1 to 1.4 1.2 to 1.6 1.4 to 2.0

Table 3. Range of Delta Effort and Duration Due to Security

Range of ImpactActivity Nominal

Effort

Delta Effort Nominal

+ Effort Effort Duration

Assessment

Done in two

passes:

* Initial

filtering effort

* Detailed

assessment

effort

Adds a third

pass:

* Try

before you

buy

15%
+ 12 to

20%

+ 5 to

10%

Tailoring

Estimated

assuming an

average effort

adjusted for

complexity

Adds a

second pass:

* Assess

vulnerabiliti

es during

setup

10%
+ 8 to

18%

+ 5 to

10%

Glue code

development

COCOMO II-

like model that

uses cost

drivers to

address

parametric

variations

Add a new

cost driver

for security

to glue code

model

30%
+ 0 to

75%

+ 0 to

33%

+5 to 43% + 50%
+10to95

%
+5to43%

The COCOTS assessment effort estimation model includes security as one
of 17 attributes being assessed for COTS suitability. For each attribute, the
assessment effort is determined as (Number of Products assessed)*(Average as-
sessment effort per product), without further guidance on the latter factor, using
Table 1, we can provide a graded sequence of assessment activities needed for
increasing security assurance. At the “Low” level, for example, organizations
would tap into user communities to see if the COTS has any reported security
holes. They would next follow up with the vendors to see if the security problems
have been fixed in a timely manner. At the next level, they would embrace a
“try the package, before buying it” philosophy. Evalutators would then acquire
the COTS package using an evaluation license and test it for viruses, worms,
covert channels and a variety of other known security issues. Next, they would

184 D.J. Reifer, B.W. Boehm, and M. Gangadharan

try to identify vulnerabilities, isolate problems and determine potential damage
inherent to COTS software by running a series of regression tests that they have
prepared for such an examination. Further, they would search for dependencies
and try to identify configuration-sensitive parameters and platform-sensitive be-
havior. As expected, this extra analysis and testing takes additional time and
effort. Based upon our analyses as illustrated in Table 3, the range of the deltas
involved in assessment due to security can add between twelve to twenty percent
to the effort and five to ten percent to the duration of this activity.

The tailoring activity configures the COTS package for use within a specific
context. Tailoring refers to the normal actions that would be undertaken to
adapt a product to the specific host computing environment’s configuration like
parameter initialization, screen layout and/or report setup. Again, security can
add effort and time to the job especially if those involved have to do more
than scan each file before incorporating it into the configuration to determine
whether or not it is free from viruses, worms, Trojan horses and other types of
information munitions. The more secure the application, the more work involved.
For example, those involved might perform sophisticated dynamic scans of the
COTS software using some a threat simulator to test it for hijackers, hitchhikers
or masquerades during setup if you were using it in a critical application. They
might also have to examine the behavior of active applets with another threat
simulator if you were using Java or other software with known security issues.
Such scans are context sensitive and time-consuming to run. Again, as shown
in Table 3, based upon our analysis the range of deltas for the extra time and
effort involved in tailoring can add between eight to eighteen percent to effort
and five to ten percent to the duration of this activity.

The glue code development activity is also impacted when security becomes
a concern in the system. Because protection must be built into the system,
generic wrappers and bindings build to interface COTS components to the oper-
ating system or middleware are hardened. This also takes more effort and time
to accomplish. These resources can be easily assessed using an additional cost
driver for security. Like in the COCOMO II model, such a security driver can be
employed as a user-defined parameter in COCOTS because it uses a like math-
ematical formulation to predict effort and duration. However, driver ratings for
COTS may be rated differently than those developed for COCOMO II to prevent
a mismatch between the security level of the product and the application into
which it is integrated. In addition, security ratings must be done in a manner
that minimizes overlap between contributing parameters. For these reasons, we
have developed the separate rating scheme in Table 4 for the proposed additional
security cost driver that we are adding to the COCOTS model.

Based upon our analysis, the range of impact as shown in Table 3 is between
zero and seventy-five percent for effort and zero and thirty-three percent for
duration depending on the extent to which wrappers and bindings have to be
hardened and the operational software has to be protected.

Estimating the Cost of Security for COTS Software 185

Table 4. Proposed Security Cost Driver Rating Scheme for COCOTS

Rating Protect with Value

Very High

(VH)

Agents used to dynamically search for potential

security breaches as connectivity is established and

maintained across system in real-time. All of “High”

plus top level anti-tamper and data integrity analysis.

1.45

High

(H)

Hardened wrappers and bindings used to isolate access

to operating system and middleware. All of “Nominal”

plus lots of vendor liaison to ensure that adequate

security protection is built-in the product.

1.29

Nominal

(N)

COTS wrapped and layered for “plug-and-play” to

minimize potential threats. COTS scanned both

statically and dynamically for information munitions.

Vendor error reports checked to ensure that there are no

open security holes and all patches have been installed.

1.15

Low

(L)

No protection. COTS scanned statically for viruses,

worms, Trojan horses and other information munitions

1.00

4 Next Steps: Model Validation and Calibration

We have initiated an effort to validate statistically that the model accurately
predicts the impact of added security on effort and duration. We have started
with the values developed by experts via our Delphi exercise. Next, we will survey
the 20 projects that we have used to initially calibrate the model to collect and
analyze the actual impact of security considerations. In parallel, we will use the
enhanced data collection forms to gather data from the additional projects that
we are working with to determine whether the initial security calibration that
we have derived makes sense and holds up when estimates are compared with
actual costs. As the database grows, we will glean greater insights into what
security strategies work for COTS, under what conditions, and at what cost.
Our goal is to refine the initial model developed by experts using actual data
provided by projects. As our work progresses, we will provide additional reports
summarizing our results.

Acknowledgements. We would like to thank the following groups for sup-
porting the development of COCOTS: the USAF, the FAA, the Office of Naval
Research, the Software Engineering Institute, the USC-CSE Affiliates, the mem-
bers of the COCOMO II research group and most especially the organizations
and individuals that have participated in our Delphi exercises and supplied the
data upon which our model is calibrated. Particularly valuable contributions
have come from Arthur Pyster, Marshall Potter, Roger Cooley, Pat Lewis, Jim
Thomas, and Pat Heyl of the FAA; Chris Abts of Texas A&M University, and
Betsy Bailey of Software Metrics, Inc.

186 D.J. Reifer, B.W. Boehm, and M. Gangadharan

References

1. Committee on Information Systems Trustworthiness, Trust in Cyberspace. Na-
tional Academy Press (1999)

2. Lindqvist, U., and Jonsson, E.: A Map of Security Risks Associated with Using
COTS. In: IEEE Computer, June (1998) 60–66.

3. Abts, C., Boehm, B., and Clark, E. B.: COCOTS: A Software COTS-Based System
(CBS) Cost Model—Evolving Towards Maintenance Phase Modeling. In: Proceed-
ings of ESCOM (2001)

4. Boehm, B. W., Abts, C., Brown, A. W., Chulani, S., Clark, B. K., Horowitz, E.,
Madachy, R., Reifer, D., and Steece, B.: Software Cost Estimation with COCOMO
II. Prentice-Hall (2000)

5. Abts, C., Boehm, B., and Clark, E. B.: COCOTS: A COTS Software Integration
and Cost Model—Model Overview and Preliminary Data Findings. In: Proceedings
of ESCOM (2000)

6. Luhn, R., and Spanbauer, S.: Protect Your PC. In: PC World, July (2002) page
92

7. Mackey, R: Layered Insecurity. Information Security, June (2002) 61–68.
8. Reifer, D. J.: Security: A Rating Concept for COCOMO II. Center for Software

Engineering, University of Southern California, May (2002)
9. Allen, J. H.: The CERT Guide to System and Network Security Practices. Addison-

Wesley (2001)
10. Common Criteria for Information Technology Security Evaluation—Part 3: Secu-

rity Assurance Requirements. Version 2.1, CCIMB-99-033, August (1999)

	Introduction
	The COCOTS Model
	Security Enhancements for COCOMO II and COCOTS
	Next Steps: Model Validation and Calibration

