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[1] A radiative transfer model (RTM) that provides a link between model states and
satellite observations (e.g., brightness temperature) can act as an observation operator in
land data assimilation to directly assimilate brightness temperatures. In this study, a
microwave Land Data Assimilation System (LDAS) was developed with three RTMs (The
radiative transfer model for bare field (QH), land emissivity model (LandEM), and
Community Microwave Emission Model (CMEM)) as its multi-observation operators
(LDAS-MO). Assimilation experiments using the Advanced Microwave Scanning
Radiometer for the Earth Observing System (AMSR-E) satellite brightness temperature
data from July 2005 to December 2008 were then conducted to investigate the impact of
the RTMs on the assimilated results over China. It was found that the assimilated
volumetric soil-water content using each of the three observation operators improved the
estimation of soil moisture content in the top soil layer (0–10 cm), with reduced root mean
square errors (RMSEs), and increased correlation coefficients with field observations
(OBS) as compared to a control run with no assimilation for the absence of frozen or snow-
covered conditions. The assimilated soil moisture for the QH model, which was more
sensitive to dry soil than the other models, produced closer correlations with OBS in arid
and semi-arid regions while smaller RMSEs were observed for LandEM. CMEM agreed
most closely with OBS over the middle and lower reaches of the Yangtze River due to its
better simulation of the brightness temperature over densely vegetated areas. To improve
assimilation accuracy, a Bayesian model averaging (BMA) scheme for the LDAS-MOwas
developed. The BMA scheme was found to significantly enhance assimilation capability
producing the soil moisture analysis, showing the lowest RMSEs and highest correlations
with OBS over all areas. It was demonstrated that the BMA scheme with LDAS-MO has
the potential to estimate soil moisture with high accuracy.
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1. Introduction

[2] Soil moisture is one of the most important variables in
hydrological, climatological, biological, and ecological
processes and plays a crucial role in controlling the
exchange of water and heat energy between the land surface
and the atmosphere [Koster and GLACE team, 2004]. Due
to the spatiotemporal limitations of ground observations

and the large uncertainties associated with atmospheric
forcing and land surface parameterizations, land data
assimilation has become an effective way of synthesizing
complementary information from measurements and
land surface models (LSMs) into a superior estimate of
geophysical fields of interest (e.g., soil moisture) [Reichle
et al., 2008; Pan et al., 2009; Draper et al., 2012]. The
measurements include microwave brightness temperature
(Tb) obtained from satellite sensors. Because of its
sensitivity to surface soil moisture, low-frequency Tb has
the potential advantage of increasing the coverage of soil
moisture measurements [Njoku et al., 2003; Zhan et al.,
2006]. In order to directly assimilate Tb data into an
LSM, a radiative transfer model (RTM) is needed as an
observation operator that provides a link between the model
states and the satellite-observed Tb data [Yang et al., 2007;
Huang et al., 2008; Jia et al., 2009].
[3] Tian et al. [2010b] developed a dual-pass microwave

land data assimilation system (DLDAS) to assimilate the
Tb data from the Advanced Microwave Scanning Radiometer
for the Earth Observing System (AMSR-E) using a microwave
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land emissivity model (LandEM) [Weng et al., 2001] as the
observation operator. A preliminary evaluation over China
demonstrated that this system greatly improved the soil
moisture content estimation for the top 10 cm compared to
the model simulation without assimilation. It was found,
however, that a single observation operator may degrade
the final analysis due to its large uncertainties.
[4] A multi-model ensemble strategy was seen as a means

of exploiting the diversity of skillful predictions produced
by different models. In this study, two other RTMs—one
from Yang et al. [2007] (hereafter QH), and the Community
Microwave Emission Model (CMEM) from the European
Centre for Medium-Range Weather Forecasts (ECMWF)
[Drusch et al., 2009]—were incorporated into the DLDAS
[Tian et al., 2010b] to develop a land data assimilation
system with multi-observation operators. Different from
previous studies related to land data assimilation [Yang
et al., 2007; Jia et al., 2009; Tian et al., 2010b], this paper
mainly focuses on the impact of the different observation
operators (RTMs) on the assimilated soil-water content,
and then on the use of the Bayesian model averaging
(BMA) method of combining forecasts from different
models [Raftery et al., 2005; Duan et al., 2007] to enhance
the assimilation capability of the new system.

2. A Land Data Assimilation System With
Multi-Observation Operators (LDAS-MO)

[5] In this study, a microwave Land Data Assimilation
System (LDAS) was developed with the three RTMs (QH,
LandEM, and CMEM) as its multi-observation operators
(LDAS-MO), which is described in this section. It consists
of a forecast operator (the soil-water hydrodynamic model
in the National Center for Atmospheric Research (NCAR)
Community Land Model version 3 (CLM3) [Oleson et al.,
2004]) to estimate volumetric soil moisture content, three
observation operators (LandEM, CMEM, and QH) to simulate
microwave Tb data, and a dual-pass variational assimilation
scheme to simultaneously optimize the state variable (e.g., soil
moisture) and the parameters in the RTM.

2.1. The Community Land Model CLM3

[6] The CLM3 [Oleson et al., 2004] is a global land
surface model designed for use as the land component of
the Community Climate System Model. In the CLM3,
spatial heterogeneity of land surface is represented as a
nested subgrid hierarchy in which grid cells are composed
of multiple land units, snow/soil columns, and plant
functional types (PFTs). Each grid cell can have a different
number of land units assigned to it, including glacier, lake,
wetland, urban, and vegetated. The second subgrid level,
the column, as the component of land unit, is intended to
capture potential variability in the soil and snow state
variables within a single land unit. Each column can have
multiple PFTs. Up to four of the 15 possible PFTs that differ
in physiology and structure may coexist on a single column.
The biogeophysical processes in the CLM3 are simulated
for each subgrid land unit, column, and PFT independently,
and each subgrid unit maintains its own prognostic variables.
The CLM3 has one vegetation layer, 10 soil layers with
different thicknesses, and up to five snow layers (depending
on snow depth). The soil temperature and soil-water content

are computed by the CLM3 for 10 soil layers to a depth of
3.43m in each column.
[7] The soil-water model of the CLM3 is taken as the

forecast operator, which is expressed as
@θ
@t

¼ � @q

@z
� E � Rfm; (1)

where θ is the volumetric soil moisture content (cm3/cm3), q is
the vertical soil-water flux, E is the root evapotranspiration
rate, Rfm is the melting (negative) or freezing (positive) rate,
and z is the depth from the soil surface. Both q and z are
positive downward.
[8] The soil-water flux q is defined by Darcy’s law

[Darcy, 1856]:

q ¼ �k
@ cþ zð Þ

@z
; (2)

where k ¼ ks
�

θ
θs

�2bþ3
is the hydraulic conductivity (mm/s),

c ¼ cs
θ
θs

� ��b
is the soil hydraulic potential, and ks, cs, θs,

and b are constants. The upper boundary condition is

q0 tð Þ ¼ �k
@ cþ zð Þ

@z

���
0
; (3)

where q0(t) is the water flux at the land surface (referred to
as infiltration). The volumetric soil moisture content θ is
estimated by the CLM3 using equations (1)–(3). In this
study, the time step Δt is 0.5 h.

2.2. Radiative Transfer Models

[9] Three radiative transfer models were taken as the
observation operators to provide separate links between
the model states and observational variables to estimate Tb

in LDAS-MO, separately. The first observation operator of
LDAS-MO was LandEM [Weng et al., 2001] used by
Tian et al. [2010b], in which the emission and scattering
process is characterized by the two-stream approximation.
A three-layer medium is considered in the LandEM model,
where the top (i.e., air) and bottom (i.e., soil) layers are
considered spatially homogeneous and are represented by
uniform dielectric constants. By contrast, the middle layer
is spatially heterogeneous and contains scatterers such as
snow grains, sand particles, and vegetation canopy.
[10] The second operator was the CMEMmodel developed

by ECMWF to simulate low-frequency (1–20GHz) passive
microwave brightness temperatures of the land surface
[Drusch et al., 2009]. CMEM comprises four modules for
computing the contributions from soil, vegetation, snow
and atmosphere, with separate parameterizations for each.
Jones et al. [2004] pointed out that vegetation water content
and soil moisture were the main contributors affecting the
Tb simulation. An ensemble of 96 simulations for eight land
surface models coupled to 12 different configurations of
CMEM conducted by de Rosnay et al. [2009] suggested that
the best CMEM configuration (higher correlation coefficient
and smaller centered root mean square error) was the one with
the soil dielectric model fromWang and Schmugge [1980] and
the vegetation opacity model from Kirdyashev et al. [1979].
Therefore, the best configuration from de Rosnay et al.
[2009] and Jia and Xie [2011] was used in this study, including
the snow emission model from Pulliainen et al. [1999] and
the atmospheric opacity model from Pellarin et al. [2003]
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besides the vegetation opacity model and soil dielectric
model mentioned above.
[11] The third operator was the QH model from Yang et al.

[2007], in which the soil dielectric model was from Dobson
et al. [1985] and the vegetation opacity model from Jackson
and Schmugge [1991]. As the effect of snow was ignored in
Yang et al. [2007], we added the homogeneous snow model
from Pulliainen et al. [1999], which was the same as that in
CMEM.
[12] Given the required parameters, the RTM estimates

microwave Tb from the input fields provided by the
CLM3, such as surface soil moisture content, surface soil
temperature, and canopy temperature. However, several
parameters in the RTM significantly affect the output, while
their values are either highly variable or unavailable. For
example, three key parameters in the LandEM model-standard
deviation of surface roughness height (s), soil bulk volume
density (rsoil), and leaf thickness (d, not used by Tian et al.
[2010b]) are hard to obtain but play an important role on the
microwave Tb estimation, as the first two parameters s and
rsoil mainly influence soil emissivity, and d affects
vegetation optical thickness; in CMEM, the vegetation
structure parameter ageo [Kirdyashev et al., 1979], which
affects vegetation optical thickness, was chosen in preference
to leaf thickness d, and the other two parameters s and rsoil
were the same as those in LandEM; for QH, we chose the
parameters s, Q0, b0 used by Jia et al. [2009], where Q0 is
an empirical coefficient used to calculate the surface
roughness parameter, and b0 is an empirical coefficient used
to calculate vegetation optical thickness (see equations (10)
and (11) in Yang et al. [2007] for details). How to obtain
accurate values of these parameters is critical for the
accuracy of the RTM’s outputs and thus the performance
of the LDAS-MO. In this study, we used an optimization

method in LDAS-MO to search for the optical values
of the RTM parameters mentioned above. This issue is
presented below.

2.3. A Land Data Assimilation System With
Multi-Observation Operators (LDAS-MO)

[13] In this work, we developed a land data assimilation
system with multi-observation operators (LDAS-MO) by
implementing the three RTMs mentioned above and a
dual-pass variational data assimilation scheme into the land
surface model CLM3. The diagram of LDAS-MO and its
input and output is shown in Figure 1. The dual-pass variational
data assimilation scheme was developed based on an ensemble-
based four-dimensional variational (En4DVAR) assimilation
algorithm [Tian et al., 2008] and an Ensemble Proper
Orthogonal Decomposition-based Parameter (EnPOD_P)
optimization method [Tian et al., 2010a] using satellite-
observed Tb data. The whole assimilation process includes
two phases: the parameter optimization phases and the pure
state assimilation phases, as shown in Figure 1 of Tian et al.
[2010b].
[14] In the state assimilation pass, random perturbation

fields for soil moisture were generated by the Monte Carlo
method, and each of the perturbation field was then added
to the initial background field (soil moisture) to construct
the ensemble members. The similar method was applied to
the AMSR-E satellite-observed brightness temperatures to
produce observational ensemble. In the parameter optimization
pass, we first assigned the initial values of the key parameters
in the RTMs randomly in their value ranges at the start of each
assimilation time window and then used the EnPOD_P
method [Tian et al., 2010a] to search for their optimal values.
It should be noted that the soil bulk volume density (rsoil) used
in both LandEM and CMEM is also a parameter in the CLM3.
Once the optimization process ends, the optimized value
will be used in the CLM3. In other words, the LDAS-MO
could jointly optimize the model state (volumetric soil
moisture content) and model parameters (e.g., soil bulk
volume density) [Yang et al., 2007; Tian et al., 2010b].
The initial values and ranges of each parameter will be
shown in the discussion section, and the role of the parameter
optimization in the assessment of the RTMs will also be
provided below.
[15] Generally, the LDAS-MOworks as follows: the forecast

model (NCAR/CLM) is run first to produce surface-variable
forecasts (e.g., soil moisture, ground temperature, canopy
temperature, soil temperature, and snow depth). These forecast
states are then input into the assimilation pass to conduct the
assimilation process by the En4DVAR algorithm, in which
the observation operator (QH, LandEM, or CMEM) uses the
simulated surface variables from the land surface model and
other auxiliary data sources (e.g., soil texture, fractional
cover of vegetation types, and leaf area index) from the
surface data set of the CLM3 to calculate Tb in order to
compare with the satellite-observed values. After the
surface variables are improved in the assimilation pass, the
chosen key parameters in the RTM are optimized by the
EnPOD_P method in the parameter calibration pass using
the microwave Tb observations. A more detailed description
of the assimilation pass and optimization pass can be found
in Tian et al. [2010b].

Figure 1. Diagram of the microwave land data assimilation
system with multi-observation operators (LDAS-MO) and its
input and output.
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3. Assimilation of Microwave Brightness
Temperatures in LDAS-MO

3.1. Experiment Design and Verification Data

[16] To investigate the impact of the RTMs on the
assimilated results, we conducted one simulation experiment
by the original CLM3 (control run, CTL), and three assimilation
experiments by the LDAS-MO using the AMSR-E satellite Tb
data, with three different observation operators (LandEM,
CMEM, and QH). The three assimilation experiments
related to LandEM, CMEM, and QH are referred to here as
ASS_LandEM, ASS_CMEM, and ASS_QH, respectively.
[17] Here, the AMSR-E gridded C-band (6.9GHz) micro-

wave brightness temperature data at vertical polarization (twice
daily) from 1 July 2005 to 31 December 2008 produced by
the National Snow and Ice Data Center (NSIDC), which
were downloaded from http://nsidc.org/data/nsidc-0302.html,
were used as the satellite observations to be assimilated to
the LDAS-MO. Based on the observational and modeling
results of Fujii [2005], the vertical polarization is relatively
insensitive to vegetation coverage and thus is more reliable
than the horizontal polarization. This has been used by
several studies [Yang et al., 2007; Jia et al., 2009;
de Rosnay et al., 2009] and is also supported by the modeling
results from Jia and Xie [2011]. The NSIDC produced
AMSR-E gridded Tb data (0.25�) by interpolating AMSR-E/
Aqua L2A swath spatially-resampled brightness tempera-
ture data to the output grids using an inverse-distance
squared method. To match the spatial resolution of
AMSR-E data, all the experiments were run for China

(15�N–55�N, 75�E–135�E) in 0.25� increments and half-
hour time steps.
[18] The experiments were all forced by the same

atmospheric forcing data set with a high temporal-spatial
resolution (hourly, 0.1� � 0.1�) [Shi, 2008; Shi et al., 2011]
from 1 July 2005 to 31 December 2008. The precipitation
and surface incident solar radiation data in the forcing data
set of Shi [2008] were derived from the Fengyun-2C satellite
retrievals by integrating observed precipitation from about
2000 automated weather stations in the China Meteorological
Administration (CMA) operational network; and other
atmospheric forcing fields, such as surface air temperature,
relative humidity, surface wind speed and air pressure,
were interpolated directly from the 6-hourly NCEP-NCAR
reanalysis data.
[19] The surface data set (soil and vegetation parameters)

required by the CLM3 was chosen the same as that used
by CLM3.5 [Oleson et al., 2007] as the new one could better
reproduce the physical properties of land surface [Lawrence
and Chase, 2007]. The soil data (e.g., soil color and soil texture)
were derived from the International Geosphere-Biosphere
Programme soil data set [Bonan et al., 2002], with vegetation
parameters (e.g., the fractional cover of the plant functional
types (PFTs); monthly leaf and stem area index (LAI, SAI);
and canopy top and bottom heights for each PFT) derived
from Moderate Resolution Imaging Spectroradiometer
(MODIS) imagery [Lawrence and Chase, 2007].
[20] To perform our experiments from July 2005 to

December 2008, we first extended the observation-based
atmospheric forcing data from Qian et al. [2006] to June
2005 using NCEP-NCAR reanalysis data [Kalnay et al.,
1996]. The forcing data set from Qian et al. [2006] was
derived by combining monthly data of temperature and
precipitation derived from station records with intra-monthly
variations from the NCEP-NCAR reanalysis [Kalnay et al.,
1996]. Historical records of cloud cover were also used
to derive surface incident solar radiation. Second, we
conducted a 220 year run by CLM3 forced with recycled
1948–2004 forcing data from Qian et al. [2006] in
order to spin up the deep soil layers using the method
proposed by Tian et al. [2010b]. Third, the CLM3
simulation was forced with this extended data set
from May 1986 to June 2005 (20 years) to obtain the initial
fields for both the assimilation and simulation experiments.
From this state at the end of 20 year run, we ran the original
CLM3 and the LDAS-MO forced with the atmospheric
forcing data created by Shi [2008] from July 2005 to
December 2008. It should be noted that all of the runs
were at the same resolution of 0.25� latitude� 0.25�
longitude, and the forcing data were also interpolated onto
the 0.25� grid.

Figure 2. Locations of 226 stations (black dots) with in
situ soil moisture observations. Also shown (boxes) are the
four sub-regions in China: north-eastern China (NEC, 38),
northern China (NC, 88), north-western China (NWC, 36),
and middle and lower reaches of the Yangtze River (YR, 31),
where the numbers in the parentheses stand for the numbers
of observational stations.

Table 1. Locations of the Four Sub-Regions in China

Identification Region Name Location No.a Characteristics

NEC north-eastern China 120�E–133�E, 40�N–50�N 38 Semi-humid and middle temperate continental monsoon climate
NC northern China 105�E–120�E, 34�N–42�N 88 Semi-arid and warm temperate monsoon climate
NWC north-western China 76�E–105�E, 34�N–46�N 36 Arid and semi-arid and warm temperate monsoon climate
YR middle and lower reaches of the

Yangtze River valley
105�E–122�E, 30�N–34�N 31 Humid and subtropical monsoon climate

aNo. is the number of observational stations.
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[21] The LDAS-MO was evaluated using in situ soil
moisture data from the CMA. A common issue is how to
compare in situ point measurements with assimilated soil
moisture averaged over a grid box of satellite observations.
Soil moisture measured at a single point is often representative
merely on a limited spatial scale, depending on heterogeneity
of soil properties, land cover, and atmospheric conditions. To
reduce the scale mismatch, we used the arithmetic mean of the
observed soil moisture contents from the all available stations
as a proxy for the mean state of a reference region, which was
compared to the area-weighted average values of the CLM3
simulation over the grids where the observations were
available. Figure 2 shows the locations of the 226 field sites,
which are grouped into four subdivisions roughly according
to the spatial patterns of the dryness and wetness centers in

China from Zhu [2003] and contain 203 of the field sites. More
information about the four subdivisions can be found in
Table 1 and Figure 2. Soil moisture observations were
collected on the eighth, eighteenth, and 28th days of each
month from July 2005 to December 2008. Only observed
data for the upper soil layer (0–10 cm) were used in this study
because the records for deeper layers were insufficiently
complete to be suitable for the evaluation. Although the
selected regions in this study were large, we did not consider
the highly variable conditions in the following analysis due
to limited soil moisture field measurements. Also note that
we have not prove that the arithmetic mean is optimal up to
now, which should be addressed in the future.
[22] In this study, the ensemble size N for state variables

in the En4DVAR assimilation algorithm [Tian et al., 2008]

Figure 3. (a–d)Time series of monthly mean volumetric soil moisture content from ground observations
(OBS), control run (CTL), and three assimilated cases (ASS_QH, ASS_LandEM, and ASS_CMEM) and
their simple arithmetic average (ASS_MEAN) over four sub-regions in China (defined in Table 1).
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is chosen to be 60 based on the results of Tian et al. [2009].
The background error convariance was estimated by the
ensemble samples, which were constructed by adding N
perturbed fields to the initial fields using the Monte Carlo
method through some sensitivity experiments [Tian et al.,
2008]. de Rosnay et al. [2009] pointed out that compared to
AMSR-E observed C-band Tb data, the mean bias for CMEM
is in the range of�14 to 11K overWest Africa (depending on
the choice of land surface model). We conducted similar
experiments to estimate Tb over China for three RTMs
(LandEM, CMEM, and QH) coupled to CLM3 without
assimilation (shown in the discussion below). It is found that
the biases for three RTMs are in the range of �8 to 5K.
Therefore, the absolute biases for three observation operators
were all assumed to be 8K in this study. However, the fixed
values for observation biases of three RTMs may have some
effects on the assimilated results of the LDAS-MO, which
needs more sensitivity experiments and will be addressed in
the future. In addition, we did a quality control for the
AMSR-E observed Tb data to eliminate the abnormal data,
and then they were directly assimilated into the LDAS-MO
in the assimilation pass or used to optimize the parameters in
the optimization pass.

3.2. Impact of Observation Operators

[23] Figure 3 shows the time series of monthly mean
volumetric soil-water content from the assimilation and
control run compared to ground observations (OBS) for
the four field subdivisions between July 2005 and
December 2008. OBS is the arithmetic mean from all
available field stations in each subregion; model-simulated
outputs were derived using the area-weighted averaging
over the grids where the observations were available in the
corresponding region. ASS_MEAN stands for the simple
arithmetic average for the three assimilated cases ASS_QH,
ASS_LandEM, and ASS_CMEM, from which the soil-water
content is the assimilated results of the LDAS-MO. It is
readily seen in Figure 3 that the volumetric soil-water
content analysis by the LDAS-MO using the three observation
operators was closer to the OBS than was seen using CTL
and captured the time variations of observed soil moisture
more closely. Very highly unrealistic simulated values of
soil moisture compared to OBS were produced for the
boreal winter for all the assimilated cases over most
parts of China, however, except for the middle and lower
reaches of the Yangtze River (YR). The two main
explanations for this result are, first, that none of the three
RTMs took frozen soil into consideration; and second,

poorer simulation of snow emissivity due to uncertainties
in the snow parameters (e.g., snow particle size). However,
these observation operators performed differently over
different areas.
[24] Table 2 summarizes the information contained in

Figure 3. It is found that the CTL from CLM3 underestimates
in situ soil moisture measurements over most regions of China
except for the north-eastern China (NEC) with a positive bias
(0.016 cm3/cm3). The result is consistent with the finding of
Qian et al. [2006] that CLM3-simulated soil moisture forced
by their own forcing data set showed a dry bias over eastern
and southern China. In addition, the volumetric soil moisture
content from CTL shows very low temporal correlations with
OBS (r< 0.25, Table 2) over north-western China (NWC) and
YR. This may be related to the quality of the atmospheric
forcing data set from Shi [2008] or the performance of
CLM3 over these two regions. In contrast, the soil moisture
derived from three assimilated cases of the LDAS-MO was
improved to agree more closely with ground observations
by assimilating the microwave Tb data. Compared to the
other two cases, the assimilated soil moisture from
ASS_QH was the most closely correlated with OBS for arid
and semi-arid regions such as northern China (NC, r = 0.66),
and NWC (r = 0.44), mainly because of the QH model’s
greater sensitivity to dry soil [Yang et al., 2007]. The QH
model used in this study not only described surface scattering
but also took into account the volumetric scattering effect of
dry soil, which makes a substantial contribution to the
satellite-received radiance [Lu et al., 2006]. ASS_QH also
showed a better performance over NEC (r = 0.65). This
may be due to the fact that the main vegetation functional
types over NEC are grass and crop for which the QH model
uses a complicated parameterization of vegetation optical
thicknesses, choosing different parameters depending on
vegetation type (wheat, soybean, or grasses) [Jackson and
Schmugge, 1991; Fujii, 2005]. In addition, ASS_LandEM
had the smallest root mean square errors (RMSEs) over
these three regions. As de Rosnay et al. [2009] had pointed
out, the Tb simulation by the Kirdyashev model [Kirdyashev
et al., 1979] in CMEM agreed most closely with satellite
observations over densely vegetated areas. For the same
vegetation opacity model, we found that ASS_CMEM
agreed best with OBS over YR (higher vegetation fraction),
giving the smallest mean bias error (MBE, 0.003 cm3/cm3)
and RMSE (0.019 cm3/cm3) and the closest correlations
with OBS in this study (r = 0.72). Table 2 also shows that
ASS_MEAN agrees more closely with OBS than the three
assimilated cases over parts of the target areas, especially

Table 2. The Mean Bias Errors (MBEs, cm3/cm3), Root Mean Square Errors (RMSEs, cm3/cm3) and Correlation Coefficients (r) for
Monthly Volumetric Soil Water Content From Control Run (CTL) and Three Assimilated Cases (ASS_QH, ASS_LandEM, and
ASS_CMEM) Compared to Ground Observations Over Four Sub-Regions From July 2005 to December 2008

Region

CTL ASS_QH ASS_LandEM ASS_CMEM ASS_MEANa

MBE RMSE r MBE RMSE r MBE RMSE r MBE RMSE r MBE RMSE r

NEC 0.016 0.023 0.58 0.010 0.017 0.65 �0.002 0.014 0.62 �0.005 0.014 0.64 0.001 0.010 0.81
NC �0.014 0.035 0.44 0.038 0.054 0.66 0.020 0.048 0.63 0.013 0.049 0.64 0.024 0.049 0.65
NWC �0.055 0.059 0.21b 0.035 0.062 0.44 0.020 0.028 0.39 0.006 0.057 0.43 0.019 0.046 0.44
YR �0.037 0.048 0.23b �0.031 0.040 0.37 �0.050 0.057 0.32 0.003 0.019 0.72 �0.027 0.034 0.60

aASS_MEAN is the simple arithmetic average value for the three assimilated cases.
bThe bold values indicate that the correlation coefficients are not statistically significant (p< 0.05).
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NEC, giving the lowest RMSE (0.01 cm3/cm3) and the
highest correlation coefficient (r = 0.81), yet over WC it
produced a greater RMSE than ASS_LandEM relative to
OBS and performed worse than ASS_CMEM over YR.
All of these results demonstrate that a simple arithmetic
ensemble average is not always acceptable. In addition,
given the relatively short experiment period of about three
and half years and the evaluation at monthly time scales,
we conducted an analysis on whether assimilated soil
moisture estimations are statistically different from those
without assimilation. The statistical significance tests
were performed for their mean values and variances using
t test (p< 0.05) and F test (p< 0.05), respectively. It is
found that the assimilated soil moisture contents from three
assimilated cases in the mean values and variances are
statistically different from those from pure CLM3-simulation

except over YR for both ASS_QH and ASS_LandEM. This
suggests that the improvements through the assimilation are
statistically significant over most of the regions.
[25] We also evaluated the mean annual cycle of volumetric

soil moisture for the top 10 cm layer from model-based output
with and without assimilation against ground observations
during July 2005–December 2008 over the four sub-regions
(Figure 4). Compared with the CTL case, all the assimilation
cases capture observed seasonal variations in soil moisture
better for most of the regions. Over the arid region (NWC,
Figure 4c), the CLM3 clearly underestimates the observed
soil moisture while ASS_LandEM agrees better with
OBS. Consistent with the previous results mentioned
above (Table 2), ASS_CMEM captures seasonal variations
of observed soil moisture best among all cases over YR
(Figure 4d).

Figure 4. (a–d) Mean monthly volumetric soil moisture (averaged from July 2005 to December 2008)
for the four sub-regions in China.
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4. Assimilation Skill Enhancement by
the BMA Method

[26] Since, as above, the simple arithmetic average method
did not explicitly show the best performances over all four
sub-regions, we developed a Bayesian model averaging
(BMA) scheme with LDAS-MO to enhance its assimilation
skill. The BMA algorithm proposed by Raftery et al. [2005] is
a statistical post-processing method that produces probabilistic
forecasts from ensembles, expressed as

pðΔ f1; ⋯; fNj Þ ¼
XN
k¼1

wkgk Δ fkj Þ;ð (4)

where f = f1, ⋯, fN is an ensemble of predictions obtained from
N different models (three assimilated cases in this study); wk

is the posterior probability that forecast k is the best; gk(Δ|fk)
is the conditional probability density function (PDF) of the
forecast variable Δ (soil moisture, in the present case) on

fk. The weight wk is non-negative, satisfying
XN
k¼1

wk ¼ 1, and

represents each model’s contribution to the predictive skill
of the ensemble. In this study, the probability distribution
of soil moisture was approximated by a gamma distribution
[Tian et al., 2011]. This is appropriate when the soil moisture
distribution is primarily driven by precipitation. Following
Vrugt et al. [2008], the BMA weight wk of the individual
competing models was estimated from a calibration
data set (i.e., in situ soil moisture observations in this
study) using the maximum likelihood technique for which
the values were obtained iteratively using the Differential
Evolution Adaptive Metropolis Markov Chain Monte
Carlo algorithm.
[27] Here, we chose the time period from July 2005 to

December 2006 as the training period, and January 2007
to December 2008 as the evaluation period. The BMA
weights of three assimilated cases over the four sub-regions
(Figure 2) are presented in Table 3. It was found that the
LandEMmodel had the smallest BMAweights, demonstrat-
ing its smaller contribution. This is largely due to its worse
performance (lower correlations with OBS as shown in
Table 2) compared to the other two observation operators.
Figure 5 shows the MBEs, RMSEs, and correlation coeffi-
cients of monthly soil moisture from the three assimilated
cases, their arithmetic average and BMA-based estimation
against OBS between January 2007 and December 2008.
It is seen that the BMA-simulated estimation agreed best
with OBS for all cases, showing the smallest MBEs and
RMSEs and highest correlations with OBS, although it
produced wetter biases than ASS_CMEM over parts of

northern China. The main reason for this result is that the
BMA method evaluated the performance of each individual
competing member of the ensemble appropriately during
the training period, enabling it to better assign the BMA
weights that represented each model’s relative forecasting
skill. Consequently, there was a significant improvement
in the overall forecasting precision of the ensemble. For
example, compared to ASS_MEAN, a lower bias
(0.013 cm3/cm3) and RMSE (0.018 cm3/cm3) were found
for ASS_BMA over NC. Furthermore, ASS_BMA also
showed the best performance over YR, while the largest
weight was assigned to ASS_CMEM (Table 3), which
had shown better agreement with observed data than
had the other two assimilated cases. However, as all
ensemble members overestimated soil moisture in winter,
the worst performance was also found for ASS_BMA

Table 3. The Bayesian Model Averaging (BMA) Weights for
Three Assimilated Cases (ASS_QH, ASS_LandEM, and
ASS_CMEM) Over Four Sub-Regions in China

Region ASS_QH ASS_LandEM ASS_CMEM

NEC 0.5822 0.0020 0.4158
NC 0.6759 0.0153 0.3088
NWC 0.8832 0.0048 0.1120
YR 0.0005 0.0013 0.9982

Figure 5. (a) The mean bias errors (MBE), (b) root mean
square errors (RMSE), and (c) correlation coefficients between
the observed and simulated monthly volumetric soil-water
content over four sub-regions in China between January
2007 and December 2008. CTL is the control run without
assimilation; ASS_QH, ASS_LandEM, and ASS_CMEM
are three assimilated cases with different observation
operators; ASS_MEAN is the simple arithmetic average
from three assimilated cases; ASS_BMA is the ensemble
average of three assimilated cases using the Bayesian model
averaging (BMA) method.

JIA ET AL.: ASSIMILATION OF MWTB IN A LDAS-MO

8



(not shown). This demonstrates that the parameterizations
of snow and frozen soil in the RTM should be improved
to enable a more robust estimate of soil moisture from
the assimilation system during the cold seasons.

5. Discussions

5.1. Role of Parameter Estimations

[28] As mentioned in section 2.2, the choice of key
parameters to be optimized is critical for the accuracy of
the RTM’s outputs and thus the performance of the
LDAS-MO; however, they may be either highly variable
or unavailable, making it difficult or impossible to assign a
realistic value to every parameter. For QH, the initial values
and ranges (in the brackets) of the three parameter were set
Q0 = 0.6 (0.3� 1.0), b0 = 2.1 (0.4� 3.0), s= 1.6 (1.0� 3.0)
[Yang et al., 2007]; for LandEM, d = 0.2 (0.19� 0.21),
rsoil = 1.18 (1.1� 1.4), s= 1.6 (1.0� 3.0) [Weng et al.,
2001]; and ageo = 0.4 (0.1� 0.9), rsoil = 1.18 (1.1� 1.4),
s= 1.6 (1.0� 3.0) for CMEM [Holmes et al., 2008]. Here,
we only show the optimized results of these parameters for
three RTMs over the four sub-regions in China (Figure 6).
It is found that most of these parameters show clear regional
differences except for the soil bulk volume density (rsoil) in
LandEM (Figure 6e). In contrast, there is a larger variation
in rsoil for CMEM which may be related to its subgrid-
scale variability (up to seven tiles in a grid cell) [de Rosnay
et al., 2009]. In addition, the parameter d (Figure 6d) shows
low variability, which may be due to that the leaf thickness d
changes little generally. The surface roughness height (s) in
QH shows a larger amplitude than other two RTMs, which

suggests that this parameter may be more sensitive to the
change of satellite-observed microwave Tb data. However,
it is problematic as to which of them is more reasonable
due to large discrepancies in the model parameterizations
for three RTMs.
[29] To investigate the role of these key parameters in

the assessment of the RTMs, we calculated the brightness
temperatures using fixed values and optimized parameters
(Figure 6), respectively. The fixed values for all parameters
were set to be their initial values as mentioned above.
Figure 7 shows the comparisons between AMSR-E
observed brightness temperatures and those predicted by
the three RTMs with and without parameter estimation. It
is found that the Tb data from the RTMs with parameter
estimation (solid lines) are more close to AMSR-E
observations than those using fixed parameters (dashed
lines). However, all the RTM-based simulations using fixed
or optimized parameter values underestimate Tb about
5 ~ 20K in the cold seasons, which may relate to inaccurate
parameterizations for snow and frozen soil in the RTMs. It
would then affect the soil moisture assimilation results
(Figure 3). The MBEs, RMSEs, and correlation coefficients
between the Tb data simulated by RTMs and AMSR-E
observations are presented in Figure 8. Due to the parameter
optimization, the three RTMs showed lower biases
(Figure 8a) than those using fixed values. Moreover,
the CMEM with parameter estimation agrees best with
AMSR-E Tb data over YR among three RTMs (Figure 8c),
which may lead to its better performance for soil moisture
assimilation than QH and LandEM in the LDAS-MO
(Table 2).

Figure 6. Time series of the monthly mean optimized parameters for three radiative transfer
models: (a–c) QH, (d–f) LandEM, and (g–i) CMEM over four sub-regions in China.
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5.2. Effects of the Atmospheric Forcing Data Sets

[30] The atmospheric forcing data set of Shi [2008] was
chosen to run LDAS-MO due to its high spatial-temporal
resolutions. However, it is seen from Figure 3 and Table 2
that the correlation coefficients between OBS and
CLM3-based soil moisture estimations without assimilation
over two sub-regions (NWC and YR) are low (r< 0.25). To
investigate the role of the atmospheric forcing data set in the
CLM3-simulated soil moisture, we chose two other data
sets to force the CLM3 to be compared with that from
Shi [2008] (hereafter FY-2C). One is the ERA-Interim
reanalysis [Dee et al., 2011], which is 6-hourly and has a
resolution of 1.5� latitude� 1.5� longitude. The ERA-Interim
assimilates surface observations and thus its surface fields
(including precipitation and air temperature) are very close

to observation-based analyses [Dee et al., 2011]. The other
one is a global meteorological forcing data set from
Princeton University (hereafter Princeton), which is a
hybrid of data from the NCEP-NCAR reanalysis [Kalnay
et al., 1996] and a suite of global observation-based
products [Sheffield et al., 2006]. The horizontal resolution
of the Princeton data set is 1� � 1�, with a temporal resolution
of 3 h [Sheffield et al., 2006]. To facilitate quantitative
comparison with CLM3-simulation results forced by the
FY-2C atmospheric data set [Shi, 2008], the other two data
sets (ERA-Interim and Princeton) were used to force CLM3
with the same spatial-temporal resolutions (0.25� increments
and half-hour time steps).
[31] Figure 9 shows the comparison between ground-based

monthly volumetric soil moisture and that simulated by
CLM3 using three different meteorological forcing data sets

Figure 7. (a–d) Time series of monthly mean brightness temperatures from AMSR-E (OBS) and three
RTMs with (QH, LandEM, and CMEM) and without parameter estimation (QH-F, LandEM-F, and
CMEM-F) over four sub-regions in China.
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over two sub-regions (NWC and YR) in China. It is clearly
observed that the volumetric soil-water content from FY-2C
is more close to OBS than that from both the ERA-Interim
and Princeton over the two regions, while the later two show
larger dry biases (MBE<�0.087 cm3/cm3 over NWC and
MBE<�0.056 cm3/cm3 over YR). This may be due to that
Shi [2008] integrated more precipitation gauge data than
other two data sets. Over NWC, however, both the soil
moisture from ERA-Interim (r = 0.52) and Princeton
(r = 0.41) correlated better with OBS than that from
FY-2C (r = 0.21), which is not statistically significant
(p< 0.05). It may be related to sparse precipitation gauge
stations over this region and the quality of the precipitation
from Shi [2008] mainly depends on the FY-2C satellite
retrievals, which could not capture the observed precipitation
variations well there [Shi, 2008]. In addition, the CLM3-
simulation results using the three atmospheric forcing data
sets all show a low correlation with OBS over YR, which
may be related to the inappropriate parameterizations or
parameters of the land surface model CLM3 over this

region. Moreover, Figure 9 showed clear dry biases in
CLM3 over NWC and YR for all three forcing data sets,
which were consistent with the findings by several previous
studies [Qian et al., 2006; Oleson et al., 2008]. These cases
were improved by the LDAS-MO in this study (Table 2).

5.3. Quality Control for the Snow and
Frozen Soil Conditions

[32] It is observed from Figure 3 that the LDAS-MO
developed in this study produced highly questionable soil
moisture analysis over three sub-regions (NEC, NC, and
NWC) in the wintertime. Here, we took a simple quality
control (QC) step for the LDAS-MO to eliminate the effects
of the snow-covered or frozen soil conditions on the
assimilated soil moisture analysis. If the snow exists (snow
depth> 0) or the surface soil temperature is lower than
273K, the AMSR-E observed Tb data will not be assimilated
into the LDAS-MO. Figure 10 shows the comparison
between the assimilated volumetric soil moisture content
from LDAS-MO with QC and ground observations over
three sub-regions (NEC, NC, and NWC). It is found that

Figure 8. (a) The MBE, (b) RMSE, and (c) correlation
coefficients between the AMSR-E observed brightness
temperatures and those predicted by the RTMs with (QH,
LandEM, and CMEM) and without parameter estimation
(QH-F, LandEM-F, and CMEM-F) over four sub-regions
in China between July 2005 and December 2008 (shown
in Figure 7).

Figure 9. Time series of monthly mean volumetric soil
moisture content from ground observations (OBS) and
CLM3-simulations using three different atmospheric forcing
data sets (Princeton, ERA-Interim, and FY-2C) over two
sub-regions (a) NWC and (b) YR in China (defined in
Table 1); and the (c) MBE and (d) correlation coefficients
between OBS and three simulation results.
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Figure 10. Time series of monthly mean volumetric soil moisture content from ground observations (OBS),
control run (CTL), and three assimilated cases (ASS_QH, ASS_LandEM, and ASS_CMEM) and their simple
arithmetic average (ASS_MEAN) over three sub-regions (a) NEC, (b) NC, (c) NWC in China; and the
(d) MBE, (e) RMSE, (f) correlation coefficients (R) between OBS and simulated soil moisture estimations with
or without assimilation.
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the assimilated soil moisture estimations with QC are more
close to OBS than those without QC (shown in Figure 3). As
there is barely assimilation in the cold seasons, the assimilated
results with QC are close to pure CLM3-simulations. The
MBE, RMSE, correlation coefficients (R) between OBS
and simulated soil moisture with or without assimilation
are also provided in Figures 10d–10f). The QC method
reduced the biases of LDAS-MO, with lower MBEs and
RMSEs (Figures 10e–10f) compared to those in Table 2.
However, the correlation coefficients with OBS were not
improved clearly. In contrary, for example, the correlations
(Figure 10f) were lower than those without QC over NC
(Table 2) as the CLM3 produced abnormal values compared
to OBS in winter over this region (Figure 10b).

6. Conclusions

[33] In this study, a dual-pass microwave land data
assimilation system with multi-observation operators
(LDAS-MO) was developed, and the impact of the observation
operators QH, LandEM, and CMEM on the assimilated
soil moisture was then investigated using the assimilation
system. Moreover, we also constructed a BMA scheme for
the LDAS-MO to improve its assimilation accuracy.
[34] Numerical experiments from the assimilation of

AMSR-E microwave brightness temperatures demonstrated
that the observation operators each had significant effects
on the assimilated volumetric soil-water content. Large
discrepancies were observed over different areas between
the soil moisture analysis for each of the three observation
operators individually, although they all improved the soil
moisture estimation in that they all agreed more closely with
field observations (OBS) than model simulations without
assimilation for the absence of frozen or snow-covered
conditions, and were better able to capture the time variations
of observed soil moisture. The soil moisture analysis for
QH showed higher correlations with OBS over arid and
semi-arid regions due to its higher sensitivity to dry soil,
while smaller RMSEs were observed for LandEM. CMEM,
in which the vegetation opacity model simulated the Tb data
in best agreement with satellite observations over densely
vegetated areas, agreed most closely with OBS over YR
(bias = 0.003 cm3/cm3, RMSE = 0.019 cm3/cm3, r = 0.72).
Moreover, CMEM and LandEM captured observed soil
moisture seasonality better than CLM3 simulation over
YR and NWC, respectively. Results also showed that when
the BMA scheme was used, the soil moisture analysis was
significantly improved, showing reduced RMSEs and
increased correlation coefficients relative to OBS over all
regions. The BMA method evaluates the performance of
each competing ensemble member during the training
period, then assigns the BMA weight that represents the
relative forecasting skill of each model. Consequently, there
is a significant improvement in the ensemble forecasting
precision. This study will be helpful in both better
understanding the sensitivity of the observation operators
on assimilated results and generating soil moisture data sets
with higher accuracy.
[35] However, the least satisfactory performance for all

assimilated cases in the coldest seasons was not improved
by the BMA method. One approach to partially address this
issue is through assimilating satellite-based multi-channel

brightness temperatures [Jin et al., 2009; Rees et al.,
2010]. This will provide more information about the snow
and frozen soil and then improve near-surface soil moisture
estimation in the cold seasons. In addition, parameterizations
for snow (e.g., snow grain size, density, and fractional
volume) and frozen soil (e.g., freeze-thaw state, volume
scatter darkening effect of frozen soil) in the observation
operator (RTM) to make the assimilated soil moisture more
robust should be discussed in the future. The third strategy
is to apply a bias correction method or incorporate
multi-model observation operators with BMA algorithm
to provide more accurate brightness temperature forecasts
and thus improve the assimilated results. It should also be
noted that only the area-average biases in soil moisture,
which may be lower than the local biases, were provided
in this study due to limited soil moisture measurements.
The HeiheWatershed Allied Telemetry Experimental Research
experiment [Li et al., 2013] has been performed since
May 2012 over the middle stream of Heihe Basin in the
northwest of China, and it can afford soil moisture measure-
ments at 50 field sites covering an area of 5.5� 5.5 km2. These
data will be used to evaluate the LDAS-MO at local scale in
our future study, which is relevant in the context of the land
data assimilation system.
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