

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

DAC'11, June 5-10, 2011, San Diego, California, USA
Copyright © 2011 ACM 978-1-4503-0636-2/11/06...$10.00

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

Hermes: An Integrated CPU/GPU Microarchitecture for IP
Routing

Yuhao Zhu
Department of Electrical and Computer

Engineering
The University of Texas at Austin

yuhao.zhu@mail.utexas.edu

Yangdong Deng
Institute of Microelectronics

Tsinghua University

dengyd@tsinghua.edu.cn

Yubei Chen
Institute of Microelectronics

Tsinghua University

chen-
yb08@mails.tsinghua.edu.cn

ABSTRACT
With the constantly increasing Internet traffic and fast changing
network protocols, future routers have to simultaneously satisfy
the requirements for throughput, QoS, flexibility, and scalability.
In this work, we propose a novel integrated CPU/GPU microarc-
hitecture, Hermes, for QoS-aware high speed routing. We also
develop a new thread scheduling mechanism, which significantly
improves all QoS metrics.

Categories and Subject Descriptors
C.2.6 [Computer-Communication Networks]: Internetworking

– Routers; C.1.2 [Processor Architectures]: Multiple Data

Stream Architectures (Multiprocessors) – Single-instruction-

stream, multiple-data-stream processors (MIMD); C.1.3 [Proces-

sor Architectures] Other Architecture Styles – Heterogeneous

(hybrid) systems

General Terms. Performance

Keywords
Software Router, QoS, CPU/GPU Integration

1. Introduction
As the backbone of Internet, IP routers provide the physical and
logic connections among multiple computer networks. When a
packet arrives, a router will determine which out-bounding net-
work the packet should be forwarded to according to the current
routing table and the packet’s destination IP address. On modern
routers, typical packet processing involves a series of operations
on packet headers/body [1] by a CPU or a network processor. A
router has to deliver a high forwarding throughput under strin-
gent quality-of-service requirements. In this work, we focus on
improving packet processing performance by developing a novel
integrated CPU/GPU microarchitecture as well as a correspond-
ing QoS-aware scheduling mechanism.

Now IP routers have to face a unique set of challenges. First of
all, the Internet traffic is still exponentially increasing, especially
with the introduction of on-line video and P2P technologies (e.g.
[2]). In fact, current core routers are required to deliver a
throughput of 40Gbps - 90Tbps [3]. Another trend is that new

network services and protocols are fast appearing, although the
Internet is still based on IPv4 and Ethernet technologies that both
were developed in 1960s [4]. As a result, the original protocols
have to be extended and updated to adapt to today’s network
applications. Good programmability is crucial to meet such re-
quirements.

Current router solutions can be classified into application-
specific integrated circuit (ASIC) based, network processor based,
and software based [5]. However, none of these solutions could
simultaneously meet the requirements for both high throughput
and programmability.

Recently graphic processing units (GPUs) are appearing as a new
platform that could offer strong computing power [6]. GPUs also
have a stable mass market and thus strong supports for software
development (e.g., [7] and [8]). Accordingly, it is appealing to
leverage the mature GPU microarchitecture for network routing
processing. Two recent works already proved the performance
potential of GPU to accelerate packet processing [9] and [10].
Nevertheless, it is also found that current GPU architectures are
still under serious limitations for routing processing. First, GPU
computing requires the packets to be copied from CPU’s main
memory to GPU’s video memory. The extra memory copy intro-
duces a performance overhead. Second, the batch based GPU
processing could not guarantee processing QoS for an individual
packet, although such QoS requirements are critical for routers.
In this work, we develop novel solutions to augment an existing
GPU microarchitecture for high speed packet processing with
QoS assurance. Our basic design philosophy is to make the best
out of mature hardware and software solutions with minimal
modifications. The contributions of this paper are as follows.

• We proposed Hermes, an integrated CPU/GPU, shared mem-
ory microarchitecture that is enhanced with an adaptive warp
issuing mechanism for IP packet processing. To the best of
our knowledge, this is the first work on developing a GPU-
based packet processing platform that simultaneously opti-
mizes all metrics of QoS.

• A complete set of router applications were implemented on
Hermes. We also conducted extensive QoS evaluations on
Hermes microarchitecture. When compared with a GPU-
accelerated software router [9], Hermes delivers a 5X en-
hancement in throughput, an 81.2% reduction in average
packet delay, as well as a 72.9% reduction in delay variance.

The rest of the paper is organized as follows. Section 2 reviews
the background of this work. Section 3 details the hardware and
software designs of the Hermes microarchitecture. A thorough
performance evaluation is presented in Section 4. Section 5 con-
cludes the whole paper and outlines important future research
directions.

1044

54.5

2. Background and Motivation
The responsibility of a router is to deliver packets from ingress
ports to egress ports in a timely manner. The fundamental tasks
of IP layer packet processing involves checking IP header, packet
classification, routing table lookup, decrementing TTL value, and
packet fragmentation. The critical path of a complete IP router
tasks chain is presented as follows: Checking IP Header (Check-
IPHeader) � Packet Classification (Classifier) � Routing Table
Lookup (RTL) � Decrementing TTL (DecTTL) � IP Fragmen-
tation (Fragmentation) [4]. In addition, to meet the ever-
demanding requirements for intrusion detection, deep packet
inspection (DPI) [11] is increasingly becoming a regular task
deployed before routing processing or even an integral part of
modern IP routers. We use all the above tasks as benchmark ap-
plications in our experimental evaluations.

2.1 Current IP Router Solutions
Modern IP router solutions can be classified into three main cate-
gories, hardware routers, software routers and programmable
network processors (NPUs) [5].

Hardware routers depend on customized hardware, i.e., ASICs, to
deliver the highest performance with the least power/area over-
head. Nonetheless, hardware routers suffer from the long design
turnaround time, high non-recurring engineering (NRE) cost, and
poor scalability and programmability. Such hurdles have made
ASIC based solutions gradually out of the mainstream routers.
In contrast, software routers implement all packet processing
applications as programs running on commodity computers (e.g.,
[12]). They are extremely flexible because any change in network
configurations and protocols can be realized through re-
programming. Furthermore, general purpose processors are tar-
geting a much more massive market and thus backed up with
more mature operating systems and development tools. However,
it is extremely challenging for pure software routers to deliver
sufficient processing power required by high performance net-
works. Typically, software routers could only deliver a through-
put of 1-3Gbps, which is considerably lower than the required
throughput of 40Gbps - 90Tbps for core networking equipment
[3]. Therefore, such routers can only be used in relatively small
networks.

In the middle of the solution spectrum is the network processing
unit (NPU) based IP routers. NPUs are dedicated packet
processing engines by integrating a given number of identical
processing elements designed for packet manipulation [13]. A
clear downside of NPUs is that so far no effective programming
models have been constructed due to the limited size of market
and customer base [14]. The small volume of NPUs also leads to
prohibitive per-chip cost. In addition, network processors often
need customized logic modules for critical path processing [3].
Such modules could not be reprogrammed for new network pro-
tocols. The above hurdles already forced some top NPU vendors
to close their product line of network processor [15] and resort to
multi-core based router solutions (e.g., [16]).

2.2 GPU Architecture and Programming Model

Originally designed for graphics acceleration, GPUs are recently
emerging as a high performance general-purpose computing
platform [6]. A typical GPU is organized as an array of multipro-
cessors or shader cores. Each shader core will deploy multiple
streaming processors (SPs) as well as a small amount of software
controlled shared memory. A GPU program deploys a large
number of threads organized into blocks with each block as-
signed to a unique shader core. A shader core would then decom-

pose a block of threads into 32-thread warps. A warp is the basic
unit of job scheduling on GPUs. Each warp will always follow
the same instruction schedule with each thread handling a differ-
ent data set. In other words, a warp of threads would execute
instructions in a single-instruction, multiple data (SIMD) fashion.
GPUs are supported with a video memory, or global memory in
NVIDIA’s CUDA terminology. The global memory offers a high
memory bandwidth, but also incurs a long latency.

2.3 Pros and Cons of GPU Based Packet Processing
The Internet services are realized through a hierarchical organiza-
tion of packet processing. Generally the processing of a packet is
independent with others. Such a fundamental observation sug-
gests that GPU is potentially a good packet processing engine
because various SP cores could handle multiple packets in paral-
lel. Two recent works reported in [9] and [10] already proved the
potential of GPUs for packet processing. It is shown that a GPU
based software router solution could outperform a CPU baseline
router by a factor of up to 30X.

However, two main problems still need to be resolved before a
GPU accelerated software routers can be practical. First of all,
the communication mechanism between CPU and GPU seriously
degrades system throughput. In fact, the packets arriving at the
router are first copied to CPU main memory and then to GPU
global memory through a PCI Express (PCIe) bus with a peak
bandwidth of 8GB/s [17]. The extra memory copy introduces
performance and power overhead. The situation is exemplified
by a signature matching application reported in [9]: the pure
processing throughput of GPU can be over 30 times higher than
that of CPU, but the speed-up degrades to 5X when considering
the data transfer overhead.

Secondly, the GPU’s batch processing model introduces a
“throughput vs. delay” dilemma. The design philosophy of GPU
is to employ the parallel architecture to maximize the overall
throughput. Therefore, to best leverage the computing power of
GPU, it is beneficial to accumulate data for sufficient parallelism.
For packet processing, it means that the CPU needs to buffer
enough packets before they can be transferred to GPU for parallel
processing. Such a mechanism could worsen the latency for cer-
tain packets. Suppose each time batch_transfer_granularity bytes
of data between CPU and GPU at a line card rate of
line_card_rate of bytes per second. Then under the extreme con-
dition, the earliest arrived packet in a buffer has to wait for a time
of batch_transfer_granularity / line-card_rate before it can be
served. In addition, the GPU programming model typically orga-
nizes threads into blocks for batch processing. This organization
further exacerbates the worst-case delay because a block finishes
execution only when all internal threads have completed.

3. Hermes System
In this work, we developed Hermes, a heterogeneous microarchi-
tecture with CPU and GPU integrated on a single chip. The
memory copy overhead can thus be removed by sharing a com-
mon memory system between CPU and GPU. On top of such a
microarchitecture, we proposed an adaptive warp issuing me-
chanism to reduce worst-case packet latency. In this section, we
first discuss the underlying microarchitecture, and then detail the
adaptive warp issuing mechanism as well as its corresponding
software extensions.

3.1 CPU/GPU Integration with Shared memory

With the rapidly growing integration capacity made available by
the advancement of semiconductor process, it is now feasible to

1045

54.5

integrate closely-coupled CPU and GPU cores on a single chip
(e.g., [18]). The CPU and GPU access a common memory struc-
ture including both caches and DRAMs. Since Hermes is de-
signed for high-performance network processing, we choose to
use GDDR5 [19] DRAM chips for better bandwidth. A diagram
of Hermes is shown in Figure 1.
The overall execution flow remains the same as a classical hete-
rogeneous CPU/GPU system (e.g., [9][10]). The CPU is respon-
sible for creating and initializing data structures according to
packet processing applications. Upon the arrival of network
packets, the packet data are stored into the shared memory and
then fetched by shader cores for processing. Finally, the contents
of the processed packets are updated in the shared memory,
where they can be either further processed by CPU or directly
forwarded to the destinations.

Figure 1. Hermes microarchitecture

The shared memory system serves as a large packet buffer to
avoid the classical buffer sizing problem (e.g., [20]). In a typical
network environment, the rule of “Bandwidth-Delay Product”
(BDP) [21] mandates a 1.25GB buffer size [22], which is imprac-
tical in traditional router designs. On the other hand, routers us-
ing smaller buffers suffer from high packet loss rate [23]. How-
ever, the shared memory space in Hermes is naturally large
enough to hold a sufficient number of incoming packets (even in
case of burst) to guarantee packet availability.

The programming model of Hermes is compatible with NVIDIA
CUDA. Besides taking advantaging of existing development
tools, such a programming model also avoids the memory cohe-
rency problem that is typical in shared memory architectures.
Actually, CPU and GPU independently access data in CUDA. In
case of packet processing, the CPU and GPU operations on an
individual packet would be mutually exclusive. Nevertheless, it
must be noted that the out-of-order commitment of processed
packets could introduce coherency problems, which will be fur-
ther discussed in the next section.

3.2 Adaptive Warp Issuing Mechanism

The warp issuing mechanism of Hermes is responsible for as-
signing parallel tasks onto shader cores for further intra-core
scheduling. On current GPUs, all the thread warps are kept in a
warp pool before being issued. In order to maximize the overall
throughput, warps are issued to shader cores by following a best-
effort strategy, which means the number of warps that can be
issued in one round is only constrained by the number of availa-
ble warps as well as hardware resources such as per core register
and shared memory size. For packet processing applications,
however, it can be unaffordable to wait for an enough number of
warps under certain circumstances. Therefore, we proposed an
adaptive warp issuing mechanism that adapts to the arrival pat-
tern of network packets and maintains a good balance between
overall throughput and worst-case per-packet delay.

3.2.1 Mechanism

The packets are received by network interface cards (NICs) and
then copied to the shared memory via DMA transfers. The CPU
is thus able to keep track of the number of arrived packets. Ac-
cordingly, the CPU is responsible for notifying the GPU to fetch
packets for processing. As illustrated in Figure 1, a simple task
FIFO would suffice to support such an interaction.

When CPU decides it is appropriate to report the availability of
packets, it creates a new FIFO entry with its value as the number
of packets ready for further processing, assuming the task FIFO
is not full. Meanwhile, the GPU is constantly monitoring the
FIFO and making decisions on fetching a proper number of
packets. Of course, the minimum granularity, i.e., number of
packets, of one round of fetching by GPU should be at least equal
to the number of threads in one warp. Otherwise, the GPU hard-
ware is not fully utilized.

One essential question is that how frequently the CPU should
update the task FIFO. It directly relates to the transferring pattern
from NIC to shared memory. Again here a tradeoff has to be
made. On the one hand, transferring a packet from NIC to the
shared memory involves a book-keeping overhead such as read-
ing and updating the related buffer descriptors. The correspond-
ing extra bus transactions may be unaffordable [24]. In addition,
too frequently updating of the task FIFO also complicates GPU
fetching due to the restriction of finest fetching granularity men-
tioned before. On the other hand, too large an interval between
two consecutive updates increases average packet delay. Moreo-
ver, setting a lower bound on transfer granularity, in the worst
case, results in a timeout problem, which would postpone the
processing of some packets. If such a timeout really happens, the
NIC logic and corresponding device drivers have to be equipped
with a timeout recovery mechanism. Considering the contradict-
ing concerns, we set the minimum data transfer granularity to be
the size of a warp, i.e., 32 packets. In addition, if there are not
enough packets arriving in a given interval, these packets should
still be fetched and processed by GPU. A similar approach is
taken by [24]. The interval is chosen to be 2 warp arriving times,
although it is should be based on the packet arriving rate, i.e., an
adaptive estimation. Upon finishing one transaction of data trans-
fer (from NIC to system memory), the CPU notifies GPU
through updating the FIFO. Such a configuration generally guar-
antees that there are enough packets to be processed in one warp.

Newly created warps are put in a pool for issuing. A round-robin
issuing strategy is employed to evenly distribute the workload
among each shader core. Clearly it is necessary to keep track of
the availability of hardware resource that eventually restricts the
maximum number of concurrently active warps. Upon reaching
the limit, the warp issuing should pause until new processing
slots are available.

3.2.2 Guaranteed In-Order Warp Commit

With the fine-grained multithreading execution model, thread
warps running on one shader core may finish in an arbitrary order,
not to mention warps running on different shader cores. As a
result, sequentially arrived packets could get processed with any
order. Typically, TCP does not enforce the order of packets
processing and committing, since its header includes extra areas
to enable retransmission and reassembly, but UDP does require
in-order processing [25]. Therefore, it could be mandatory to
maintain the packet commitment order the same as the arriving
order to guarantee compatibility among different protocols. In
NPUs, a complicated task scheduler is responsible for this pur-

1046

54.5

pose [26], but our solution only relies on a simple Delay Commit
Queue (DCQ).

Figure 2. Implementation of Delay Commit Queue (DCQ) with a

Lookup Table (LUT)

The key idea is to allow out-of-order warps execution but enforce
in-order commitment. This resembles the Reorder Buffer (ROB)
in a processor with hardware-enabled speculation mechanism,
although our approach requires much less hardware cost.

As illustrated in Figure 2, the DCQ holds the IDs of those warps
that have finished but not committed yet. Every time a warp is
about to be issued onto one shader core, and the DCQ is not full,
a new entry is allocated. This mapping between warp ID and its
DCQ entry ID is recorded in a lookup table (LUT). Upon finish-
ing, the corresponding DCQ entry is updated by indexing the
LUT with the finished warp’s ID. Only could a warp be commit-
ted when all warps arrived earlier have been finished. Once a
warp commits, its DCQ entry is reclaimed.

Interestingly, the DCQ also prevents hazards on packet data. The
CPU should be aware of the warp status to perform further opera-
tion. Such information could be reflected by the header pointer of
DCQ. Without DCQ, the write operation by GPU and the read
operation of CPU may lead to a data hazard.

3.2.3 Hardware Implementation and Cost Estimation
Since Hermes is implemented by augmenting an existing GPU
microarchitecture, it is necessary to evaluate the extra hardware
cost required. As mentioned earlier, we will need three new com-
ponents, task FIFO, Delay Commit Queue, and DCQ-Warp LUT
storing the mapping of warp index to DCQ entry.
Both task FIFO and Delay Commit Queue need to be assigned
with a finite size, but there is no theoretical upper bound that
could always avoid overflow. Based on extensive experiments,
we find that a size of 1K entries for both task FIFO and DCQ
suffice for typical packet traces. Since task FIFO stores the num-
ber of newly arrived tasks, its entries can be set with a size of one
integer, i.e. 32 bits. The DCQ records the warp index and thus the
size of its entries can be set as the total number of maximally
allowed concurrent warps (MCWs) over all shader cores. In our
work, the number of MCWs in a shader core is no larger than 32.
Assuming 8 shader cores installed on GPU, the DCQ’s entry size
can be set as 8 bits. For the DCQ-Warp LUT in a shader core, the
number of its entries equals to the number of MCWs. Therefore,
one LUT should have 32 entries, with each entry having a warp
index portion of 5 bits and a DCQ index portion of 10 bits (to
identify a unique entry in DCQ). To ease the alignment issues,
we use 16 bits for each entry. Altogether, for a GPU with 8 shad-
er cores, we will need 5.5KB of extra storage that should be im-
plemented in SRAM.

We use CACTI 5.1 [27] to estimate the area cost. Assuming a
45nm process, CACTI’s SRAM model reports that task FIFO and
DCQ cost 0.053mm2 and 0.013mm2 respectively, while 8 DCQ-

Warp LUTs take 0.006mm2 in total. Compared to the total area of
one GPU chip, the hardware overhead is next to negligible.

3.3 API Modifications
To support the shared memory system and adaptive warp issuing,
Hermes requires a few minor modifications on the host side API.
A new built-in variable is also required for GPU kernels. Cur-
rently implemented as a library, all modifications are based on
the CUDA programming model [6], and thus can be integrated
into CUDA native language and runtime system.

With the CPU and GPU sharing the same memory storage, the
explicit memory copy is not necessary. Therefore, we do not
need the memory copy APIs any more. Instead, we add two new
memory management APIs, RMalloc(void **, size_t) and
RFree(void *), for allocating and freeing memory storages.

In addition, we also abandon the concept of Cooperative Thread
Array (CTA), or thread blocks, and directly organized threads in
warps. In fact, it is equivalent to regard CTA size in Hermes as
always equal to warp size, i.e., 32. The reason for removing such
a thread hierarchy is two-fold. First, we want to reduce the granu-
larity of GPU batch processing to achieve a better average packet
delay. Second, in packet processing applications, it is naturally
unnecessary for different packets (threads) to share data. There-
fore, under such a situation it does not need to organize threads
into a larger CTA. An implication of the above decision is that
we are now unable to compute a unique index for every thread
(packet) as in common CUDA practices, i.e., unique_id = block-

Idx * blockDim + threadIdx. Instead, we define a new built-in
variable, packetIdx, which is the only piece of necessary informa-
tion needed to program kernel codes.

4. Experimental Evaluation
In this work, we use GPGPU-Sim [28], a cycle-accurate GPU
microarchitecture simulator that supports CUDA programs, to
evaluate our modifications. The GPU microarchitecture configu-
rations used in this work are presented in Table 1.

Table 1. Architectural Parameters

Hardware Structure Configuration

Shader cores 8

SIMD width 32

Warp size 32

Shader core frequency 1000MHz

Registers per shader core 16768

Shared memory size per shader core 16KByte

Maximally allowed concurrent warps per core User defined

It is worth noting that, in the current implementation of GPGPU-
Sim, the host side CUDA codes run on a normal CPU, while the
kernel codes are parsed and executed on the simulator. In other
words, GPGPU-Sim can only evaluate the performance evalua-
tions of GPU computations. To avoid the complexity and per-
formance overhead of integrating a CPU simulator with GPGPU-
Sim, we evaluated the performance advantage of Hermes merely
in terms of the overhead of PCIe transfers, which clearly domi-
nate in a GPU accelerated software router like the one proposed
in [9].

To evaluate Hermes, we implemented a complete CUDA-enabled
software router, which covers all the tasks as declared in Section
2. For DPI, a bloom filter based algorithm [29] that is amenable
for GPU implementation is employed. We take the string rule
sets from Snort [30], and replay network traffic by Tcpreplay
[31]. Packet traces for routing table lookup are retrieved from

1047

54.5

RIS [32]. Packet classification implements the basic linear search
algorithm and uses ClassBench [33] as the benchmark. The other
three applications (CheckIPHeader, DecTTL, and Fragmentation)
are adapted from RouterBench [34], and tested under WIDE
traffic traces [35].

Since Hermes is targeting the IP routing applications, QoS is of
key importance when evaluating system performance. QoS can
be generally measured in terms of the following four major me-
trics, throughput, delay, delay variance, and availability [36].
Because we always perform loss-free tests, we omit the availabil-
ity metric and only report results of the other three.

Throughput is defined as the total number of bits that can be
processed and transferred during a given time period. Delay for a
given packet is the time interval between the moment it enters the
router and the time it is processed. It consists of both queuing
delay and service delay. When the packet arriving rate (line-card
rate) exceeds the processing throughput of the system, the suc-
ceeding packets have to wait before shader cores are available.
This waiting time is the queuing delay. The service delay is the
time for a packet to receive complete processing by a shader core
(Note that the time spent in the DCQ is included). The delay
disparity of different packets measured by interquartile range is
designated as delay variance. In our experiments, we regard one
warp as the minimum granularity of packet processing and omit
the negligible variance among different packets in one warp.
According to our profiling, DPI, packet classification and routing
table lookup together consume nearly 90% of total processing
time while the rest three (CheckIPHeader, DecTTL and Frag-
mentation) are much less demanding for processing power. In
addition, the latter three applications have almost identical beha-
viors. Therefore, we use DecTTL as a representative.

Figure 3 shows the three QoS metrics of the four benchmark
applications. The number of maximally allowed concurrent
warps (MCW) as well as the line-card rate are tuned to get differ-
ent QoS outcomes. We also present the influence of delay com-
mit queue and the number of shader cores. It is worth noting that
due to the limitation of available registers, #MCW cannot be set
to 32 for the packet classification application.

A burst traffic that requires packet to be buffered before serviced
is used in Figure 3(a) to 3(d). A sparse traffic is applied in 3(e).
Both burst and sparse traffics are used in 4(f). Each application
has their own line-card rate provided by traffic traces, as shown
by the leftmost column of four column-sets in 3(a), 3(e) and 3(f).

Figure 3(a) compares a traditional CPU/GPU system with differ-
ent configurations of Hermes. The overall processing time of
CPU/GPU system consists of three components, packet-waiting
overhead (the waiting time before enough packets are available
for processing), PCIe transfer time, and GPU computation time.
Hermes removes the PCIe transfer overhead and amortizes the
packet-waiting time among computation. Therefore, the average
throughput of Hermes can still outperform CPU/GPU by a factor
of 5 in the best case, although the adaptive issuing mechanism
violates the throughput-oriented design philosophy of GPU.

Hermes can deliver network packets with a much smaller delay
than a traditional CPU/GPU system as showed in 3(b). On the
CPU/GPU system, packet delay is composed of waiting delay on
the CPU side as well as processing delay on the GPU side. For
RTL and DecTTL, due to their relatively simple processing on
GPU, the waiting overhead at CPU side would contribute to a
non-negligible part of total delay. Therefore, delay improvement
is more significant for these two applications, since Hermes can
overlap CPU side waiting overhead with GPU processing. Com-

(a) Burst traffic without using DCQ

0

100

200

300

400

DPI Classifier RTL DecTTL

T
hr

ou
gh

pu
t
(G

bp
s)

Line-card Rate

CPU/GPU

Hermes-8

Hermes-16

Hermes-32

(b) Burst traffic without using DCQ

0

50

100

150

DPI Classifier RTL DecTTL

D
el

ay
 (
1K

 C
yc

le
s)

CPU/GPU

Hermes-8

Hermes-16

Hermes-32

(c) Burst traffic without using DCQ

0

20

40

60

80

DPI Classifier RTL Dec TTL

D
el

ay
 V

ar
ia

nc
e

(1
K

 C
yc

le
s)

CPU/GPU

Hermes-8

Hermes-16

Hermes-32

(d) delay with and without DCQ

0

0.5

1

1.5

2

DPI Classifier RTL DecTTL

D
el

ay
 R

at
io

Hermes-8

Hermes-16

Hermes-32

(e) Sparse traffic without using DCQ

0

50

100

150

200

DPI Classifier RTL Dec TTL

T
hr

ou
gh

pu
t
(G

bp
s)

Line-card
CPU/GPU
Hermes

(f) Throughput scalability

0

200

400

600

800

1000

1200

DPI Classifier RTL DecTTL

T
hr

ou
gh

pu
t
(G

bp
s)

Line-card Rate

Hermes 8 cores

Hermes 17 cores

Hermes 28 cores

Figure 3. QoS metrics (a) throughput under burst traffic, (b) delay under burst traffic, (c) delay variance under burst traffic, (d) delay ratio, (e)

throughput under sparse traffic, and (f) throughput scaling with # shader cores.

1048

54.5

paring different configurations of Hermes, Hermes-8 (i.e.,
#MCW equals 8, and so on) always performs the worst. Classifi-
er and RTL do not present significant difference for other three
configurations. On average, the best case of Hermes can reduce
packet delay by 81.2%.

As showed in 3(c), Hermes also outperforms CPU/GPU system
in delay variance by 72.9% on average. Interestingly, the delay
variance displays a similar trend as the delay itself. This indicates
that the tendency of packet processing is consistent over all delay
values.

Although the using of DCQ will not affect the overall throughput,
Figure 3(d) shows its impact on packet delay by normalizing to
the corresponding cases without DCQ. The DCQ always results
in longer packet delay, especially for DPI and DecTTL. It is be-
cause those packets taking divergent branches consume much
longer time than those following convergent branches in these 2
applications. The longer processing time mandates later-arrived
packets buffered in DCQ, deteriorating average delay.

We also perform a sparse traffic test where the arriving rate of
packets is lower than the computing rate of Hermes shader cores.
As illustrated in Figure 3(e), now packets can be issued without
being queued. Therefore, they can be finished almost at the arriv-
ing rate, only penalized by the transfer overhead. Even in this
case, the CPU/GPU system [9] is still unable to deliver the pack-
ets at their arriving rate.

Finally, 3(f) demonstrates the scalability of the Hermes system.
With the increasing of the number of shader cores from 8 to 17 to
28 by changing the mesh configuration in GPGPU-Sim from 4x4
to 5x5 to 6x6, the overall performance scales accordingly. Note
that in DecTTL, the scaling factor does not completely follow
that of shader cores. It is because the arriving packet rate is too
sparse for 28-core Hermes so that shader cores are not fully uti-
lized, as justified by the fact that in DecTTL the throughput of
Hermes28 is approximately equal to line-card rate.

5. Conclusion and Future Work

In this work, we proposed an integrated CPU/GPU microarchi-
tecture with a QoS-aware GPU scheduling mechanism for accele-
rating IP routing processing. A complete set of router applica-
tions were implemented on this architecture. Experimental results
proved that the new microarchitecture could meet stringent delay
requirements, while at the same time maintain a high processing
throughput. Through minimal augmentation on the current GPU
microarchitecture, this work opens a new path toward building
high quality packet processing engines for future software routers.

In the future, we will first explore the possibility of a better
communication mechanism between NIC and Hermes since now
it turns out to be another performance bottleneck. In addition, we
are exploring a hardware and software framework to exert both
task and data level QoS control on GPU-like microarchitectures.

6. References
[1] F. Baker, Requirements for IP Version 4 Routers, Internet RFC

1812, June 1995.
[2] E. Schumacher-Rasmussen, Cisco Predicts Video Will Make Up

91% of all Internet Traffic by 2014,
http://www.streamingmediaeurope.net/2010/06/02/cisco-predicts-
video-will-make-up-91-of-all-internet-traffic-by-2014, 2010.

[3] W. Eatherton, The Push of Network Processing to the Top of Pyra-
mid, Keynote Speech at ANCS, 2005.

[4] L. De Carli, et. al., PLUG: Flexible Lookup Modules for Rapid
Deployment of New Protocols in High-speed Routers, In Proc. of
SIGCOMM, 2009.

[5] H. J. Chao and B. Liu, High Performance Switches and Routers.
Wiley-Interscience. 2007.

[6] D. Blythe. Rise of the Graphics Processor. In Proc. of IEEE, vol. 96,
No. 5. 761– 778, 2008.

[7] NVIDIA, CUDA Programming Guide 2.3. 2009.
[8] J. Hensley, AMD CTM overview. In International Conference on

Computer Graphics and Interactive Techniques, 2007.
[9] S. Mu, et al. IP Routing Processing with Graphic Processors. In

Proc. of DATE, 2010.
[10] S. Han, et al. PacketShader: a GPU-Accelerated Software Router. In

Proc. of SIGCOMM, 2010.
[11] G. Varghese. Network Algorithmics. Elsevier/Morgan Kaufmann.

2005.
[12] E. Kohler, et al., The Click Modular Router. ACM Trans. On Com-

puter Systes. Vol. 18, No. 3, 2000.
[13] M. Peyravian, and J. Calvignac. Fundamental Architectural Consid-

erations for Network Processors. In International Journal of Com-
puter and Telecommunications Networking. 41(5), April 2003.

[14] C. Kulkarni, et al. Programming Challenges in Network Processor
Deployment, In Proceedings of International Conference on Compi-
lers, Architecture and Synthesis for Embedded Systems, pp. 178-
187, 2003.

[15] R. Merritt. Intel Shifts Network Chip to Startup. EE Times.
http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=2
02804472. 2007.

[16] Intel Whitepaper. Packet Processing with Intel Multi-Core Proces-
sors. 2008.

[17] PCI SIG. (2007). PCI Express Base 2.0 specification.
http://www.pcisig.com/specifications/pciexpress/.

[18] AMD. The AMD FusionTM Family of APUs.
http://sites.amd.com/us/fusion/APU/Pages/fusion.aspx.

[19] Wiki, GDDR5, http://en.wikipedia.org/wiki/GDDR5.
[20] D. Wischik, and N. McKeown. Buffer Sizes for Core Routers.

ACM SIGCOMM Comp. Communications Review, July 2005.
[21] C. Villamizar and C. Song. High Performance TCP in ANSNet.

ACM SIGCOMM Comp. Communications Review, 24(5):45-60,
1994.

[22] A. Vishwanath, et al. Perspectives on Router Buffer Sizing: Recent
Results and Open Problems. ACM SIGCOMM Comp. Communica-
tions Review, April 2009.

[23] A. Dhamdhere, and C. Dovrolis. Open Issues in Router Buffer
Sizing. ACM SIGCOMM Comp. Communications Review, Jan.
2006.

[24] N. Egi, et al. Understanding the Packet Processing Capability of
Multi-Core Servers. Intel Technical Report.

[25] J. Postel, User Datagram Protocol, Internet RFC768, August 1980.
[26] T. Wolf, and M.A. Franklin, Locality aware predictive scheduling

of network processors, In Proc. of ISPASS 2001.
[27] S. Thoziyoor, et al. CACTI 5.1. Technical Report HPL-2008-20,

Hewlett Packard Laboratories Palo Alto, April 2008.
[28] A. Bakhoda, et al. Analyzing CUDA Workloads Using a Detailed

GPU Simulator. In Proc. of ISPASS, 2009.
[29] B. Bloom. Space/time trade-offs in hash coding with allowable

errors. Communication of the ACM, vol. 13, pp. 422-426, Jul. 1970.
[30] The Snort Project, Snort users manual 2.8.0.

http://www.snort.org/docs/snort/manual/2.8.0/snort manual.pdf.
[31] Tcpreplay. http://tcpreplay.synfin.net/trac/.
[32] Routing Information Service (RIS).

http://www.ripe.net/projects/ris/rawdata.html.
[33] ClassBench: A Packet Classification Benchmark.

http://www.arl.wustl.edu/classbench/index.htm.
[34] Y. Luo, et al, Shared Memory Multiprocessor Architectures for

Softwre IP Routers, IEEE Transaction On Parallel and Distributed
Systems, Vol.14, No. 12, Dec. 2003.

[35] MAWI Working Group Traffic Archive.
http://mawi.wide.ad.jp/mawi/

[36] P. M., IP Quality of Service, Helsinki University of Technology,
Laboratory of Telecommunications Technology, 1999.

1049

54.5

