
ENHANCING COOPERATIVE PLAYBACK SYSTEMS
WITH EFFICIENT ENCRYPTED MULTIMEDIA STREAMING

Giancarlo Fortino1, Wilma Russo1, Eugenio Zimeo2

1DEIS, University of Calabria, Via P. Bucci, Rende (CS), Italy

2RCOST, Dep. of Engineering, University of Sannio, Corso Garibaldi, Benevento, Italy

ABSTRACT

Distributed platforms for live and on-demand media streaming
delivery such as content distribution networks and media on-
demand systems, are being diffused mainly due to the
widespread availability of IP-based, bandwidth-capable digital
networks. Provision of multimedia group services is usually
supported by transmitting media streams to subscribers
organized in a multicast group. Although multicast streaming
saves bandwidth and improves scalability, it is prone to be
hacked. This paper proposes an efficient technique centered on
the Blowfish symmetric encryption algorithm for securing media
streams based on the Real-time Transport Protocol (RTP). The
developed technique along with an ad-hoc key distribution
mechanism is seamlessly embedded into our Java-based
cooperative playback system - ViCROC, which allows multicast
transmission on-demand of archived multimedia sessions to a
cooperative group of clients.

1. INTRODUCTION

Multimedia streaming on the Internet [7] is being fostered by
advances in IP-compliant communication infrastructures (last-
mile, 3G cellular, and satellite networks), standard multimedia
internetworking protocols and architectures, and, notably,
commercial interests of public and private companies foreseeing
a new, easily reachable entertainment market.

In the last years, the research focus on multimedia systems is
shifted from stand-alone and/or distributed mono-thematic
applications to high-level networks or platforms providing media
services ranging from TV broadcast, multi-party conferencing,
to video on-demand. Such high level platforms, often named
Content Distribution Networks (CDN) [6], deliver multimedia
services on demand to their customers.

Since customers subscribe for a service, they not only expect
to receive the service according to a certain degree of quality of
service (QoS) but also require that the service be secure.
Although, from the service provider point of view, security is
convenient to be applied to any service (e.g., pay per view), it is
even more necessary, from the customer perspective, for those
media services which involve a selected, collaborative group of
participants.

Significant examples are private multi-party
videoconferencing [7] and cooperative playback sessions [8].
Both are usually based on the transmission of media streams to
an IP-based multicast group. IP multicast does make it simple

for an eavesdropper host to anonymously join a multicast group
and receive traffic destined to that group without the legal
members knowledge.

The currently most adopted solution is to encrypt the media
streams so fulfilling the confidentiality requirement. Media
encryption can occur at several points in the TCP/IP stack. Since
the IP security architecture [18] is still to be deployed, often
encryption is realized at RTP (Real-time Transport Protocol)
level. The basic RTP protocol [22] specifies a standard way to
encrypt and decrypt RTP and RTCP packets using symmetric
encryption schemes such as DES [5] and also proposes a
mechanism for generating a key. Recently a new security
framework has been proposed along with a reference
implementation, Secure RTP (SRTP) [2].

However, all the proposals suggest that security features are
implemented with minimal delay and jitter. It should be evident
that with huge transmission rates even a small timing overhead
easily amounts to huge loss of bandwidth.

This paper proposes an efficient technique for encrypting
multicast RTP-based media streams centered on a symmetric
encryption algorithm that improves DES performance. It has
been first integrated in the Java Media Framework [16], by
implementing custom plug-ins, and then used to enhance the
functionality of ViCROC, our cooperative playback system
(CPS) [8, 9].

ViCROC is a media on-demand system based on an
adaptation of the RTSP [23] protocol (called MACπ) atop of the
lightweight reliable multicast protocol (LRMP) [20] which
allows an explicitly formed group of clients to cooperatively
share the control of a multimedia session playback.
Authentication and key distribution are embedded in a SDP/SIP-
based mechanism for group organization. Security is now a
distinctive feature of our system compared to related CPSs in
literature [14, 25].

The rest of the paper is organized as follows. §2 provides a
brief overview of CPSs. §3 introduces the adopted efficient
encryption technique. In §4 the integration of the proposed
technique into ViCROC is elucidated. Finally conclusions are
drawn and directions for future work are provided.

2. COOPERATIVE PLAYBACK SYSTEMS

Cooperative playback systems (CPSs) are multicast-based media
on-demand systems which further provide cooperative remote
control of playbacks to an explicit group of collaborative users
[8]. The main functionality of a CPS can be summarized as
follows:

• Group organization, which contains group formation and
group management. In particular, the latter allows creating
a users’ group working on and controlling the same
playback session.

• Media streaming, which transmits multicast media streams
based on RTP to a demanding customers group.

• Control sharing, which enables a group of users to
cooperatively control a media streaming session.

• Joint-work, which allows the playback session users to
collaborate with each other by questioning on the session
contents.

A CPS can be fruitfully exploited to support the
collaborative learning on-demand paradigm [9] which enables a
virtual class of students to go over an archived lesson and
exchange questions so as to cooperatively construct new
knowledge. Such an activity demands for security at different
levels (media, control and joint-work) as well as initial
authentication during group organization.

Figure 1. ViCROC architecture.

To date, few systems, MASH Rover [25] and ViCROC [8,
9], share all the functionality of a CPS. In particular the
architecture of ViCROC is depicted in fig. 1 which reports the
basic components and their protocol-based interaction and
highlights the security-enhanced blocks. Media streaming and
playing are supported by the Streamer and Player components
which are based on JMF in which security is integrated (see §3),
and are respectively located at the Media Server (MS) and
Media Client (MC) sites. Playback control sharing is enabled by
MACπ (Multicast Archive Control Protocol) which is a
multicast version of RTSP [23]. Collaboration among users is
based on the COπ (COllaborative Protocol) which allows
multicast exchanging of questions and annotations. Both MACπ
and COπ are based on a scalable reliable multicast transport
protocol [20]. The Multimedia Archive keeps stored MPEG and
RTP-based media files [10].

3. EFFICIENT ENCRYPTION OF RTP-BASED
MEDIA STREAMS

Sending multimedia data, encapsulated in RTP packets, in clear
after a process of session initialization and authentication allows
RTP data to be recorded or relayed by hackers.

At a large extent, protecting multimedia sessions means to
guarantee authentication, confidentiality and integrity. In this
paper we focus only on authentication and confidentiality and in
particular we propose: (i) a technique for protecting multimedia
contents transported over RTP, by using a symmetric encryption

algorithm, and (ii) a related schema for exchanging private keys
among an MS and all MCs joining a cooperative playback
session in our ViCROC system.

Although encryption overhead is typically minor compared
to CPU requirements of modern compression algorithms for
voice and video, real-time constraints imposed by RTP require
an efficient encryption algorithm implementation in order to
assure a correct (i.e., without packet or frame losses)
reproduction of A/V contents at destination. A small encryption
overhead is not very noticeable if connection speeds available
are much lower than the encryption throughput [13], but it is
wasteful if data compression is performed by a dedicated
processor and data throughput is high (i.e., 10-30 Mbps for
HDTV with MPEG-2) or videos are pre-registered in
compressed format on a video server.

A widespread agreement [2, 4] states that an ideal
encryption scheme for multimedia streaming:

• must be fast;
• should not expand the message size, in order to efficiently

use the available bandwidth;
• should avoid end-to-end encryption of RTP headers to

allow for header compression over the air link.
The above requirements suggest: (1) to use encryption for

protecting only the data area of RTP packets, whereas RTP
headers can be transported in clear; (2) to select encryption
schemes that do not expand the message size and (3) do not
require much memory. Following these indications, H.323 [12]
provides a little support for multimedia data encryption by an
extension of H.235 [11], currently implemented only by a few
vendors. This extension allows using one of the following
symmetric encryption schemes to encrypt only RTP packet
payloads: DES [5], RC2 [21], triple-DES [17], AES [1].

Therefore, in order to enhance ViCROC with security
features, we have analyzed some symmetric encryption
techniques: DES, Blowfish [26] and Rijndael (AES) [1], for the
purpose of selecting the fastest one. The choice of these
techniques is motivated by the following reasons: DES is the
most famous and used symmetric cipher book; Rijndael was
proposed as an alternative to DES for multimedia streaming with
thin clients [4]; Blowfish is flexible and efficient.

We have conduct a simple experiment (whose results are
reported in table 1) with Java-based implementations of the cited
encryption algorithms in order to extract a characteristic
parameter, that we have named “time for encrypting a byte”.
The experiment has been performed on a PC with a CPU
Pentium II, 350 MHz. The adopted DES and Blowfish
implementations are provided by Sun [15] whereas the Rijndael
implementation is provided by Bouncy Castle [3]. We have
used: (1) with Rijndael, blocks of 128 bits and a key of 128 bits
(the minimum key length with this algorithm); with DES, blocks
of 64 bits and a key of 64 bits; with Blowfish, blocks of 64 bits
and a key of 128 bits. DES and Blowfish algorithms have been
used in ECB (Electronic Code Book) mode, by adopting the
PKCS5Padding scheme, which guarantees that the size of input
data is a multiple of 64 bits, as ECB mode requires to correctly
operate. Although the ECB mode is the simplest and fastest
operational mode, it has problems depending on:

• production of independent encrypted blocks that may be
reordered on the network without the receiver is able to
identify the alteration;

• cryptanalysis attacks in the presence of repeated patterns.

Hence, we have used the ECB mode only for performance
measurements, whereas to avoid the cited problems the CBC
(Cipher Block Chaining) mode (applied at each RTP packet to
tolerate losses) has been used in the CPS implementation.

Time for encrypting a byte (ms) Max throughput (Mbps)

DES Blowfish Rijndael DES Blowfish Rijndael
8.28E-4 4.68E-4 3.51E-3 9.66 17.09 2.27

Table 1: Time for encrypting a byte of data using DES,
Blowfish and Rijndael

As table 1 shows, Blowfish [26] is the fastest algorithm. It
was designed in the 1993 by Bruce Schneier as an alternative
symmetric encryption algorithm to DES (Data Encryption
Standard) and IDEA [19] (International Data Encryption
Algorithm). Blowfish is a block cipher, with blocks of 64 bits,
based on the Feistel network [27]. The length of its keys is
variable from 32 to 448 bits.

Blowfish’s notoriety is mainly due to the method of key
scheduling adopted. The round subkeys and the whole content of
S-boxes are created by multiple iterations of the cipher book.
This feature improves security by making it difficult a full
scanning of the key space even when the key length is small. So,
a satisfactory security is guaranteed even by short keys, which
allow data to be quickly encrypted. However, to achieve this
goal, Blowfish requires an initialization phase to extract both
subkeys and S-boxes from the key and to store them for the
successive encryption phase. In particular, for storing 18 32 bit
subkeys and 4 S-boxes, each with 256 32 bit entries, 4168 bytes
are required. So, Blowfish could not be used efficiently in very
small-memory equipped devices such as smart cards.
Nevertheless we can conclude that Blowfish is ideal to
efficiently assure confidentiality to ViCROC, since it doesn’t use
thin clients (such as mobile phones) so far.

4. INTEGRATING SECURITY INTO VICROC

ViCROC has been enhanced with authentication and secure
streaming. The former is performed during the group
organization, whereas the latter regards the encryption of RTP
packets payload sent by the Streamer to the MCs’ Players.

4.1. Secure Group Organization

Each MC wishing to join a cooperative session has to contact the
MS in order to authenticate itself and receive the session key.
The scheme adopted has been inspired by existing centralized
Group Key Management (GKM) schemes [27] and has been
integrated with SDP/SIP [24]. In particular, it is based on
asymmetric cryptography, a Key Distribution Center (KDC) and
a Certification Authority (CA), (see fig. 2). The KDC may
coincide with the MS since the small number of group members
in a CPS does not introduce scalability issues.

In order to join a secure group, a MC sends a unicast
SDP/SIP message to the MS. The MS replies to the MC with the
session id (sID) and asks the MC for sending its identity. At this
point the RSA [7] algorithm is used both to authenticate the MC
and the MS and to exchange the session key. In particular, the
scheme consists of several steps. (-1-) The MC sends its ID, the
session ID, and the ID encrypted with its RSA private key (DMC)
and the result with the public key (EMS) of the MS. To this end,

each MC must know the CA and asks it for receiving the public
key of the MS encapsulated in a digital certificate. (-2-) Upon
reception of the SDP message, the MS decrypts the message by
using its private key (DMS) then queries the CA using the MC’s
ID in order (-3-) to obtain the MC’s public key (EMC).

MC1

MC2

MS

CA

MCn

EMS(ID
MC1 , DMC1 (ID

MC1), sID)

IDMC1 EMC1

if (EMC1(DMC1(IDMC1)) == IDMC1)
 send KssID

(EMC1 (D
MS(Ks sID,MA

sID , P A
sID,P V

sID))

<KssID, MAsID, PsID> = DMC1(EMC1(EMS(DMS(KssID, MAsID, PA
sID,P

V
sID))))

join(MAsID, PA
sID,P

V
sID)

KssID
encrypt(RTP data)

KssID
decrypt(RTP data)

Already securely joined

Not securely joined

KssID
decrypt(RTP data)

SDP/SIP msg.

Request/response msgs

-1-

-2-

-3-

-4-
-5-

-6-

-7-
-8-

-9-

-9-

-9-

Authenticate MS

Figure 2. Distributed schema for secure cooperative group
organization.

EMC is then used to decrypt the encrypted part of the SDP
message for extracting the MC’s ID; (-4-) if the ID extracted
coincides with the ID transported in clear in the SDP message,
the MC’s identity is authentic and so (-5-) the MS sends the
MC a SDP message containing the session key (KssID) and the
session information encrypted with DMS and in turn the result
with EMC. This way, if the MC knows the public key of the MS,
it is sure that the MS’ identity and the session key received are
valid. By using the MS public key and its private key, the MC
(-6-) extracts from the received message the session key, the
multicast addresses and ports. At this point, the MC joins (-7-)
the multicast A/V session and becomes ready to receive and play
encrypted RTP-based streams (-8-) sent from the MS (-9-).

In order to avoid cryptanalysis attacks, the MS periodically
generates a new session key and transfers it, encrypted with the
old session key, to MCs by using multicast. To guarantee
backward confidentiality, the session key is also regenerated
whenever a new MC joins the group. Currently, forward
confidentiality is not efficiently supported.

4.2 Secure RTP-based streaming

Confidentiality has been easily and seamlessly added to
ViCROC through the JMF-based implementation of the streamer
and the player and by exploiting the customizability of the JMF
architecture.

JMF [16] is a Component Framework based on plug-ins,
which allows a special software component, called processor, to
be customized. A processor is composed of smaller components:
some of which (Demultiplexer, Multiplexer) used for all the
tracks of the multimedia data and others (Codec, Effecter,
Renderer) organized in chains, one for each track. Such
components can be added, customized or removed in order to
guarantee the desired behavior to the processor. In order to
transmit multimedia data over the Internet, each track of the

output data source of the processor is hooked to a specific
component, called Session Manager (SM), which is able to
establish a unicast or multicast multimedia session and send
multimedia data encapsulated in RTP packets.

Due to this software organization, two choices for adding
confidentiality to the JMF implementation of ViCROC are
feasible: (1) modifying the SM, in order to encrypt all RTP
packets coming from the processor; (2) adding or customizing a
processor component. We have exploited the second approach in
order to avoid modifications of JMF source code and to integrate
the encryption with the multimedia data processing. In fact, SM
is not based on plug-ins and so its modification requires source
code availability. On the other hand, each video frame has to be
subdivided in fragments in order to fit an RTP packet. Usually,
to avoid IP fragmentation, the size of RTP packets is set smaller
than the MTU (Maximum Transmission Unit) of the used
physical network. In addition, the size can be purposely chosen
to assure an effective overlapping of data processing (video
compression, frame extraction, fragmentation, encryption) and
transmission.

Therefore, in order to seamlessly integrate security in the
Streamer and Player, we have implemented a custom CoDec
component of the processor, both for the transmission and for
the reception of data, by integrating the Blowfish algorithm
based on a 128 bit key and on the CBC operational mode.

A codec is a generic component whose role is to process
incoming data and produce data for the successive codec or for
another component. The codecs, named Encrypter and
Decrypter, are positioned after the Packetizer and before the
Depacketizer, respectively. Packetizer and Depacketizer are
other codecs used to transport video frames and audio samples
over RTP. A different packetizer/depacketizer pair is necessary
for audio and video streaming. For audio streaming, several
samples are aggregated in a single RTP packet, whereas for
video streaming each frame is transported by several RTP
packets. Therefore, implementing the encryption before the
packetizer implies to encrypt the whole frame before
transmitting it in RTP packets, so limiting parallelism, whereas
providing encryption after the packetizer increases parallelism
and allows the packetizer to chose the size of RTP packets on
the basis of the encryption throughput.

Currently, we have successfully tested the system with
MPEG-1 compressed files with bit rates ranging from 150 Kbps
to 1.5 Mbps.

5. CONCLUSIONS

In this paper we have described the enhancement of our Java-
based cooperative playback system - ViCROC - with security
features. Confidentiality is obtained by integrating the Blowfish
symmetric encryption algorithm in a JMF plug-in, in order to
efficiently encrypt/decrypt the payload of RTP packet
transmitted over IP-multicast. In addition, in order to allow a
MC to join a secure multimedia session, we have developed a
secure group organization protocol to acquire the cooperative
session key which is based on the RSA asymmetric encryption
algorithm and a dedicated certification authority.

Future work is geared at: (i) completing the performance
evaluation of the security-enabled system; (ii) encrypting the
control commands and the collaboration messages.

6. REFERENCES

[1] http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
[2] Baugher et al., “The Secure Real-time Transport Protocol”, Internet
Draft, draft-ietf-avt-srtp-05.txt, June 2002.
[3] Bouncy Castle. 2002. http://www.bouncycastle.org.
[4] R. Blom, E. Carrara, K. Normann, and M. Naslund, “RTP
Encryption for 3G Networks”, Internet Draft, draft-blom-rtp-encrypt-
00.txt, Nov. 2000.
[5] D. Coppersmith, “The Data Encryption Standard (DES) and its
Strength Against Attacks”, IBM Journal of Research and Development,
May 1994.
[6] C.D. Cranor, M. Green, C. Kalmanek, D. Shur, S. Sibal, C.J.
Sreenan, and J.E. Van der Merwe, “Enhanced Streaming Services in a
Content Distribution Network,” IEEE Internet Computing, 5(4), 2001, pp
66-75.
[7] J. Crowcroft, M. Handley, and I. Wakeman, “Internetworking
Multimedia,” Morgan Kaufmann Publishers, San Francisco, 1999.
[8] G. Fortino and L. Nigro, “A Cooperative Playback System for on-
demand Multimedia Sessions over Internet”, Proc. of IEEE Int’l
Conference on Multimedia and Expo, New York (USA), 2000.
[9] G. Fortino and L. Nigro, “Collaborative Learning on-Demand on the
Internet MBone”, in Usability Evaluation of Online Learning Programs,
C. Ghaoui Ed., Idea Publishing Group, USA, 2002, to appear.
[10] G. Fortino, G. Confessore, and A. Mantuano, “Design and
Implementation of a Dynamic VRML-browsable, Movie On-Demand
System Distributed over Internet,” Proc. of IEEE Int’l Conference on
Multimedia and Expo (ICME'02), Lausanne (CH), Aug. 2002.
[11] H.235. Security and encryption for H-Series multimedia terminals.
2000. http://www.itu.int/publibase/itu-t/.
[12] H.323. Audiovisual and Multimedia Systems, Packet-Based
Multimedia Communications Systems, 2000.
http://www.itu.int/publibase/itu-t/.
[13] V. Hallivuori, “Real-time Transport Protocol (RTP) Security,”
Seminar on Network Security, Helsinki Univ. of Technology (FI), 2000.
[14] W. Holfelder, “Interactive remote recording and playback of
multicast videoconferences”, Proc. of IDMS’97, Darmstadt, Germany,
Sept. 1997.
[15] Java Cryptography Extension (JCE), Sun Microsystems, Inc., 2002.
http://java.sun.com/products/jce/.
[16] Java Media Framework API. Sun Microsystems. 2002.
http://java.sun.com/products/javamedia/.
[17] B. Kaliski and M. Robshaw, “Multiple Encryption: Weighing
Security and Performance”, Dr. Dobb’s Journal, Jan. 1996.
[18] S. Kent and R. Atkinson, “Security Architecture for the Internet
Protocol,” IETF RFC 2401, Nov. 1998.
[19] X. Lai, “On the Design and Security of Block Ciphers”, Konstanz,
Germany: Hartung-Gorre, 1992.
[20] Light-weight Reliable Multicast Protocol.
http://webcanal.inria.fr/lrmp/, 1998.
[21] R. Rivest, “A Description of the RC2 Encryption Algorithm”,
Internet Draft, draft-rivest-rc2desc-00.txt, June 1997.
[22] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A
Transport Protocol for Real-Time Applications”, IETF RFC 1889, Jan.
1996.
[23] H. Schulzrinne A. Rao, and R. Lanphier, “Real Time Streaming
Protocol (RTSP) ”, IETF RFC 2326, Apr. 1998.
[24] H. Schulzrinne, E. Schooler, and J. Rosemberg, “SIP: Session
Initiation Protocol”, IETF RFC 2543, March 1999.
[25] A. Schuett, S. Raman, Y. Chawathe, S. McCanne, and R. Katz, “A
Soft State Protocol for Accessing Multimedia Archives,” Proc. of
NOSSDAV, Cambridge, UK, July 1998.
[26] B. Schneier, “Description of a New Variable-length Key, 64-Bit
Block Cipher (Blowfish)”, Proc. of Cambridge Security Workshop,
Springer-Verlag, 1994.
[27] W. Stallings, “Cryptography and Network Security: Principles and
Practice”, 2nd ed., Prentice Hall, 1999.

http://www.bouncycastle.org/

