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ABSTRACT 
With the constantly increasing Internet traffic and fast changing 
network protocols, future routers have to simultaneously satisfy 
the requirements for throughput, QoS, flexibility, and scalability. 
In this work, we propose a novel integrated CPU/GPU microarc-
hitecture, Hermes, for QoS-aware high speed routing. We also 
develop a new thread scheduling mechanism, which significantly 
improves all QoS metrics. 

Categories and Subject Descriptors 
C.2.6 [Computer-Communication Networks]: Internetworking 

– Routers; C.1.2 [Processor Architectures]: Multiple Data 

Stream Architectures (Multiprocessors) – Single-instruction-

stream, multiple-data-stream processors (MIMD); C.1.3 [Proces-

sor Architectures] Other Architecture Styles – Heterogeneous 

(hybrid) systems 

General Terms. Performance 

Keywords 
Software Router, QoS, CPU/GPU Integration 

1. Introduction 
As the backbone of Internet, IP routers provide the physical and 
logic connections among multiple computer networks. When a 
packet arrives, a router will determine which out-bounding net-
work the packet should be forwarded to according to the current 
routing table and the packet’s destination IP address. On modern 
routers, typical packet processing involves a series of operations 
on packet headers/body [1] by a CPU or a network processor. A 
router has to deliver a high forwarding throughput under strin-
gent quality-of-service requirements. In this work, we focus on 
improving packet processing performance by developing a novel 
integrated CPU/GPU microarchitecture as well as a correspond-
ing QoS-aware scheduling mechanism. 

Now IP routers have to face a unique set of challenges. First of 
all, the Internet traffic is still exponentially increasing, especially 
with the introduction of on-line video and P2P technologies (e.g. 
[2]). In fact, current core routers are required to deliver a 
throughput of 40Gbps - 90Tbps [3]. Another trend is that new 

network services and protocols are fast appearing, although the 
Internet is still based on IPv4 and Ethernet technologies that both 
were developed in 1960s [4]. As a result, the original protocols 
have to be extended and updated to adapt to today’s network 
applications. Good programmability is crucial to meet such re-
quirements. 

Current router solutions can be classified into application-
specific integrated circuit (ASIC) based, network processor based, 
and software based [5]. However, none of these solutions could 
simultaneously meet the requirements for both high throughput 
and programmability. 

Recently graphic processing units (GPUs) are appearing as a new 
platform that could offer strong computing power [6]. GPUs also 
have a stable mass market and thus strong supports for software 
development (e.g., [7] and [8]). Accordingly, it is appealing to 
leverage the mature GPU microarchitecture for network routing 
processing. Two recent works already proved the performance 
potential of GPU to accelerate packet processing [9] and [10]. 
Nevertheless, it is also found that current GPU architectures are 
still under serious limitations for routing processing. First, GPU 
computing requires the packets to be copied from CPU’s main 
memory to GPU’s video memory. The extra memory copy intro-
duces a performance overhead. Second, the batch based GPU 
processing could not guarantee processing QoS for an individual 
packet, although such QoS requirements are critical for routers. 
In this work, we develop novel solutions to augment an existing 
GPU microarchitecture for high speed packet processing with 
QoS assurance. Our basic design philosophy is to make the best 
out of mature hardware and software solutions with minimal 
modifications. The contributions of this paper are as follows. 

• We proposed Hermes, an integrated CPU/GPU, shared mem-
ory microarchitecture that is enhanced with an adaptive warp 
issuing mechanism for IP packet processing. To the best of 
our knowledge, this is the first work on developing a GPU-
based packet processing platform that simultaneously opti-
mizes all metrics of QoS. 

• A complete set of router applications were implemented on 
Hermes. We also conducted extensive QoS evaluations on 
Hermes microarchitecture. When compared with a GPU-
accelerated software router [9], Hermes delivers a 5X en-
hancement in throughput, an 81.2% reduction in average 
packet delay, as well as a 72.9% reduction in delay variance. 

The rest of the paper is organized as follows. Section 2 reviews 
the background of this work. Section 3 details the hardware and 
software designs of the Hermes microarchitecture. A thorough 
performance evaluation is presented in Section 4. Section 5 con-
cludes the whole paper and outlines important future research 
directions. 
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2. Background and Motivation 
The responsibility of a router is to deliver packets from ingress 
ports to egress ports in a timely manner. The fundamental tasks 
of IP layer packet processing involves checking IP header, packet 
classification, routing table lookup, decrementing TTL value, and 
packet fragmentation. The critical path of a complete IP router 
tasks chain is presented as follows: Checking IP Header (Check-
IPHeader) � Packet Classification (Classifier)  � Routing Table 
Lookup (RTL) � Decrementing TTL (DecTTL) � IP Fragmen-
tation (Fragmentation) [4]. In addition, to meet the ever-
demanding requirements for intrusion detection, deep packet 
inspection (DPI) [11] is increasingly becoming a regular task 
deployed before routing processing or even an integral part of 
modern IP routers. We use all the above tasks as benchmark ap-
plications in our experimental evaluations. 

2.1 Current IP Router Solutions 
Modern IP router solutions can be classified into three main cate-
gories, hardware routers, software routers and programmable 
network processors (NPUs) [5].  

Hardware routers depend on customized hardware, i.e., ASICs, to 
deliver the highest performance with the least power/area over-
head. Nonetheless, hardware routers suffer from the long design 
turnaround time, high non-recurring engineering (NRE) cost, and 
poor scalability and programmability. Such hurdles have made 
ASIC based solutions gradually out of the mainstream routers.  
In contrast, software routers implement all packet processing 
applications as programs running on commodity computers (e.g., 
[12]). They are extremely flexible because any change in network 
configurations and protocols can be realized through re-
programming. Furthermore, general purpose processors are tar-
geting a much more massive market and thus backed up with 
more mature operating systems and development tools. However, 
it is extremely challenging for pure software routers to deliver 
sufficient processing power required by high performance net-
works. Typically, software routers could only deliver a through-
put of 1-3Gbps, which is considerably lower than the required 
throughput of 40Gbps - 90Tbps for core networking equipment 
[3]. Therefore, such routers can only be used in relatively small 
networks.  

In the middle of the solution spectrum is the network processing 
unit (NPU) based IP routers. NPUs are dedicated packet 
processing engines by integrating a given number of identical 
processing elements designed for packet manipulation [13]. A 
clear downside of NPUs is that so far no effective programming 
models have been constructed due to the limited size of market 
and customer base [14]. The small volume of NPUs also leads to 
prohibitive per-chip cost. In addition, network processors often 
need customized logic modules for critical path processing [3]. 
Such modules could not be reprogrammed for new network pro-
tocols. The above hurdles already forced some top NPU vendors 
to close their product line of network processor [15] and resort to 
multi-core based router solutions (e.g., [16]). 

2.2 GPU Architecture and Programming Model 

Originally designed for graphics acceleration, GPUs are recently 
emerging as a high performance general-purpose computing 
platform [6]. A typical GPU is organized as an array of multipro-
cessors or shader cores. Each shader core will deploy multiple 
streaming processors (SPs) as well as a small amount of software 
controlled shared memory. A GPU program deploys a large 
number of threads organized into blocks with each block as-
signed to a unique shader core. A shader core would then decom-

pose a block of threads into 32-thread warps. A warp is the basic 
unit of job scheduling on GPUs. Each warp will always follow 
the same instruction schedule with each thread handling a differ-
ent data set. In other words, a warp of threads would execute 
instructions in a single-instruction, multiple data (SIMD) fashion. 
GPUs are supported with a video memory, or global memory in 
NVIDIA’s CUDA terminology. The global memory offers a high 
memory bandwidth, but also incurs a long latency.  

2.3 Pros and Cons of GPU Based Packet Processing 
The Internet services are realized through a hierarchical organiza-
tion of packet processing. Generally the processing of a packet is 
independent with others. Such a fundamental observation sug-
gests that GPU is potentially a good packet processing engine 
because various SP cores could handle multiple packets in paral-
lel. Two recent works reported in [9] and [10] already proved the 
potential of GPUs for packet processing. It is shown that a GPU 
based software router solution could outperform a CPU baseline 
router by a factor of up to 30X.  

However, two main problems still need to be resolved before a 
GPU accelerated software routers can be practical. First of all, 
the communication mechanism between CPU and GPU seriously 
degrades system throughput. In fact, the packets arriving at the 
router are first copied to CPU main memory and then to GPU 
global memory through a PCI Express (PCIe) bus with a peak 
bandwidth of 8GB/s [17]. The extra memory copy introduces 
performance and power overhead. The situation is exemplified 
by a signature matching application reported in [9]: the pure 
processing throughput of GPU can be over 30 times higher than 
that of CPU, but the speed-up degrades to 5X when considering 
the data transfer overhead. 

Secondly, the GPU’s batch processing model introduces a 
“throughput vs. delay” dilemma. The design philosophy of GPU 
is to employ the parallel architecture to maximize the overall 
throughput. Therefore, to best leverage the computing power of 
GPU, it is beneficial to accumulate data for sufficient parallelism. 
For packet processing, it means that the CPU needs to buffer 
enough packets before they can be transferred to GPU for parallel 
processing. Such a mechanism could worsen the latency for cer-
tain packets. Suppose each time batch_transfer_granularity bytes 
of data between CPU and GPU at a line card rate of 
line_card_rate of bytes per second. Then under the extreme con-
dition, the earliest arrived packet in a buffer has to wait for a time 
of batch_transfer_granularity / line-card_rate before it can be 
served. In addition, the GPU programming model typically orga-
nizes threads into blocks for batch processing. This organization 
further exacerbates the worst-case delay because a block finishes 
execution only when all internal threads have completed. 

3. Hermes System 
In this work, we developed Hermes, a heterogeneous microarchi-
tecture with CPU and GPU integrated on a single chip. The 
memory copy overhead can thus be removed by sharing a com-
mon memory system between CPU and GPU. On top of such a 
microarchitecture, we proposed an adaptive warp issuing me-
chanism to reduce worst-case packet latency. In this section, we 
first discuss the underlying microarchitecture, and then detail the 
adaptive warp issuing mechanism as well as its corresponding 
software extensions. 

3.1 CPU/GPU Integration with Shared memory 

With the rapidly growing integration capacity made available by 
the advancement of semiconductor process, it is now feasible to 
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integrate closely-coupled CPU and GPU cores on a single chip 
(e.g., [18]). The CPU and GPU access a common memory struc-
ture including both caches and DRAMs. Since Hermes is de-
signed for high-performance network processing, we choose to 
use GDDR5 [19] DRAM chips for better bandwidth. A diagram 
of Hermes is shown in Figure 1. 
The overall execution flow remains the same as a classical hete-
rogeneous CPU/GPU system (e.g., [9][10]). The CPU is respon-
sible for creating and initializing data structures according to 
packet processing applications. Upon the arrival of network 
packets, the packet data are stored into the shared memory and 
then fetched by shader cores for processing. Finally, the contents 
of the processed packets are updated in the shared memory, 
where they can be either further processed by CPU or directly 
forwarded to the destinations. 

 
Figure 1. Hermes microarchitecture 

The shared memory system serves as a large packet buffer to 
avoid the classical buffer sizing problem (e.g., [20]). In a typical 
network environment, the rule of “Bandwidth-Delay Product” 
(BDP) [21] mandates a 1.25GB buffer size [22], which is imprac-
tical in traditional router designs. On the other hand, routers us-
ing smaller buffers suffer from high packet loss rate [23]. How-
ever, the shared memory space in Hermes is naturally large 
enough to hold a sufficient number of incoming packets (even in 
case of burst) to guarantee packet availability. 

The programming model of Hermes is compatible with NVIDIA 
CUDA. Besides taking advantaging of existing development 
tools, such a programming model also avoids the memory cohe-
rency problem that is typical in shared memory architectures.  
Actually, CPU and GPU independently access data in CUDA. In 
case of packet processing, the CPU and GPU operations on an 
individual packet would be mutually exclusive. Nevertheless, it 
must be noted that the out-of-order commitment of processed 
packets could introduce coherency problems, which will be fur-
ther discussed in the next section. 

3.2 Adaptive Warp Issuing Mechanism 

The warp issuing mechanism of Hermes is responsible for as-
signing parallel tasks onto shader cores for further intra-core 
scheduling. On current GPUs, all the thread warps are kept in a 
warp pool before being issued. In order to maximize the overall 
throughput, warps are issued to shader cores by following a best-
effort strategy, which means the number of warps that can be 
issued in one round is only constrained by the number of availa-
ble warps as well as hardware resources such as per core register 
and shared memory size. For packet processing applications, 
however, it can be unaffordable to wait for an enough number of 
warps under certain circumstances. Therefore, we proposed an 
adaptive warp issuing mechanism that adapts to the arrival pat-
tern of network packets and maintains a good balance between 
overall throughput and worst-case per-packet delay. 

 

3.2.1 Mechanism 

The packets are received by network interface cards (NICs) and 
then copied to the shared memory via DMA transfers. The CPU 
is thus able to keep track of the number of arrived packets. Ac-
cordingly, the CPU is responsible for notifying the GPU to fetch 
packets for processing. As illustrated in Figure 1, a simple task 
FIFO would suffice to support such an interaction. 

When CPU decides it is appropriate to report the availability of 
packets, it creates a new FIFO entry with its value as the number 
of packets ready for further processing, assuming the task FIFO 
is not full. Meanwhile, the GPU is constantly monitoring the 
FIFO and making decisions on fetching a proper number of 
packets. Of course, the minimum granularity, i.e., number of 
packets, of one round of fetching by GPU should be at least equal 
to the number of threads in one warp. Otherwise, the GPU hard-
ware is not fully utilized. 

One essential question is that how frequently the CPU should 
update the task FIFO. It directly relates to the transferring pattern 
from NIC to shared memory. Again here a tradeoff has to be 
made. On the one hand, transferring a packet from NIC to the 
shared memory involves a book-keeping overhead such as read-
ing and updating the related buffer descriptors. The correspond-
ing extra bus transactions may be unaffordable [24]. In addition, 
too frequently updating of the task FIFO also complicates GPU 
fetching due to the restriction of finest fetching granularity men-
tioned before. On the other hand, too large an interval between 
two consecutive updates increases average packet delay. Moreo-
ver, setting a lower bound on transfer granularity, in the worst 
case, results in a timeout problem, which would postpone the 
processing of some packets. If such a timeout really happens, the 
NIC logic and corresponding device drivers have to be equipped 
with a timeout recovery mechanism. Considering the contradict-
ing concerns, we set the minimum data transfer granularity to be 
the size of a warp, i.e., 32 packets. In addition, if there are not 
enough packets arriving in a given interval, these packets should 
still be fetched and processed by GPU. A similar approach is 
taken by [24]. The interval is chosen to be 2 warp arriving times, 
although it is should be based on the packet arriving rate, i.e., an 
adaptive estimation. Upon finishing one transaction of data trans-
fer (from NIC to system memory), the CPU notifies GPU 
through updating the FIFO. Such a configuration generally guar-
antees that there are enough packets to be processed in one warp. 

Newly created warps are put in a pool for issuing. A round-robin 
issuing strategy is employed to evenly distribute the workload 
among each shader core. Clearly it is necessary to keep track of 
the availability of hardware resource that eventually restricts the 
maximum number of concurrently active warps. Upon reaching 
the limit, the warp issuing should pause until new processing 
slots are available.  

3.2.2 Guaranteed In-Order Warp Commit 

With the fine-grained multithreading execution model, thread 
warps running on one shader core may finish in an arbitrary order, 
not to mention warps running on different shader cores. As a 
result, sequentially arrived packets could get processed with any 
order. Typically, TCP does not enforce the order of packets 
processing and committing, since its header includes extra areas 
to enable retransmission and reassembly, but UDP does require 
in-order processing [25]. Therefore, it could be mandatory to 
maintain the packet commitment order the same as the arriving 
order to guarantee compatibility among different protocols. In 
NPUs, a complicated task scheduler is responsible for this pur-

1046

54.5



pose [26], but our solution only relies on a simple Delay Commit 
Queue (DCQ). 

 
Figure 2. Implementation of Delay Commit Queue (DCQ) with a 

Lookup Table (LUT) 

The key idea is to allow out-of-order warps execution but enforce 
in-order commitment. This resembles the Reorder Buffer (ROB) 
in a processor with hardware-enabled speculation mechanism, 
although our approach requires much less hardware cost. 

As illustrated in Figure 2, the DCQ holds the IDs of those warps 
that have finished but not committed yet. Every time a warp is 
about to be issued onto one shader core, and the DCQ is not full, 
a new entry is allocated. This mapping between warp ID and its 
DCQ entry ID is recorded in a lookup table (LUT). Upon finish-
ing, the corresponding DCQ entry is updated by indexing the 
LUT with the finished warp’s ID. Only could a warp be commit-
ted when all warps arrived earlier have been finished. Once a 
warp commits, its DCQ entry is reclaimed. 

Interestingly, the DCQ also prevents hazards on packet data. The 
CPU should be aware of the warp status to perform further opera-
tion. Such information could be reflected by the header pointer of 
DCQ. Without DCQ, the write operation by GPU and the read 
operation of CPU may lead to a data hazard. 

3.2.3 Hardware Implementation and Cost Estimation 
Since Hermes is implemented by augmenting an existing GPU 
microarchitecture, it is necessary to evaluate the extra hardware 
cost required. As mentioned earlier, we will need three new com-
ponents, task FIFO, Delay Commit Queue, and DCQ-Warp LUT 
storing the mapping of warp index to DCQ entry. 
Both task FIFO and Delay Commit Queue need to be assigned 
with a finite size, but there is no theoretical upper bound that 
could always avoid overflow. Based on extensive experiments, 
we find that a size of 1K entries for both task FIFO and DCQ 
suffice for typical packet traces. Since task FIFO stores the num-
ber of newly arrived tasks, its entries can be set with a size of one 
integer, i.e. 32 bits. The DCQ records the warp index and thus the 
size of its entries can be set as the total number of maximally 
allowed concurrent warps (MCWs) over all shader cores. In our 
work, the number of MCWs in a shader core is no larger than 32. 
Assuming 8 shader cores installed on GPU, the DCQ’s entry size 
can be set as 8 bits. For the DCQ-Warp LUT in a shader core, the 
number of its entries equals to the number of MCWs. Therefore, 
one LUT should have 32 entries, with each entry having a warp 
index portion of 5 bits and a DCQ index portion of 10 bits (to 
identify a unique entry in DCQ). To ease the alignment issues, 
we use 16 bits for each entry. Altogether, for a GPU with 8 shad-
er cores, we will need 5.5KB of extra storage that should be im-
plemented in SRAM. 

We use CACTI 5.1 [27] to estimate the area cost. Assuming a 
45nm process, CACTI’s SRAM model reports that task FIFO and 
DCQ cost 0.053mm2 and 0.013mm2 respectively, while 8 DCQ-

Warp LUTs take 0.006mm2 in total. Compared to the total area of 
one GPU chip, the hardware overhead is next to negligible. 

3.3 API Modifications 
To support the shared memory system and adaptive warp issuing, 
Hermes requires a few minor modifications on the host side API. 
A new built-in variable is also required for GPU kernels. Cur-
rently implemented as a library, all modifications are based on 
the CUDA programming model [6], and thus can be integrated 
into CUDA native language and runtime system. 

With the CPU and GPU sharing the same memory storage, the 
explicit memory copy is not necessary. Therefore, we do not 
need the memory copy APIs any more. Instead, we add two new 
memory management APIs, RMalloc(void **, size_t) and 
RFree(void *), for allocating and freeing memory storages. 

In addition, we also abandon the concept of Cooperative Thread 
Array (CTA), or thread blocks, and directly organized threads in 
warps. In fact, it is equivalent to regard CTA size in Hermes as 
always equal to warp size, i.e., 32. The reason for removing such 
a thread hierarchy is two-fold. First, we want to reduce the granu-
larity of GPU batch processing to achieve a better average packet 
delay. Second, in packet processing applications, it is naturally 
unnecessary for different packets (threads) to share data. There-
fore, under such a situation it does not need to organize threads 
into a larger CTA. An implication of the above decision is that 
we are now unable to compute a unique index for every thread 
(packet) as in common CUDA practices, i.e., unique_id = block-

Idx * blockDim + threadIdx. Instead, we define a new built-in 
variable, packetIdx, which is the only piece of necessary informa-
tion needed to program kernel codes. 

4. Experimental Evaluation 
In this work, we use GPGPU-Sim [28], a cycle-accurate GPU 
microarchitecture simulator that supports CUDA programs, to 
evaluate our modifications. The GPU microarchitecture configu-
rations used in this work are presented in Table 1. 

Table 1. Architectural Parameters 

Hardware Structure Configuration 

# Shader cores 8 

SIMD width 32 

Warp size 32 

Shader core frequency 1000MHz 

# Registers per shader core 16768 

Shared memory size per shader core 16KByte 

Maximally allowed concurrent warps per core User defined 

It is worth noting that, in the current implementation of GPGPU-
Sim, the host side CUDA codes run on a normal CPU, while the 
kernel codes are parsed and executed on the simulator. In other 
words, GPGPU-Sim can only evaluate the performance evalua-
tions of GPU computations. To avoid the complexity and per-
formance overhead of integrating a CPU simulator with GPGPU-
Sim, we evaluated the performance advantage of Hermes merely 
in terms of the overhead of PCIe transfers, which clearly domi-
nate in a GPU accelerated software router like the one proposed 
in [9]. 

To evaluate Hermes, we implemented a complete CUDA-enabled 
software router, which covers all the tasks as declared in Section 
2. For DPI, a bloom filter based algorithm [29] that is amenable 
for GPU implementation is employed. We take the string rule 
sets from Snort [30], and replay network traffic by Tcpreplay 
[31]. Packet traces for routing table lookup are retrieved from 
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RIS [32]. Packet classification implements the basic linear search 
algorithm and uses ClassBench [33] as the benchmark. The other 
three applications (CheckIPHeader, DecTTL, and Fragmentation) 
are adapted from RouterBench [34], and tested under WIDE 
traffic traces [35]. 

Since Hermes is targeting the IP routing applications, QoS is of 
key importance when evaluating system performance. QoS can 
be generally measured in terms of the following four major me-
trics, throughput, delay, delay variance, and availability [36]. 
Because we always perform loss-free tests, we omit the availabil-
ity metric and only report results of the other three. 

Throughput is defined as the total number of bits that can be 
processed and transferred during a given time period. Delay for a 
given packet is the time interval between the moment it enters the 
router and the time it is processed. It consists of both queuing 
delay and service delay. When the packet arriving rate (line-card 
rate) exceeds the processing throughput of the system, the suc-
ceeding packets have to wait before shader cores are available. 
This waiting time is the queuing delay. The service delay is the 
time for a packet to receive complete processing by a shader core 
(Note that the time spent in the DCQ is included). The delay 
disparity of different packets measured by interquartile range is 
designated as delay variance. In our experiments, we regard one 
warp as the minimum granularity of packet processing and omit 
the negligible variance among different packets in one warp. 
According to our profiling, DPI, packet classification and routing 
table lookup together consume nearly 90% of total processing 
time while the rest three (CheckIPHeader, DecTTL and Frag-
mentation) are much less demanding for processing power. In 
addition, the latter three applications have almost identical beha-
viors. Therefore, we use DecTTL as a representative. 

Figure 3 shows the three QoS metrics of the four benchmark 
applications. The number of maximally allowed concurrent 
warps (MCW) as well as the line-card rate are tuned to get differ-
ent QoS outcomes. We also present the influence of delay com-
mit queue and the number of shader cores. It is worth noting that 
due to the limitation of available registers, #MCW cannot be set 
to 32 for the packet classification application. 

A burst traffic that requires packet to be buffered before serviced 
is used in Figure 3(a) to 3(d). A sparse traffic is applied in 3(e). 
Both burst and sparse traffics are used in 4(f). Each application 
has their own line-card rate provided by traffic traces, as shown 
by the leftmost column of four column-sets in 3(a), 3(e) and 3(f). 

Figure 3(a) compares a traditional CPU/GPU system with differ-
ent configurations of Hermes. The overall processing time of 
CPU/GPU system consists of three components, packet-waiting 
overhead (the waiting time before enough packets are available 
for processing), PCIe transfer time, and GPU computation time. 
Hermes removes the PCIe transfer overhead and amortizes the 
packet-waiting time among computation. Therefore, the average 
throughput of Hermes can still outperform CPU/GPU by a factor 
of 5 in the best case, although the adaptive issuing mechanism 
violates the throughput-oriented design philosophy of GPU. 

Hermes can deliver network packets with a much smaller delay 
than a traditional CPU/GPU system as showed in 3(b). On the 
CPU/GPU system, packet delay is composed of waiting delay on 
the CPU side as well as processing delay on the GPU side. For 
RTL and DecTTL, due to their relatively simple processing on 
GPU, the waiting overhead at CPU side would contribute to a 
non-negligible part of total delay. Therefore, delay improvement 
is more significant for these two applications, since Hermes can 
overlap CPU side waiting overhead with GPU processing. Com-
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Figure 3. QoS metrics (a) throughput under burst traffic, (b) delay under burst traffic, (c) delay variance under burst traffic, (d) delay ratio, (e) 

throughput under sparse traffic, and (f) throughput scaling with # shader cores. 
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paring different configurations of Hermes, Hermes-8 (i.e., 
#MCW equals 8, and so on) always performs the worst. Classifi-
er and RTL do not present significant difference for other three 
configurations. On average, the best case of Hermes can reduce 
packet delay by 81.2%.  

As showed in 3(c), Hermes also outperforms CPU/GPU system 
in delay variance by 72.9% on average. Interestingly, the delay 
variance displays a similar trend as the delay itself. This indicates 
that the tendency of packet processing is consistent over all delay 
values. 

Although the using of DCQ will not affect the overall throughput, 
Figure 3(d) shows its impact on packet delay by normalizing to 
the corresponding cases without DCQ. The DCQ always results 
in longer packet delay, especially for DPI and DecTTL. It is be-
cause those packets taking divergent branches consume much 
longer time than those following convergent branches in these 2 
applications. The longer processing time mandates later-arrived 
packets buffered in DCQ, deteriorating average delay. 

We also perform a sparse traffic test where the arriving rate of 
packets is lower than the computing rate of Hermes shader cores. 
As illustrated in Figure 3(e), now packets can be issued without 
being queued. Therefore, they can be finished almost at the arriv-
ing rate, only penalized by the transfer overhead. Even in this 
case, the CPU/GPU system [9] is still unable to deliver the pack-
ets at their arriving rate. 

Finally, 3(f) demonstrates the scalability of the Hermes system. 
With the increasing of the number of shader cores from 8 to 17 to 
28 by changing the mesh configuration in GPGPU-Sim from 4x4 
to 5x5 to 6x6, the overall performance scales accordingly. Note 
that in DecTTL, the scaling factor does not completely follow 
that of shader cores. It is because the arriving packet rate is too 
sparse for 28-core Hermes so that shader cores are not fully uti-
lized, as justified by the fact that in DecTTL the throughput of 
Hermes28 is approximately equal to line-card rate. 

5. Conclusion and Future Work 

In this work, we proposed an integrated CPU/GPU microarchi-
tecture with a QoS-aware GPU scheduling mechanism for accele-
rating IP routing processing. A complete set of router applica-
tions were implemented on this architecture. Experimental results 
proved that the new microarchitecture could meet stringent delay 
requirements, while at the same time maintain a high processing 
throughput. Through minimal augmentation on the current GPU 
microarchitecture, this work opens a new path toward building 
high quality packet processing engines for future software routers. 

In the future, we will first explore the possibility of a better 
communication mechanism between NIC and Hermes since now 
it turns out to be another performance bottleneck. In addition, we 
are exploring a hardware and software framework to exert both 
task and data level QoS control on GPU-like microarchitectures. 
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