
Syntactic Processing Using the Generalized
Perceptron and Beam Search

Yue Zhang∗
University of Cambridge

Stephen Clark∗∗
University of Cambridge

We study a range of syntactic processing tasks using a general statistical framework that consists
of a global linear model, trained by the generalized perceptron together with a generic beam-
search decoder. We apply the framework to word segmentation, joint segmentation and POS-
tagging, dependency parsing, and phrase-structure parsing. Both components of the framework
are conceptually and computationally very simple. The beam-search decoder only requires the
syntactic processing task to be broken into a sequence of decisions, such that, at each stage in
the process, the decoder is able to consider the top-n candidates and generate all possibilities
for the next stage. Once the decoder has been defined, it is applied to the training data, using
trivial updates according to the generalized perceptron to induce a model. This simple framework
performs surprisingly well, giving accuracy results competitive with the state-of-the-art on all
the tasks we consider.

The computational simplicity of the decoder and training algorithm leads to significantly
higher test speeds and lower training times than their main alternatives, including log-linear
and large-margin training algorithms and dynamic-programming for decoding. Moreover, the
framework offers the freedom to define arbitrary features which can make alternative training
and decoding algorithms prohibitively slow. We discuss how the general framework is applied to
each of the problems studied in this article, making comparisons with alternative learning and
decoding algorithms. We also show how the comparability of candidates considered by the beam
is an important factor in the performance. We argue that the conceptual and computational sim-
plicity of the framework, together with its language-independent nature, make it a competitive
choice for a range of syntactic processing tasks and one that should be considered for comparison
by developers of alternative approaches.

1. Introduction

In this article we study a range of syntactic processing tasks using a general framework
for structural prediction that consists of the generalized perceptron (Collins 2002) and

∗ University of Cambridge Computer Laboratory, William Gates Building, 15 JJ Thomson Avenue,
Cambridge, UK. E-mail: yue.zhang@cl.cam.ac.uk.

∗∗ University of Cambridge Computer Laboratory, William Gates Building, 15 JJ Thomson Avenue,
Cambridge, UK. E-mail: stephen.clark@cl.cam.ac.uk.

Submission received: 10 November 2009; revised submission received: 12 August 2010; accepted for
publication: 20 September 2010.

© 2011 Association for Computational Linguistics

Computational Linguistics Volume 37, Number 1

beam-search. We show that the framework, which is conceptually and computationally
simple, is practically effective for structural prediction problems that can be turned into
an incremental process, allowing accuracies competitive with the state-of-the-art to be
achieved for all the problems we consider.

The framework is extremely flexible and easily adapted to each task. One advan-
tage of beam-search is that it does not impose any requirements on the structure of
the problem, for example, the optimal sub-problem property required for dynamic-
programming, and can easily accommodate non-local features. The generalized per-
ceptron is equally flexible, relying only on a decoder for each problem and using a
trivial online update procedure for each training example. An advantage of the linear
perceptron models we use is that they are global models, assigning a score to a complete
hypothesis for each problem rather than assigning scores to parts which are then com-
bined under statistical independence assumptions. Here we are following a recent line
of work applying global discriminative models to tagging and wide-coverage parsing
problems (Lafferty, McCallum, and Pereira 2001; Collins 2002; Collins and Roark 2004;
McDonald, Crammer, and Pereira 2005; Clark and Curran 2007; Carreras, Collins, and
Koo 2008; Finkel, Kleeman, and Manning 2008).

The flexibility of our framework leads to competitive accuracies for each of the tasks
we consider. For word segmentation, we show how the framework can accommodate
a word-based approach, rather than the standard and more restrictive character-based
tagging approaches. For POS-tagging, we consider joint segmentation and POS-tagging,
showing that a single beam-search decoder can be used to achieve a significant accuracy
boost over the pipeline baseline. For Chinese and English dependency parsing, we
show how both graph-based and transition-based algorithms can be implemented as
beam-search, and then combine the two approaches into a single model which out-
performs both in isolation. Finally, for Chinese phrase-structure parsing, we describe a
global model for a shift-reduce parsing algorithm, in contrast to current deterministic
approaches which use only local models at each step of the parsing process. For all these
tasks we present results competitive with the best results in the literature.

In Section 2 we describe our general framework of the generic beam-search algo-
rithm and the generalized perceptron. Then in the subsequent sections we describe
each task in turn, based on conference papers including Zhang and Clark (2007, 2008a,
2008b, 2009, 2010), presented in our single coherent framework. We give an updated
set of results, plus a number of additional experiments which probe further into the
advantages and disadvantages of our framework. For the segmentation task, we also
compare our beam-search framework with alternative decoding algorithms including
an exact dynamic-programming method, showing that the beam-search method is sig-
nificantly faster with comparable accuracy. For the joint segmentation and POS-tagging
task, we present a novel solution using the framework in this article, and show that
it gives comparable accuracies to our previous work (Zhang and Clark 2008a), while
being more than an order of magnitude faster.

In Section 7 we provide further discussion of the framework based on the studies
of the individual tasks. We present the main advantages of the framework, and give an
analysis of the main reasons for the high speeds and accuracies achieved. We also dis-
cuss how this framework can be applied to a potential new task, and show that the com-
parability of candidates in the incremental process is an important factor to consider.

In summary, we study a general framework for incremental structural prediction,
showing how the framework can be tailored to a range of syntactic processing problems
to produce results competitive with the state-of-the-art. The conceptual and compu-
tational simplicity of the framework, together with its language-independent nature,

106

Zhang and Clark Syntactic Processing

make it a competitive choice that should be considered for comparison by developers
of alternative approaches.

2. The Decoding and Training Framework

The framework we study in this article addresses the general structural prediction
problem of mapping an input structure x ∈ X onto an output structure y ∈ Y, where
X is the set of possible inputs, and Y is the set of possible outputs. For example, for
the problem of Chinese word segmentation, X is the set of raw Chinese sentences and
Y is the set of all possible segmented Chinese sentences. For the problem of English
dependency parsing, X is the set of all English sentences and Y is the set of all possible
English dependency trees.

Given an input sentence x, the output F(x) is defined as the highest scored among
the possible output structures for x:

F(x) = arg max
y∈GEN(x)

Score(y) (1)

where GEN(x) denotes the set of possible outputs for an input sentence x, and Score(y)
is some real-valued function on Y.

To compute Score(y), the output structure y is mapped into a global feature vector
Φ(y) ∈ N d. Here a feature is a count of the occurrences of a certain pattern in an output
structure, extracted according to a set of feature templates, and d is the total number of
features. The term global feature vector is used by Collins (2002) to distinguish between
feature counts for whole sequences and the local feature vectors in maximum entropy
tagging models, which are boolean-valued vectors containing the indicator features for
one element in the sequence (Ratnaparkhi 1998). Having defined the feature vector,
Score(y) is computed using a linear model:

Score(y) = Φ(y) · ~w (2)

where ~w ∈ Rd is the parameter vector of the model, the value of which is defined by
supervised learning using the generalized perceptron.

For the general framework we study in this article, the output y is required to be
built through an incremental process. Suppose that K incremental steps are taken in
total to build y. The incremental change at the ith step (0 < i ≤ K) can be written as
δ(y, i). For word segmentation, δ(y, i) can be an additional character added to the output;
for shift-reduce parsing, δ(y, i) can be an additional shift-reduce action. Denoting the
change to the global feature vector at the incremental step as Φ(δ(y, i)), the global feature
vector Φ(y) can be written as Φ(y) =

∑K
i=1 Φ(δ(y, i)). Hence, Score(y) can be computed

incrementally by

Score(y) =
K∑

i=1

Φ(δ(y, i)) · ~w (3)

In the following sections, we describe the two major components of the gen-
eral framework, that is, the general beam-search algorithm for finding F(x) =
arg maxy∈GEN(x) Score(y) for a given x, and the generalized perceptron for training ~w.

107

Computational Linguistics Volume 37, Number 1

2.1 Beam-Search Decoding

Given an input x, the output structure y is built incrementally. At each step, an incre-
mental sub-structure is added to the partially built output. Due to structural ambiguity,
different sub-structures can be built. Taking POS-tagging for example, the incremental
sub-structure for each processing step can be a POS-tag assigned to the next input word.
Due to structural ambiguity, different POS-tags can be assigned to a word, and the
decoding algorithm searches for the particular path of incremental steps which builds
the highest scored output.

We present a generic beam-search algorithm for our decoding framework, which
uses an agenda to keep the B-best partial outputs at each incremental step. The partially
built structures, together with useful additional information, are represented as a set of
state items. Additional information in a state item is used by the decoder to organize
the current structures or keep a record of the incremental process. For POS-tagging
it includes the remaining input words yet to be assigned POS-tags; for a shift-reduce
parser, it includes the stack structure for the shift-reduce process and the incoming
queue of unanalyzed words.

The agenda is initialized as empty, and the state item that corresponds to the initial
structure is put onto it before decoding starts. At each step during decoding, each state
item from the agenda is extended with one incremental step. When there are multiple
choices to extend one state item, multiple new state items are generated. The new state
items generated at a particular step are ranked by their scores, and the B-best are put
back onto the agenda. The process iterates until a stopping criterion is met, and the
current best item from the agenda is taken as the output.

Pseudo code for the generic beam-search algorithm is given in Figure 1, where the
variable problem represents a particular task, such as word segmentation or dependency
parsing, and the variable candidate represents a state item, which has a different defini-
tion for each task. For example, for the segmentation task, a candidate is a pair, consisting
of the partially segmented sentence and the remaining character sequence yet to be
segmented. The agenda is an ordered list, used to keep all the state items generated at
each stage, ordered by score. The variable candidates is the set of state items that can be
used to generate new state items, that is, the B-best state items from the previous stage.
B is the number of state items retained at each stage.

function BEAM-SEARCH(problem, agenda, candidates, B)

candidates ← {STARTITEM(problem)}
agenda ← CLEAR(agenda)
loop do

for each candidate in candidates
agenda ← INSERT(EXPAND(candidate, problem), agenda)

best ← TOP(agenda)
if GOALTEST(problem, best)

then return best
candidates ← TOP-B(agenda, B)
agenda ← CLEAR(agenda)

Figure 1
The generic beam-search algorithm.

108

Zhang and Clark Syntactic Processing

STARTITEM initializes the start state item according to the problem; for example,
for the segmentation task, the start state item is a pair consisting of an empty seg-
mented sentence and the complete sequence of characters waiting to be segmented.
CLEAR removes all items from the agenda. INSERT puts one or more state items onto
the agenda. EXPAND represents an incremental processing step, which takes a state
item and generates new state items from it in all possible ways; for example, for the
segmentation task, EXPAND takes the partially segmented sentence in a state item,
and extends it in all possible ways using the first character in the remaining character
sequence in the state item. TOP returns the highest scoring state item on the agenda.
GOALTEST checks whether the incremental decoding process is completed; for example,
for the segmentation task, the process is completed if the state item consists of a fully
segmented sentence and an empty remaining character sequence. TOP-B returns the B-
highest scoring state items on the agenda, which are used for the next incremental step.

State items in the agenda are ranked by their scores. Suppose that K incremental
steps are taken in total to build an output y. At the ith step (0 < i ≤ K), a state item in
the agenda can be written as candidatei, and we have

Score(candidatei) =
i∑

n=1

Φ(δ(candidatei, n)) · ~w

Features for a state item can be based on both the partially built structure and the
additional information we mentioned earlier.

The score of a state item can be computed incrementally as the item is built. The
score of the start item is 0. At the ith step (0 < i ≤ K), a state item candidatei is generated
by extending an existing state item candidatei−1 on the agenda with δ(candidatei, i). In
this case, we have

Score(candidatei) = Score(candidatei−1) + Φ(δ(candidatei, i)) · ~w

Therefore, when a state item is extended, its score can be updated by adding the
incremental score of the step Φ(δ(candidatei, i)) · ~w. The nature of the scoring function
means that, given appropriately defined features, it can be computed efficiently for both
the incremental decoding and training processes.

Because the correct item can fall out of the agenda during the decoding process, the
general beam-search framework is an approximate decoding algorithm. Nevertheless,
empirically this algorithm gives competitive results on all the problems in this article.

2.2 The Generalized Perceptron

The perceptron learning algorithm is a supervised training algorithm. It initializes the
parameter vector as all zeros, and updates the vector by decoding the training examples.
For each example, the output structure produced by the decoder is compared with
the correct structure. If the output is correct, no update is performed. If the output
is incorrect, the parameter vector is updated by adding the global feature vector of
the training example and subtracting the global feature vector of the decoder output.
Intuitively, the training process is effectively coercing the decoder to produce the correct
output for each training example. The algorithm can perform multiple passes over the
same training sentences. In all experiments, we decide the number of training iterations
using a set of development test data, by choosing the number that gives the highest

109

Computational Linguistics Volume 37, Number 1

Inputs: training examples (xi, yi)
Initialization: set ~w = 0
Algorithm:

for r = 1..P, i = 1..N
calculate zi = decode(xi)
if zi 6= yi
~w = ~w + Φ(yi)− Φ(zi)

Outputs: ~w
Figure 2
The generalized perceptron algorithm, adapted from Collins (2002).

development test accuracy as the final number in testing. Figure 2 gives the algorithm,
where N is the number of training sentences and P is the number of passes over the data.

The averaged perceptron algorithm (Collins 2002) is a standard way of reducing
overfitting on the training data. It was motivated by the voted-perceptron algorithm
(Freund and Schapire 1999) and has been shown to give improved accuracy over the
non-averaged perceptron on a number of tasks. Let N be the number of training sen-
tences, P the number of training iterations, and ~wi,r the parameter vector immediately
after the ith sentence in the rth iteration. The averaged parameter vector ~γ ∈ Rd is
defined as

~γ = 1
PN

∑

i=1..N,r=1..P

~wi,r

and it is used instead of ~w as the model parameters. We use the averaged perceptron for
all the tasks we consider.

We also use the early-update strategy of Collins and Roark (2004), which is a
modified version of the perceptron algorithm specifically for incremental decoding
using beam search. At any step during the decoding process to calculate zi, if all partial
candidates in the agenda are incorrect, decoding is stopped and the parameter vector is
updated according to the current best candidate in the agenda and the corresponding
gold-standard partial output. To perform early-update, the decoder needs to keep a
version of the correct partial output for each incremental step, so that the parameter
values are adjusted as soon as the beam loses track of the correct state item. The intuition
is to force the beam to keep the correct state item at every incremental step, rather than
learning only the correct overall structure. This strategy has been shown to improve the
accuracy over the original perceptron for beam-search decoding.

In summary, our general framework consists of a global linear model, which is
trained by the averaged perceptron, and a beam-search decoder. When applied to a
particular task, the structure of a state item as well as some of the functions in the
decoder need to be instantiated. In the following sections, we show how the general
framework can be applied to Chinese word segmentation, joint segmentation and POS-
tagging, Chinese and English dependency parsing, and Chinese constituent parsing.

3. Word Segmentation

Chinese word segmentation (CWS) is the problem of finding word boundaries for
Chinese sentences, which are written as continuous character sequences. Other lan-
guages, including Japanese and Thai, also have the problem of word segmentation, and
typical statistical models for CWS can also be applied to them.

110

Zhang and Clark Syntactic Processing

Word segmentation is a problem of ambiguity resolution, often requiring knowl-
edge from a variety of sources. Out-of-vocabulary (OOV) words are a major source of
ambiguity. For example, a difficult case occurs when an OOV word consists of characters
which have themselves been seen as words; here an automatic segmentor may split the
OOV word into individual single-character words. Typical examples of unseen words
include Chinese names, translated foreign names, and idioms.

The segmentation of known words can also be ambiguous. For example,
should be (here) (flour) in the sentence (flour and rice are ex-
pensive here) or (here) (inside) in the sentence (it’s cold inside
here). The ambiguity can be resolved with information about the neighboring words. In
comparison, for the sentence , possible segmentations include (the
discussion) (will) (very) (be successful) and (the discussion meeting)

(very) (be successful). The ambiguity can only be resolved with contextual infor-
mation outside the sentence. Human readers often use semantics, contextual informa-
tion about the document, and world knowledge to resolve segmentation ambiguities.

There is no fixed standard for Chinese word segmentation. Experiments have
shown that there is only about 75% agreement among native speakers regarding the
correct word segmentation (Sproat et al. 1996). Also, specific NLP tasks may require
different segmentation criteria. For example, could be treated as a single
word (Bank of Beijing) for machine translation, although it is more naturally segmented
into (Beijing) (bank) for tasks such as text-to-speech synthesis. Therefore,
supervised learning with specifically defined training data has become the dominant
approach.

Following Xue (2003), the standard approach for building a statistical CWS model
is to treat CWS as a sequence labeling task. A tag is assigned to each character in the
input sentence, indicating whether the character is a single-character word or the start,
middle, or end of a multi-character word. The context for disambiguation is normally a
five-character window with the current character in the middle. We call these methods
character-based word segmentation. The advantage of character-based segmentation is
that well-known tagging approaches can be applied directly to the CWS problem.

There are various character-based models in the literature. They differ mainly in the
learning algorithm and the features used. Several discriminative learning algorithms
have been applied to the character-based systems. Examples include Xue (2003), Peng,
Feng, and McCallum (2004), and Wang et al. (2006), which use maximum entropy and
conditional random field models, and Jiang et al. (2008), which uses the perceptron
model. The standard feature set is that defined by Ng and Low (2004), though other
feature sets are reported to improve the accuracy (Zhao, Huang, and Li 2006). Zhao,
Huang, and Li (2006) also showed that the best accuracy for conditional random field
(CRF) models is given by using a set of six character segmentation tags, rather than
the standard set {beginning, middle, end, single} shown previously. Standard search
algorithms for sequence tagging have been applied to the decoding process, such as
the dynamic-programming algorithm and beam-search.

A disadvantage of character-based models is the use of limited contextual infor-
mation. For these methods, context is confined to the neighboring characters. Other
contextual information, in particular the surrounding words, is not included. Consider
the sentence , which can be from (among which) (foreign)
(companies), or (in China) (foreign companies) (business). Note that the
five-character window surrounding is the same in both cases, making the tagging
decision for that character difficult given the local window. The correct decision can be
made, however, by comparing the two three-word windows containing this character.

111

Computational Linguistics Volume 37, Number 1

In Zhang and Clark (2007) we proposed a word-based approach to segmentation,
which provides a direct solution to the problem. In comparison with the character-based
approach, our segmentor does not map the CWS problem into sequence labeling. By
using a global linear model, it addresses the segmentation problem directly, extracting
word-based features from the output segmented structure. Hence we call our word
segmentation model the word-based approach. In fact, word-based segmentors can be
seen as a generalization of character-based segmentors, because any character-based
features can be defined in a word-based model.

In the following sections, we describe a word-based segmentor using the general
framework of this article, which is slightly different from the original system we pro-
posed in Zhang and Clark (2007). We compare the accuracies of this segmentor and
the 2007 segmentor, and report a set of improved results for our 2007 segmentor using
a better method to optimize the number of training iterations. We then study alterna-
tive decoders to the general framework, including a Viterbi inference algorithm and a
multiple-beam search algorithm, and provide discussion on the general framework and
word-based segmentation.

3.1 Instantiating the General Framework

In this section we formulate our word-based segmentor as an instance of the general
framework of this article. Our segmentor builds a candidate segmentation incremen-
tally, one character at a time. When each character is processed, it is either combined
with the last word of the partial candidate that has been built so far, or added to the
candidate as the start of a new word. The same process repeats for each input character,
and therefore runs in linear time.

For ambiguity resolution, we use a beam-search decoding algorithm to explore the
search space. Initially containing only an empty sentence, an agenda is used to keep a
set of candidate items for each processing step. When an input character is processed,
it is combined with each candidate in the agenda in the two aforementioned ways, and
two new candidates are generated. At the end of each step, the B-best newly generated
candidates are kept in the agenda for the next processing step. When the input sentence
is exhausted, the top candidate from the agenda is taken as the output.

This decoding process can be expressed as an instance of the generic algorithm in
Figure 1. For the word segmentation problem, a state item in the algorithm is a pair
〈S, Q〉, where S contains part of the input that has been segmented, and Q contains
the rest of the input sentence as a queue of incoming characters. The initial state item
STARTITEM(word segmentation) contains an empty sentence, and an incoming queue of
the whole input sentence. EXPAND(candidate, word segmentation) pops the first character
from the incoming queue, and adds it to the partial segmented sentence in candidate in
two different ways to generate two new state items: It either appends the character to
the last word in the sentence or joins it as the start of a new word in the sentence. Finally,
GOALTEST(word segmentation, best) returns true if best contains a fully segmented input
sentence, and therefore an empty incoming queue, and false otherwise.

The score of a segmented sentence is computed by the global linear model in
Equation (2), where the parameter vector ~w for the model is computed by the early-
update version of the perceptron training algorithm described in Section 2.2. Our word
segmentor computes the global feature vector Φ(y) incrementally according to Equa-
tion (3), where for the ith character, Φ(δ(y, i)) is computed using the feature templates
in Table 1, according to whether the character is appended to or separated from its
previous character.

112

Zhang and Clark Syntactic Processing

Table 1
Feature templates for the word segmentor.

Feature template When c0 is

1 w−1 separated
2 w−1w−2 separated
3 w−1, where len(w−1) = 1 separated
4 start(w−1)len(w−1) separated
5 end(w−1)len(w−1) separated
6 end(w−1)c0 separated
7 c−1c0 appended
8 begin(w−1)end(w−1) separated
9 w−1c0 separated

10 end(w−2)w−1 separated
11 start(w−1)c0 separated
12 end(w−2)end(w−1) separated
13 w−2len(w−1) separated
14 len(w−2)w−1 separated

w = word; c = character. The index of the current character is 0.

3.2 Comparisons with Zhang and Clark (2007)

Both the segmentor of this article and our segmentor of Zhang and Clark (2007) use
a global linear model trained discriminatively using the perceptron. However, when
comparing state items in the agenda, our 2007 segmentor treated full words in the
same way as partial words, scoring them using the same feature templates. This scoring
mechanism can potentially have a negative effect on the accuracy. In this article, we take
a different strategy and apply full-word feature templates only when the next input
character is separated from the word. In fact, most of the feature templates in Table 1
are related to full word information, and are applied when separating the next character.
This method thus gives a clear separation of partial word and full word information. We
also applied early-update in this article, so that the training process is closely coupled
with beam-search decoding. In Zhang and Clark (2007) we performed the standard
global discriminative learning.

3.3 Combining Word-Based and Character-Based Segmentation

As stated earlier, a character-based segmentor maps the segmentation problem into
a sequence labeling problem, where labels are assigned to each input character to
represent its segmentation. Our word-based approach does not map the segmentation
problem into a labeling task but solves it directly. In this article, we further show that the
flexibility of the word-based approach, enabled by our general framework, allows the
combination of a character-based sub-system into our word-based system. The intuition
is simple: Both perceptron learning and beam-search decoding allow arbitrary features,
and therefore features from a typical character-based system can be incorporated into
our segmentor to provide further information. Though character-based segmentors can
also leverage word-level features indirectly, the labeling nature prevents them from
direct use of word information.

We follow the convention of character-based segmentation, and define the set of
segmentation tags as {B, E, M, S}. The tags B, E, M represent the character being the

113

Computational Linguistics Volume 37, Number 1

beginning, end, and middle of a multiple-character word, respectively, and the tag S
represents the character being a single-character word.

The character-based features that we incorporate into our segmentor are shown
in Table 2, which consist of unigram, bigram, and trigram information in the three-
character window surrounding the current character, paired with the segmentation tag
of the current character. To distinguish this system from our system without combina-
tion of character-based information, we call our segmentor in Section 3.1 the pure word-
based segmentor and the segmentor that uses character-based features the combined
segmentor in our experimental sections.

3.4 Experiments

We performed two sets of experiments. In the first set of experiments, we used the
Chinese Treebank (CTB) data to study the speed/accuracy tradeoff by varying the
size of the beam. In the second set of experiments, we used training and testing sets
from the first and second international Chinese word segmentation bakeoffs (Sproat
and Emerson 2003; Emerson 2005) to compare the accuracies to other models in the
literature, including our segmentor of Zhang and Clark (2007).

F-score is used as the accuracy measure: 2pr/(p + r), where precision p is the per-
centage of words in the decoder output that are segmented correctly, and recall r is the
percentage of gold-standard output words that are correctly segmented by the decoder.

CWS systems are evaluated by two types of tests. The closed tests require that the
system is trained only with a designated training corpus. Any extra knowledge is not
allowed, including common surnames, Chinese and Arabic numbers, European letters,
lexicons, parts-of-speech, semantics, and so on. The open tests do not impose such
restrictions. Open tests measure a model’s capability to utilize extra information and
domain knowledge, which can lead to improved performance, but because this extra
information is not standardized, direct comparison between open test results is less
informative. In this article, we focus only on the closed test.

3.4.1 Speed/Accuracy Tradeoff. We split CTB5 into training, development test, and test
sets as shown in Table 3, where the development test data are used to determine the
number of training iterations, which are used to obtain the final accuracies on the test
data. We measure the accuracies on the test data with various beam-sizes, and plot
the speed/accuracy tradeoff graph in Figure 3. Each point in the figure, from right to
left, corresponds to beam size B = 1, 2, 4, 8, 16, 32, and 64, respectively. Speed is mea-
sured in the number of thousand characters per second, and accuracy is calculated using
F-score.

As the size of the beam increases, the speed of the segmentor decreases. Because
a larger part of the search is explored with an increased beam size, the accuracy of

Table 2
Feature templates of a typical character-based word segmentor.

Feature template When c0 is

1 cis0, i ∈ {−1, 0, 1} separated, appended
2 ci−1cis0, i ∈ 0, 1 separated, appended
3 c−1c0c1s0 separated, appended

c = character; s = segmentation tag. The index of the current character is 0.

114

Zhang and Clark Syntactic Processing

Table 3
Training, development, and test data for word segmentation on CTB5.

Sections Sentences Words

Training 1–270, 400–931, 1001–1151 18,085 493,892
Dev 301–325 350 6,821
Test 271–300 348 8,008

the decoder has the potential to increase. This explains the increased accuracies when
B increases from 1 to 16. However, the amount of increase drops when the beam size
increases.

3.4.2 Closed Test on the SIGHAN Bakeoffs. Four training and testing corpora were used in
the first bakeoff (Sproat and Emerson 2003), including the Academia Sinica Corpus (AS),
the Penn Chinese Treebank Corpus (CTB), the Hong Kong City University Corpus (CU),
and the Peking University Corpus (PU). However, because the testing data from the
Penn Chinese Treebank Corpus is currently unavailable to us, we excluded this corpus
from our experiments. The corpora are encoded in GB (PU, CTB) and BIG5 (AS, CU).
In order to test them consistently in our system, they are all converted to UTF8 without
loss of information.

The results are shown in Table 4. We follow the format from Peng, Feng, and
McCallum (2004), where each row represents a CWS model. The first three columns
represent tests with the AS, CU, and PU corpora, respectively. The best score in each
column is shown in bold. The last two columns represent the average accuracy of each
model over the tests it participated in (SAV), and our average over the same tests (OAV),
respectively. The first eight rows represent models from Sproat and Emerson (2003) that
participated in at least one closed test from the table, row “Peng” represents the CRF
model from Peng, Feng, and McCallum (2004), row “Zhang 2007” represents our model
as reported in Zhang and Clark (2007), and the last two rows represent our model in
this article, using only word-based features in Table 1 and combined features in Tables 1
plus 2, respectively.

In Zhang and Clark (2007) we fixed the number of training iterations to six for
all experiments, according to a separate set of development data. An alternative way
to decide the number of training iterations is to set apart 10% from the training data

Figure 3
Speed/accuracy tradeoff of the segmentor.

115

Computational Linguistics Volume 37, Number 1

Table 4
The accuracies of various word segmentors over the first SIGHAN bakeoff data.

AS CU PU SAV OAV

S01 93.8 90.1 95.1 93.0 95.5
S04 93.9 93.9 94.8
S05 94.2 89.4 91.8 95.9
S06 94.5 92.4 92.4 93.1 95.5
S08 90.4 93.6 92.0 94.8
S09 96.1 94.6 95.4 95.9
S10 94.7 94.7 94.8
S12 95.9 91.6 93.8 95.9

Peng 95.6 92.8 94.1 94.2 95.5

Zhang 2007 96.5 94.6 94.0 95.0 95.5

Zhang 2007* 96.9 94.6 94.1 95.2 95.5

this article pure 97.0 94.6 94.6 95.4 95.5
this article combined 96.9 94.8 94.8

The best score in each column and the best average in each row is in boldface.
*Zhang 2007 with the (Carreras, Surdeanu, and Marquez 2006) method applied (see text for
details).

as development test data, and use the rest for development training. For testing, all
training data are used for training, with the number of training iterations set to be the
number which gave the highest accuracy during the development experiments. This
method was used by Carreras, Surdeanu, and Marquez (2006) in their parsing model.
We apply it to our segmentor model in this article. Moreover, we also use this method
to decide the number of training iterations for our system of Zhang and Clark (2007),
and show the accuracies in row “Zhang 2007*”.

For each row the best average is shown in bold. We achieved the best accuracy in all
three corpora, and better overall accuracy than all the other models using the method
of this article. Our new method to decide the number of training iterations also gave
improved accuracies compared to our 2007 model. The combination of character-based
features and our original word-based features gave slight improvement in the overall
accuracy.

Four training and testing corpora were used in the second bakeoff (Emerson 2005),
including the Academia Sinica corpus (AS), the Hong Kong City University Corpus
(CU), the Peking University Corpus (PK), and the Microsoft Research Corpus (MR).
Different encodings were provided, and the UTF8 data for all four corpora were used
in our experiments.

Following the format of Table 4, the results for this bakeoff are shown in Table 5. We
chose the three models that achieved at least one best score in the closed tests from
Emerson (2005), as well as the sub-word-based model of Zhang, Kikui, and Sumita
(2006) for comparison. Row “Zh-a” and “Zh-b” represent the pure sub-word CRF model
and the confidence-based combination of the CRF and rule-based models, respectively.
Again, our model achieved better overall accuracy than all the other models. The
combination of character-based features improved the accuracy slightly again.

116

Zhang and Clark Syntactic Processing

Table 5
The accuracies of various word segmentors over the second SIGHAN bakeoff data.

AS CU PK MR SAV OAV

S14 94.7 94.3 95.0 96.4 95.1 95.6
S15b 95.2 94.1 94.1 95.8 94.8 95.6
S27 94.5 94.0 95.0 96.0 94.9 95.6

Zh-a 94.7 94.6 94.5 96.4 95.1 95.6
Zh-b 95.1 95.1 95.1 97.1 95.6 95.6

Zhang 2007 94.6 95.1 94.5 97.2 95.4 95.6

Zhang 2007* 95.0 95.1 94.6 97.3 95.5 95.6

This article pure 95.1 95.2 94.4 97.3 95.5 95.6
This article combined 95.4 95.1 94.4 97.3

The best score in each column and the best average in each row is in boldface.
*Zhang 2007 with the (Carreras, Surdeanu, and Marquez 2006) method applied (see text for
details).

3.5 Alternative Decoding Algorithms

Besides the general framework of this article, there are various alternative learning and
decoding algorithms for a discriminative linear model applied to the word segmenta-
tion problem, using the same feature templates we defined. In this section, we study
two alternative decoding algorithms to the beam-search decoder, including a multiple-
beam search algorithm, which can be viewed as an alternative decoder specifically
designed for the word segmentation and joint segmentation and tagging problems, and
a dynamic-programming algorithm. Both algorithms explore a larger part of the search
space than the single beam-search algorithm, and we compare the accuracy and speed
of these algorithms within the generalized perceptron learning framework.

3.5.1 A Multiple-Beam Search Decoder. In Zhang and Clark (2008a) we proposed a
multiple-beam decoder for the problem of joint word segmentation and POS-tagging,
in which state items only contain complete words. This algorithm can be naturally
adapted for word segmentation. Compared with the single-beam decoder, it explores a
larger fraction of the search space. Moreover, the multiple-beam decoder does not have
the problem of comparing partial words with full words in a single agenda, which our
segmentor of Zhang and Clark (2007) has. We implement this decoder for segmentation
and compare its accuracies with our single-beam decoder.

Instead of a single agenda, the multiple-beam algorithm keeps an agenda for each
character in the input sentence, recording the best partial candidates ending with the
character. Like the single beam decoder, the input sentence is processed incremen-
tally. However, at each stage, partial sequence candidates are available at all previous
characters. Therefore, the decoder can examine all candidate words ending with the
current character. These possible words are combined with the relevant partial candi-
dates from the previous agendas to generate new candidates, which are then inserted
into the agenda for the current character. The output of the decoder is the top candidate
in the last agenda, representing the best segmentation for the whole sentence. The

117

Computational Linguistics Volume 37, Number 1

multiple-beam search decoder explores a larger number of candidate outputs compared
to the single-beam search. To improve the running speed, a maximum word length
record is kept to limit the length of candidate words.

Because the multiple-beam decoder can also be applied to the joint segmentation
and POS-tagging problem in Section 4, we describe this algorithm by extending the
generic beam-search algorithm in Figure 1. Three modifications are made to the original
algorithm, shown in Figure 4. First, the B-best candidates generated in each processing
step are kept in prev topBs. Here prev topBs can be seen as a list of the candidates in the
original search algorithm, with prev topBs[k] containing the current items with size k,
and prev topBs[0] containing only the start item. An extra loop is used to enumerate all
state items in prev topBs for the generation of new state items. Second, variable k is used
to represent the size of the state items to be generated, and EXPAND generates only state
items with size k, taking k as an extra parameter. Third, the B-best newly generated state
items are appended to the back of prev topBs, without removing previous state items in
prev topBs. The algorithm thereby keeps track of kB state items instead of B at the kth
processing stage, and explores a larger subset of the exponential search space.

The rest of the algorithm is the same as the original algorithm in Figure 1. To in-
stantiate this generic algorithm for word segmentation, STARTITEM(word segmentation)
consists of an empty sentence S and a queue Q containing the full input sentence;
EXPAND(candidate, k, word segmentation) generates a single new state item by popping
characters on the incoming queue from the front until the kth character (k is the index in
the input sentence rather than the queue itself), and appending them as a new word
to candidate; and GOALTEST(word segmentation, best) returns true if best consists of a
complete segmented sentence and an empty incoming queue.

As before, the linear model from Section 2 is applied directly to score state items,
and the model parameters are trained with the averaged perceptron algorithm. The
features for a state item are extracted according to the feature templates in Table 1.

3.5.2 A Dynamic-Programming Decoder. Given the feature templates that we define,
a dynamic-programming algorithm can be used to explore the whole search space
in cubic time. The idea is to reduce the search task into overlapping sub-problems.

function MULTIPLE-BEAM-SEARCH(problem, agenda, prev topBs, B)

prev topBs ← {{STARTITEM(problem)}}
agenda ← CLEAR(agenda)
k ← 0
loop do

k ← k + 1
for each candidates in prev topBs

for each candidate in candidates
agenda ← INSERT(EXPAND(candidate, k, problem), agenda)

if GOALTEST(problem, agenda)
then return TOP(agenda)

candidates ← TOP-B(agenda, B)
prev topBs ← APPEND(prev topBs, candidates)
agenda ← CLEAR(agenda)

Figure 4
The extended generic beam-search algorithm with multiple beams.

118

Zhang and Clark Syntactic Processing

Suppose that the input has n characters; one way to find the highest-scored segmenta-
tion is to first find the highest-scored segmentations with the last word being characters
b..n− 1, where b ∈ 0..n− 1, respectively, and then choose the highest-scored one from
these segmentations. In order to find the highest-scored segmentation with the last
word being characters b, ..n− 1, the last word needs to be combined with all different
segmentations of characters 0..b− 1 so that the highest scored can be selected. However,
because the largest-range feature templates span only over two words (see Table 1),
the highest scored among the segmentations of characters 0..b− 1 with the last word
being characters b′..b− 1 will also give the highest score when combined with the word
b..n− 1. As a result, the highest-scored segmentation with the last word being charac-
ters b..n− 1 can be found as long as the highest-scored segmentations of 0..b− 1 with
the last word being b′..b− 1 are found, where b′ ∈ 0..b− 1. With the same reasoning, the
highest-scored segmentation of characters 0..b− 1 with the last word being b′..b− 1 can
be found by choosing the highest-scored one among the highest-scored segmentations
of 0..b′ − 1 with the last word being b′′..b′ − 1, where b′′ ∈ 0..b′ − 1. In this way, the
search task is reduced recursively into smaller problems, where in the simplest case
the highest-scored segmentation of characters 0..e with the last word being characters
0..e(e ∈ 0..n− 1) are known. And the final highest-scored segmentation can be found by
incrementally finding the highest-scored segmentations of characters 0..e(e ∈ 0..n− 1)
with the last word being b..e(b ∈ 0..e).

The pseudo code for this algorithm is shown in Figure 5. It works by building
an n by n table chart, where n is the number of characters in the input sentence sent.
chart[b, e] records the highest scored segmentation from the beginning to character e,
with the last word starting from character b and ending at character e. chart[0, e] can be
computed directly for e = 0..n− 1, whereas chart[b, e] needs to be built by combing the
best segmentation on sent[0, b− 1] and sent[b, e], for b > 0. The final output is the best
among chart[b, n− 1], with b = 0..n− 1. The reason for recording partial segmentations
with different final words separately (leading to cubic running time) is the word bigram
feature template. Note that with a larger feature range, exact inference with dynamic-
programming can become prohibitively slow.

Inputs: raw sentence sent (length n)
Variables: an n by n table chart, where chart[b, e] stores the best scored (partial)

segmentation of the characters from the begining of the sentence to character
e, with the last word spanning over the characters from b until e;
character index b for the start of word;
character index e for the end of word;
character index p for the start of the previous word.

Initialization:
for e = 0..n− 1:

chart[0, e] ← a single word sent[0..e]
Algorithm:

for e = 0..n− 1:
for b = 1..e:

chart[b, e] ← the highest scored segmentation among those derived by combining
chart[p, b− 1] with sent[b, e], for p = 0..b− 1

Outputs: the highest scored segmentation among chart[b, n− 1], for b = 0..n− 1
Figure 5
A dynamic-programming algorithm for word segmentation.

119

Computational Linguistics Volume 37, Number 1

Table 6
Comparison between three different decoders for word segmentation.

Bakeoff 1 Bakeoff 2

AS CU PU AS CU PU MS Average

SB F-measure 96.9 94.6 94.1 95.0 95.1 94.6 97.3 95.4
SB sent/sec 212 145 202 358 115 177 105 188
SB char/sec 3,054 6,846 4,808 5,263 5,333 5,870 4,963 5,162
SB # features 4.0M 0.5M 1.5M 3.9M 1.8M 1.5M 2.7M 2.3M

MB F-measure 97.0 94.5 94.1 95.0 95.0 94.4 97.3 95.3
MB sent/sec 147 7 13 167 7 11 5 51
MB char/sec 2,118 331 187 2,455 325 365 236 859
MB # features 4.0M 0.6M 1.5M 3.9M 1.8M 1.5M 2.7M 2.3M

DP F-measure 97.1 94.6 94.3 95.0 95.0 94.5 97.2 95.4
DP sent/sec 131 3 6 142 4 4 2 42
DP char/sec 1,887 142 86 2,087 185 133 95 659
DP # features 4.0M 0.5M 1.5M 3.9M 1.7M 1.4M 2.7M 2.3M

3.5.3 Experiments. Table 6 shows the comparison between the single-beam (SB), multiple-
beam (MB), and dynamic-programming (DP) decoders by F-score and speed.1 Speed is
measured by the number of sentences (sent) and characters (char) per second (excluding
model loading time). We also include the size of the models in each case. The slight
difference in model size between different methods is due to different numbers of
negative features generated during training. The single-beam search algorithm achieved
significantly higher speed than both the multiple-beam and the dynamic-programming
algorithms, whereas the multiple-beam search algorithm ran slightly faster than the
dynamic-programming algorithm. Though addressing the comparability issue and
exploring a larger number of candidate output segmentations, neither multiple-beam
search nor dynamic programming gave higher accuracy than the single-beam search
algorithm overall. One of the possible reasons is that the perceptron algorithm adjusts
its parameters according to the mistakes the decoder makes: Although the single-beam
might make more mistakes than the multiple-beam given the same model, it does not
necessarily perform worse with a specifically tailored model.

4. Joint Segmentation and Part-of-Speech Tagging

Joint word segmentation and POS-tagging is the problem of solving word segmen-
tation and POS-tagging simultaneously. Traditionally, Chinese word segmentation and
POS-tagging are performed in a pipeline. The output from the word segmentor is taken
as the input for the POS-tagger. A disadvantage of pipelined segmentation and POS-
tagging is that POS-tag information, which is potentially useful for segmentation, is
not used during the segmentation step. In addition, word segmentation errors are
propagated to the POS-tagger, leading to lower quality of the overall segmented and

1 The experiments were performed using the Zhang and Clark (2007) feature set and single-beam decoder,
and our new way to decide the number of training iterations in this article. The single-beam results
correspond to “Zhang 2007*” in Tables 4 and 5.

120

Zhang and Clark Syntactic Processing

POS-tagged output. Joint word segmentation and POS-tagging is a method that ad-
dresses these problems. In Zhang and Clark (2008a) we proposed a joint word segmen-
tor and POS-tagger using a multiple-beam decoder, and showed that it outperformed a
pipelined baseline. We recently showed that comparable accuracies can be achieved by a
single-beam decoder, which runs an order of magnitude faster (Zhang and Clark 2010).
In this section, we describe our single-beam system using our general framework, and
provide a detailed comparison with our multiple-beam and baseline systems of Zhang
and Clark (2008a).

4.1 Instantiating the General Framework

Given an input sentence, our joint segmentor and POS-tagger builds an output incre-
mentally, one character at a time. When a character is processed, it is either concatenated
with the last word in the partially built output, or taken as a new word. In the latter
case, a POS-tag is assigned to the new word. When more characters are concatenated to
a word, the POS-tag of the word remains unchanged.

For the decoding problem, an agenda is used to keep B different candidates at
each incremental step. Before decoding starts, the agenda is initialized with an empty
sentence. When a character is processed, existing candidates are removed from the
agenda and extended with the current character in all possible ways, and the B-best
newly generated candidates are put back onto the agenda. After all the input characters
have been processed, the highest-scored candidate from the agenda is taken as output.

Expressed as an instance of the generic algorithm in Figure 1, a state item is a pair
〈S, Q〉, with S being a segmented and tagged sentence and Q being a queue of the next in-
coming characters. STARTITEM(joint tagging) contains an empty sentence and the whole
input sentence as incoming characters; EXPAND(candidate, joint tagging) pops the first
character from the incoming queue, adds it to candidate, and assigns POS-tags in the
aforementioned way to generate a set of new state items; and GOALTEST(joint tagging,
best) returns true if best contains a complete segmented and POS-tagged output and an
empty queue.

The linear model from Section 2 is applied to score state items, differentiating
partial words from full words in the aforementioned ways, and the model parameters
are trained with the averaged perceptron. The features for a state item are extracted
incrementally according to Equation (3), where for the ith character, Φ(δ(y, i)) is com-
puted according to the feature templates in both Table 1, which are related to word
segmentation, and Table 7, which are related to POS-tagging. During training, the early-
update method of Collins and Roark (2004), as described in Section 2, is used. It ensures
that state items on the beam are highly probable at each incremental step, and is crucial
to the high accuracy given by a single-beam.

4.2 Pruning

We use several pruning methods from Zhang and Clark (2008a), most of which serve
to improve the accuracy by removing irrelevant candidates from the beam. First, the
system records the maximum number of characters that a word with a particular POS-
tag can have. For example, from the Chinese Treebank that we used for our experiments,
most POS are associated only with one- or two-character words. The only POS-tags that
are seen with words over ten characters long are NN (noun), NR (proper noun), and
CD (numbers). The maximum word length information is initialized as all ones, and
updated according to each training example before it is processed.

121

Computational Linguistics Volume 37, Number 1

Table 7
POS feature templates for the joint segmentor and POS-tagger.

Feature template when c0 is

1 w−1t−1 separated
2 t−1t0 separated
3 t−2t−1t0 separated
4 w−1t0 separated
5 t−2w−1 separated
6 w−1t−1end(w−2) separated
7 w−1t−1c0 separated
8 c−2c−1c0t−1, where len(w−1) = 1 separated
9 c0t0 separated

10 t−1start(w−1) separated
11 t0c0 separated or appended
12 c0t0start(w0) appended
13 ct−1end(w−1), where c ∈ w−1 and c 6= end(w−1) separated
14 c0t0cat(start(w0)) separated
15 ct−1cat(end(w−1)), where c ∈ w−1 and c 6= end(w−1) appended
16 c0t0c−1t−1 separated
17 c0t0c−1 appended

w = word; c = character; t = POS-tag. The index of the current character is 0.

Second, a tag dictionary is used to record POS-tags associated with each word.
During decoding, frequent words and words with “closed set” tags2 are only assigned
POS-tags according to the tag dictionary, while other words are assigned every POS-
tag to make candidate outputs. Whether a word is a frequent word is decided by the
number of times it has been seen in the training process. Denoting the number of times
the most frequent word has been seen by M, a word is a frequent word if it has been
seen more than M/5, 000 + 5 times. The threshold value is taken from Zhang and Clark
(2008a), and we did not adjust it during development. Word frequencies are initialized
as zeros and updated according to each training example before it is processed; the
tag dictionary is initialized as empty and updated according to each training example
before it is processed.

Third, we make an additional record of the initial characters for words with “closed
set” tags. During decoding, when the current character is added as the start of a new
word, “closed set” tags are only assigned to the word if it is consistent with the record.
This type of pruning is used in addition to the tag dictionary to prune invalid partial
words, while the tag dictionary is used to prune complete words. The record for initial
character and POS is initially empty, and updated according to each training example
before it is processed.

Finally, at any decoding step, we group partial candidates that are generated by
separating the current character as the start of a new word by the signature p0p−1w−1,
and keep only the best among those having the same p0p−1w−1. The signature p0p−1w−1
is decided by the feature templates we use: it can be shown that if two candidates cand1
and cand2 generated at the same step have the same signature, and the score of cand1
is higher than the score of cand2, then at any future step, the highest scored candidate

2 “Closed set” tags are the set of POS-tags which are only associated with a fixed set of words, according to
the Penn Chinese Treebank specifications (Xia 2000).

122

Zhang and Clark Syntactic Processing

generated from cand1 will always have a higher score than the highest scored candidate
generated from cand2.

From these four pruning methods, only the third was not used by our multiple-
beam system (Zhang and Clark 2008a). This was designed to help keep likely partial
words in the agenda and improve the accuracy, and does not give our system a speed
advantage over our multiple-beam system.

4.3 Comparison with Multiple-Beam Search (Zhang and Clark 2008a)

Our system of Zhang and Clark (2008a) was based on the perceptron and a multiple-
beam decoder. That decoder can be seen as a slower alternative of our decoder in this ar-
ticle, but one which explores a larger part of the search space. The comparison between
our joint segmentation and tagging systems of Zhang and Clark (2008a) and this article
is similar to the comparison between our segmentors in sections 3.5.1 and 3.1. In Zhang
and Clark (2008a), we argued that the straightforward implementation of the single-
beam decoder cannot give competitive accuracies to the multiple-beam decoder, and
the main difficulties for a single-beam decoder are in the representing of partial words,
and the handling of an exponentially large combined search space using one beam. In
this section, we give a description of our system of Zhang and Clark (2008a), and discuss
the reason we can achieve competitive accuracies using a single beam in this article.

4.3.1 The Multiple-Beam System of Zhang and Clark (2008a). The decoder of our multiple-
beam system can be formulated as an instance of the multiple-beam decoder described
in Section 3.5.1.

Similar to the multiple-beam search decoder for word segmentation, the decoder
compares candidates only with complete tagged words, and enables the size of the
search space to scale with the input size. A set of state items is kept for each character
to record possible segmented and POS-tagged sentences ending with the character.
Just as with the single-beam decoder, the input sentence is processed incrementally.
However, when a character is processed, the number of previously built state items is
increased from B to kB, where B is the beam-size and k is the number of characters that
have been processed. Moreover, partial candidates ending with any previous character
are available. The decoder thus generates all possible tagged words ending with the cur-
rent character, concatenating each with existing partial sentences ending immediately
before the word, and putting the resulting sentence onto the agenda. After the character
is processed, the B-best items in the agenda are kept as the corresponding state items
for the character, and the agenda is cleared for the next character. All input characters
are processed in the same way, and the final output is the best state item for the last
character.

To instantiate the generic multiple-beam algorithm in Figure 4 for joint segmenta-
tion and POS-tagging, STARTITEM(joint tagging) consists of an empty sentence S and
a queue Q containing the full input sentence; EXPAND(candidate, k, joint tagging) pops
characters on the incoming queue from the front until the kth character (k is the index
in the input sentence rather than the queue itself), appending them as a new word
to candidate, and assigning to the new word all possible POS-tags to generate a set of
new items; and GOALTEST(joint tagging, best) returns true if best consists of a complete
segmented and POS-tagged sentence and an empty incoming queue.

The linear model from Section 2 is again applied directly to score state items, and
the model parameters are trained with the averaged perceptron algorithm. The features

123

Computational Linguistics Volume 37, Number 1

for a state item are extracted according to the union of the feature templates for the
baseline segmentor and the baseline POS-tagger.

4.3.2 Discussion. An important problem that we solve for a single-beam decoder for the
global model is the handling of partial words. As we pointed out in Zhang and Clark
(2008a), it is very difficult to score partial words properly when they are compared with
full words, although such comparison is necessary for incremental decoding with a
single-beam. To allow comparisons with full words, partial words can either be treated
as full words, or handled differently.

We showed in Zhang and Clark (2008a) that a naive single-beam decoder which
treats partial words in the same way as full words failed to give a competitive ac-
curacy. An important reason for the low accuracy is over-segmentation during beam-
search. Consider the three characters (tap water). The first two characters do not
make sense when put together as a single word. Rather, when treated as two single-
character words, they can make sense in a sentence such as (please) (self) (come)

(take). Therefore, when using single-beam search to process (tap water), the
two-character word candidate is likely to have been thrown off the agenda before
the third character is considered, leading to an unrecoverable segmentation error.

This problem is even more severe for a joint segmentor and POS-tagger than for
a pure word segmentor, because the POS-tags and POS-tag bigram of and fur-
ther supports them being separated when is considered. The multiple-beam search
decoder we proposed in Zhang and Clark (2008a) can be seen as a means to ensure
that the three characters always have a chance to be considered as a single
word. It explores candidate segmentations from the beginning of the sentence until each
character, and avoids the problem of processing partial words by considering only full
words. However, because it explores a larger part of the search space than a single-beam
decoder, its time complexity is correspondingly higher.

In our single-beam system, we treat partial words differently from full words,
so that in the previous example, the decoder can take the first two characters in

(tap water) as a partial word, and keep it in the beam before the third character is
processed. One challenge is the representation of POS-tags for partial words. The POS of
a partial word is undefined without the corresponding full word information. Though
a partial word can make sense with a particular POS-tag when it is treated as a complete
word, this POS-tag is not necessarily the POS of the full word which contains the partial
word. Take the three-character sequence as an example. The first character

represents a single-character word ‘below’, for which the POS can be LC or VV. The
first two characters represent a two-character word ‘rain’, for which the POS can
be VV. Moreover, all three characters when put together make the word ‘rainy day’, for
which the POS is NN. As discussed earlier, assigning POS tags to partial words as if they
were full words leads to low accuracy.

An obvious solution to this problem is not to assign a POS to a partial word until it
becomes a full word. However, lack of POS information for partial words makes them
less competitive compared to full words in the beam, because the scores of full words
are further supported by POS and POS n-gram information. Therefore, not assigning POS
to partial words potentially leads to over segmentation. In our experiments, this method
did not give comparable accuracies to our multiple-beam system.

We take a different approach, and assign a POS-tag to a partial word when its
first character is separated from the final character of the previous word. When more
characters are appended to a partial word, the POS is not changed. The idea is to use
the POS of a partial word as the predicted POS of the full word it will become. Possible

124

Zhang and Clark Syntactic Processing

predictions are made with the first character of the word, and the likely ones will be
kept in the beam for the next processing steps. For example, with the three characters

, we try to keep two partial words (besides full words) in the beam when the
first word is processed, with the POS being VV and NN, respectively. The first POS
predicts the two-character word , and the second the three-character word .
Now when the second character is processed, we still need to maintain the possible POS
NN in the agenda, which predicts the three-character word .

We show that the mechanism of predicting the POS at the first character gives
competitive accuracy. This mechanism can be justified theoretically. Unlike alphabetical
languages, each Chinese character represents some specific meanings. Given a character,
it is natural for a human speaker to know immediately what types of words it can start.
This allows the knowledge of possible POS-tags of words that a character can start, using
information about the character from the training data. Moreover, the POS of the previ-
ous words to the current word are also useful in deciding possible POS for the word.3

The mechanism of first-character decision of POS also boosts the efficiency, because
the enumeration of POS is unnecessary when a character is appended to the end of an
existing word. As a result, the complexity of each processing step is reduced by half
compared to a method without POS prediction.

Finally, an intuitive way to represent the status of a partial word is using a flag
explicitly, which means an early decision of the segmentation of the next incoming
character. We take a simpler alternative approach, and treat every word as a partial
word until the next incoming character is separated from the last character of this word.
Before a word is confirmed as a full word, we only apply to it features that represent its
current partial status, such as character bigrams, its starting character, its part-of-speech,
and so forth. Full word features, including the first and last characters of a word, are
applied immediately after a word is confirmed as complete.

An important component for our proposed system is the training process, which
needs to ensure that the model scores a partial word with predicted POS properly. We
apply the general framework and use the averaged perceptron for training, together
with the “early update” mechanism.

4.4 Experiments

We performed two sets of experiments, using the Chinese Treebank 4 and 5, respectively.
In the first set of experiments, CTB4 was separated into two parts: CTB3 (420K characters
in 150K words/10, 364 sentences) was used for the final 10-fold cross validation, and
the rest (240K characters in 150K words/4, 798 sentences) was used as training and test
data for development. The second set of experiments was performed to compare with
relevant systems on CTB5 data.

The standard F-scores are used to measure both the word segmentation accuracy
and the overall segmentation and tagging accuracy, where the overall accuracy is

JF = 2pr/(p + r)

with the precision p being the percentage of correctly segmented and tagged words
in the decoder output, and the recall r being the percentage of gold-standard tagged

3 The next incoming characters are also a useful source of information for predicting the POS. However, our
system achieved competitive accuracy compared to our multiple-beam system without such character
lookahead features.

125

Computational Linguistics Volume 37, Number 1

words that are correctly identified by the decoder. For direct comparison with Ng and
Low (2004), the POS-tagging accuracy is also calculated by the percentage of correct tags
on each character.

4.4.1 Development Experiments. Our development data consists of 150K words in 4, 798
sentences. Eighty percent (80%) of the data were randomly chosen as the development
training data, and the rest were used as the development test data. Our development
tests were mainly used to decide the size of the beam, the number of training iterations,
and to observe the effect of early update.

Figure 6 shows the accuracy curves for joint segmentation and POS-tagging by the
number of training iterations, using different beam sizes. With the size of the beam
increasing from 1 to 32, the accuracies generally increase, although the amount of
increase becomes small when the size of the beam becomes 16. After the tenth iteration,
a beam size of 32 does not always give better accuracies than a beam size of 16. We
therefore chose 16 as the size of the beam for our system.

The testing times for each beam size between 1 and 32 are 7.16 sec, 11.90 sec,
18.42 sec, 27.82 sec, 46.77 sec, and 89.21 sec, respectively. The corresponding speeds
in the number of sentences per second are 111.45, 67.06, 43.32, 28.68, 17.06 and 8.95,
respectively.

Figure 6 also shows that the accuracy increases with an increased number of train-
ing iterations, but the amount of increase becomes small after the 25th iteration. We
chose 29 as the number of iterations to train our system.

The effect of early update: We compare the accuracies by early update and normal
perceptron training. In the normal perceptron training case, the system reached the best
performance at the 22nd iteration, with a segmentation F-score of 90.58% and joint

Figure 6
The influence of beam-sizes, and the convergence of the perceptron for the joint segmentor and
POS-tagger.

126

Zhang and Clark Syntactic Processing

Table 8
The accuracies of joint segmentation and POS-tagging by 10-fold cross validation.

Baseline (pipeline) Joint single-beam Joint multiple-beam

SF JF JA SF JF JA SF JF JA

Av. 95.2 90.3 92.2 95.8 91.4 93.0 95.9 91.3 93.0

SF = segmentation F-score; JF = overall segmentation and POS-tagging F-score; JA = tagging
accuracy by character.

F-score of 83.38%. When using early update, the algorithm reached the best accuracy
at the 30th training iteration, obtaining a segmentation F-score of 91.14% and a joint
F-score of 84.06%.

4.4.2 Cross-Validation Results. Ten-fold cross validation is performed to test the accuracy
of the joint word segmentor and POS-tagger, and to make comparisons with existing
models in the literature. Following Ng and Low (2004), we partition the sentences in
CTB3, ordered by sentence ID, into 10 groups evenly. In the nth test, the nth group is
used as the testing data.

Table 8 shows the cross-validation accuracies of the pipeline baseline system and
the joint system using single and multiple beam decoders. SF, JF and JA represent
segmentation F-score, tagging F-score, and tagging accuracy, respectively. The joint
segmentor and tagger systems outperformed the baseline consistently, while the single
beam-search decoder in this article gave comparable accuracies to our multiple-beam
algorithm of Zhang and Clark (2008a).

Speed comparisons of the three systems using the same 10-fold cross-validation are
shown in Table 9. TE, ML, and SP represents the testing time (seconds), model loading
time (seconds), and speed (number of sentences per second), respectively. Speed is cal-
culated as number of test sentences divided by the test time (excluding model loading).
For the baseline system, test time and model loading time for both the segmentor and
the POS-tagger are recorded. The joint system using a single beam decoder was over
10 times faster than the multiple-beam system, and the baseline system was more than
three times as fast as the single-beam joint system. These tests were performed on a Mac
OSX platform with a 2.13GHz CPU and a gcc 4.0.1 compiler.

Table 10 shows the overall accuracies of the baseline and joint systems, and com-
pares them to two relevant models in the literature. The accuracy of each model is

Table 9
The speeds of joint word segmentation and POS-tagging by 10-fold cross validation.

Baseline (pipeline) Joint single-beam Joint multiple-beam

TE (s+p=total) ML (s+p=total) SP TE ML SP TE ML SP

Av. 8.8+10.4=19.2 2.9+3.7=6.6 82.2 58.6 12.1 22.4 575.0 9.5 1.9

TE = testing time (seconds); ML = model loading time (seconds); SP = speed by the number of
sentences per second, excluding loading time; (s) = segmentation in baseline; (p) = POS-tagging in
baseline.

127

Computational Linguistics Volume 37, Number 1

Table 10
The comparison of overall accuracies of various joint segmentor and POS-taggers by 10-fold
cross validation using CTB.

Model SF JF JA

Baseline+ (Ng) 95.1 – 91.7
Joint+ (Ng) 95.2 – 91.9
Baseline+* (Shi) 95.85 91.67 –
Joint+* (Shi) 96.05 91.86 –
Baseline (ours) 95.20 90.33 92.17
Joint (our multiple-beam) 95.90 91.34 93.02
Joint (our single-beam) 95.84 91.37 93.01

SF = segmentation F-score; JF = joint segmentation and POS-tagging F-score; JA = tagging accuracy
by character.
+ Knowledge about special characters.
* Knowledge from semantic net outside CTB.

shown in a row, where Ng represents the models from Ng and Low (2004), which
applies a character tagging approach to perform word segmentation and POS-tagging
simultaneously, and Shi represents the models from Shi and Wang (2007), which is a
reranking system for segmentation and POS-tagging. These two models are described
in more detail in the related work section. Each accuracy measure is shown in a col-
umn, including the segmentation F-score (SF), the overall tagging F-score (JF), and the
tagging accuracy by character (JA). As can be seen from the table, our joint models
achieved the largest improvement over the baseline, reducing the segmentation error
by more than 14% and the overall tagging error by over 12%.

The overall tagging accuracy of our joint model was comparable to but less than
the joint model of Shi and Wang (2007). Despite the higher accuracy improvement
from the baseline, the joint system did not give higher overall accuracy. One possi-
ble reason is that Shi and Wang (2007) included knowledge about special characters
and semantic knowledge from Web corpora (which may explain the higher baseline
accuracy), whereas our system is completely data-driven. However, the comparison is
indirect because our partitions of the CTB corpus are different. Shi and Wang (2007) also
chunked the sentences before doing 10-fold cross validation, but used an uneven split.
We chose to follow Ng and Low (2004) and split the sentences evenly to facilitate further
comparison.

Compared with Ng and Low (2004), our baseline model gave slightly better accu-
racy, consistent with our previous observations about the word segmentors in Section 3.
Due to the large accuracy gain from the baseline, our joint model performed much
better.

In summary, when compared with existing joint word segmentation and POS-
tagging systems using cross-validation tests, our proposed model achieved the best
accuracy boost from the pipelined baseline, and competitive overall accuracy. Our sys-
tem based on the general framework of this article gave comparable accuracies to our
multiple-beam system in Zhang and Clark (2008a), and a speed that is over an order of
magnitude higher than the multiple-beam algorithm.

4.4.3 Test Results Using CTB5. We follow Kruengkrai et al. (2009) and split the CTB5 into
training, development testing, and testing sets, as shown in Table 11. The data are used

128

Zhang and Clark Syntactic Processing

Table 11
Training, development, and test data from CTB5 for joint word segmentation and POS-tagging.

Sections Sentences Words

Training 1–270, 400–931, 1001–1151 18,085 493,892
Dev 301–325 350 6,821
Test 271–300 348 8,008

to compare the accuracies of our joint system with models in the literature, and to draw
the speed/accuracy tradeoff graph.

Kruengkrai et al. (2009) made use of character type knowledge for spaces, numerals,
symbols, alphabets, and Chinese and other characters. In the previous experiments, our
system did not use any knowledge beyond the training data. To make the comparison
fairer, we included knowledge of English letters and Arabic numbers in this experiment.
During both training and decoding, English letters and Arabic numbers are segmented
using rules, treating consecutive English letters or Arabic numbers as a single word.

The results are shown in Table 12, where row N07 refers to the model of Nakagawa
and Uchimoto (2007), rows J08a and J08b refer to the models of Jiang et al. (2008) and
Jiang, Mi, and Liu (2008), and row K09 refers to the models of Kruengkrai et al. (2009).
Columns SF and JF refer to segmentation and joint segmentation and tagging accuracies,
respectively. Our system gave comparable accuracies to these recent works, obtaining
the best (same as the error-driven version of K09) joint F-score.

The accuracy/speed tradeoff graphs for the joint segmentor and POS-taggers, to-
gether with the baseline pipeline system, are shown in Figure 7. For each point in each
curve, the development test data were used to decide the number of training iterations,
and then the speed and accuracy were measured using test data. No character knowl-
edge is used in any system. The baseline curve was drawn with B = 16 for the baseline
segmentor, because the baseline segmentation accuracy did not improve beyond B = 16
in our experiments. Each point in this curve corresponds to a different beam size of
the baseline POS-tagger, which are 2, 4, 8, 16, 32, 64, 128, and 256, respectively, from
right to left.

When the speed is over 2.5 thousand characters per second, the baseline system
performed better than the joint single-beam and multiple-beam systems, due to the
higher segmentation accuracy brought by the fixed beam segmentor. However, as the

Table 12
Accuracy comparisons between various joint segmentors and POS-taggers on CTB5.

SF JF

K09 (error-driven) 97.87 93.67
our system 97.78 93.67
Zhang 2008 97.82 93.62
K09 (baseline) 97.79 93.60
J08a 97.85 93.41
J08b 97.74 93.37
N07 97.83 93.32

SF = segmentation F-score; JF = joint segmentation and POS-tagging F-score.

129

Computational Linguistics Volume 37, Number 1

Figure 7
The accuracy/speed tradeoff graph for the joint segmentor and POS-taggers and the two-stage
baseline.

tagger beam size further increased, the accuracy of the baseline system did not improve.
The highest F-score of the baseline (92.83%) was achieved when the beam size of the
baseline POS-tagger was 32. In fact, we have shown in Section 3.5 that the accuracy
of the baseline segmentor was similar to using a Viterbi decoder when the beam size
was 16. This was also true for the baseline POS-tagger, according to our experiments.
Therefore, though being the most accurate when the speed is high, the baseline system
reaches the highest F-score at 2.63 thousand characters per second, and cannot further
improve the accuracy on this curve.

The points in the single-beam curve correspond to beam sizes of 2, 4, 8, 16, and 32,
respectively, from right to left. When the speed is roughly between 0.5 and 2.0 thou-
sand characters per second, the single-beam system gave the best F-score. This is
because the multiple-beam system did not reach such high speeds, and the baseline
system could not produce a higher accuracy than 92.83%. The single-beam joint system
gave the highest accuracy of 93.50% when the beam size was 16 and the speed was
1.01 thousand characters per second, and the F-score dropped slightly when the beam
further increased to 32.

The points in the multiple-beam curve correspond to beam sizes of 1, 2, 4, 8, and 16,
respectively, from right to left. The multiple-beam system gave the highest F-score of
93.62% when the beam size was 16, but the speed was down to 0.06 thousand sentences
per second.

4.5 Related Work

Ng and Low (2004) mapped the joint segmentation and POS-tagging task into a
single character sequence tagging problem. Two types of tags are assigned to each
character to represent its segmentation and POS. For example, the tag b NN indicates a
character at the beginning of a noun, and the tag e VV indicates a character at the end
of a verb. Using this method, POS features are allowed to interact with segmentation.
Because tagging is restricted to characters, the search space is reduced to O((4T)n),
where 4 is the number of segmentation tags and T is the size of the tag set. Beam-search
decoding is effective with a small beam-size. However, the disadvantage of this
model is the difficulty of incorporating whole word information into POS-tagging. For
example, the standard word + POS-tag feature is not applicable.

130

Zhang and Clark Syntactic Processing

Shi and Wang (2007) introduced POS information into segmentation by reranking.
B-best segmentation outputs are passed to a separately-trained POS-tagger, and the best
output is selected using the overall POS-segmentation probability score. In this system,
the decoding for word segmentation and POS-tagging are still performed separately, and
exact inference for both is possible. However, the interaction between POS and segmen-
tation is restricted by reranking: POS information is used to improve segmentation only
for the B segmentor outputs. In comparison to the two systems described here, our joint
system does not impose any hard constraints on the interaction between segmentation
and POS information.

Jiang, Mi, and Liu (2008) proposed a reranking system that builds a pruned word
lattice instead of generating a B-best list by the segmentor. The advantage of this
reranking method compared to Shi and Wang’s (2007) method is that more ambiguity is
kept in the reranking stage. The reranking algorithm used a similar model to our joint
segmentor and POS-tagger.

Nakagawa and Uchimoto (2007) proposed a hybrid model for word segmentation
and POS tagging using an HMM-based approach. Word information is used to process
known words, and character information is used for unknown words in a similar
way to Ng and Low (2004). In comparison, our model handles character and word
information simultaneously in a single perceptron model. Recently, Kruengkrai et al.
(2009) developed this hybrid model further by scoring characters and words in the same
model. Their idea is similar to our joint segmentor and POS-tagger in Zhang and Clark
(2008a).

5. Dependency Parsing

Dependency parsing is the problem of producing the syntactic structure for an input
sentence according to dependency grammar. The output structure of a dependency
parser is called a dependency graph; in this article, only dependency trees are con-
sidered. As can be seen from Figure 8, a dependency tree consists of a set of vertices
and directed arcs. Each arc represents the relationship between a pair of words in the
sentence; it points from the head word to its modifier. For example, in the arc between
the word (I) and the word (like), (like) is the head word and (I) is the
subject that modifies (like); in the arc between the word (like) and the word

(reading), (like) is the head word and (reading) is the object that modifies
(like). In a dependency tree, there is only one word that does not modify any other

word, and it is called the head word of the sentence. The other words each modify
exactly one word, and no word can modify itself.

A dependency tree is called projective if there are no crossing arcs when the
sentence is represented linearly, in word order. Though almost all languages are non-
projective to some degree, the majority of sentences in most languages are projective. In

Figure 8
An example Chinese dependency tree.

131

Computational Linguistics Volume 37, Number 1

the CoNLL shared tasks on dependency parsing (Buchholz and Marsi 2006; Nivre et al.
2007) most data sets contain only 1–2% non-projective arcs, and projective dependency
parsing models can give reasonable accuracy in these tasks (Carreras, Surdeanu, and
Marquez 2006). Although non-projective dependency parsing can be solved directly by
using a different model from projective dependency parsing (McDonald et al. 2005), it
can also be solved using a projective parsing model, with the help of a reversible trans-
formation procedure between non-projective and projective dependency trees (Nivre
et al. 2006). In this article we focus on projective dependency parsing.

An unlabeled dependency tree is a dependency tree without dependency labels
such as Subj and Obj in Figure 8. The same techniques used by unlabeled dependency
parsers can be applied to labeled dependency parsing. For example, a shift-reduce
unlabeled dependency parser can be extended to perform labeled dependency parsing
by splitting a single reduce action into a set of reduce actions each associated with a
dependency label. Here we focus on unlabeled dependency parsing.

Graph-based (McDonald, Crammer, and Pereira 2005; Carreras, Surdeanu, and
Marquez 2006; McDonald and Pereira 2006) and transition-based (Yamada and
Matsumoto 2003; Nivre et al. 2006) parsing algorithms offer two different approaches
to data-driven dependency parsing. Given an input sentence, a graph-based algorithm
finds the highest scoring parse tree from all possible outputs, scoring each complete
tree, while a transition-based algorithm builds a parse by a sequence of actions, scoring
each action individually. Although graph-based and transition-based parsers can be
differentiated in various ways, we prefer to think in terms of the features used in the
two approaches as the differentiating factor.

In Zhang and Clark (2008b) we proposed a graph-based parser and a transition-
based parser using the generalized perceptron and beam-search, showing that beam-
search is a competitive choice for both graph-based and transition-based dependency
parsing. In the same paper we used a single discriminative model to combine graph-
based and transition-based parsing, showing that the combined parser outperforms
both graph-based and transition-based parsers individually. All three parsers can be
expressed by our general framework. Here we describe the transition-based and com-
bined parsers, which share the same decoding process.

5.1 Instantiating the General Framework

Our dependency parser uses the incremental parsing process of MaltParser (Nivre
et al. 2006), which is characterized by the use of a stack and four transition actions:
SHIFT, ARCRIGHT, ARCLEFT, and REDUCE. An input sentence is formed into a queue
of incoming words and processed from left to right. Initially empty, the stack is used
throughout the parsing process to store unfinished words, which are the words before
the current word that may still be linked with the current or a future word.

The SHIFT action pops the first word from the queue and pushes it onto the stack.
The ARCRIGHT action pops the first word from the queue, adds a dependency link
from the stack top to the word (i.e., the stack top becomes the parent of the word), and
pushes the word onto the stack. The ARCLEFT action adds a dependency link from the
first word on the queue to the stack top, and pops the stack. The REDUCE action pops
the stack. Among the four transition actions, SHIFT and ARCRIGHT push a word onto
the stack, and ARCLEFT and REDUCE pop the stack; SHIFT and ARCRIGHT read the next
input word, and ARCLEFT and ARCRIGHT add a link to the output.

The initial state contains an empty stack and the whole input sentence as incoming
words. The final state contains a stack holding only the head word of the sentence and

132

Zhang and Clark Syntactic Processing

an empty queue, with the input words having all been processed. The incremental pars-
ing process starts from the initial state, and builds a candidate parse tree by repeatedly
applying one transition action out of the four, until the final state is reached.

For the decoding problem, an agenda is used to find the output parse tree from
different possible candidates. Starting with an initial state item, a set of candidate
state items is used to generate new state items for each step. At each step, each existing
state item is extended by applying all applicable actions from the four, and the generated
items are put onto the agenda. After each step, the best B items are taken from the
agenda to generate new state items for the next step, and the agenda is cleared. After all
incoming words have been processed, the corresponding parse of the top item from the
agenda is taken as the output.

The decoding process is an instance of the generalized algorithm in Figure 1. A state
item is a pair 〈S, Q〉, where S represents the stack with the partial parse, and Q represents
the queue of incoming words. The initial state item STARTITEM(dependency parsing)
consists of an empty stack, and an incoming queue of the whole input. The function
EXPAND(candidate, dependency parsing) applies all possible actions to candidate and gen-
erates a set of new state items. GOALTEST(dependency parsing, best) returns true if best
has reached the final state, and false otherwise.

The score of a parse tree is computed by the global linear model in Equation (2),
where the parameter vector ~w for the model is computed by the averaged perceptron
training algorithm described in Section 2.2. During training of the dependency parser,
the early-update strategy of Collins and Roark (2004) is used. The intuition is to improve
learning by avoiding irrelevant information, as discussed earlier: When all the items in
the current agenda are incorrect, further parsing steps will be irrelevant because the
correct partial output no longer exists in the candidate ranking.

Both the transition-based and the combined parsers use this training and decod-
ing framework. The main difference between the two parsers is in the definition of
the feature templates. Whereas the transition-based parser uses only transition-based
features, the combined parser applies features from the graph-based parser in addition
to transition-based features. Table 13 shows the templates for transition-based features.
Individual features for a parse are extracted from each transition action that is used to
build the parse, by first instantiating the templates according to the local context, and
then pairing the instantiated template with the transition action. Shown in Figure 9, the
contextual information consists of the top of the stack (ST), the parent (STP) of ST, the
leftmost (STLC) and rightmost child (STRC) of ST, the current word (N0), the next three

Table 13
Transition-based feature templates for the dependency parser.

1 stack top STwt; STw; STt
2 current word N0wt; N0w; N0t
3 next word N1wt; N1w; N1t
4 ST and N0 STwtN0wt; STwtN0w; STwN0wt; STwtN0t; STtN0wt; STwN0w; STtN0t
5 POS bigram N0tN1t
6 POS trigrams N0tN1tN2t; STtN0tN1t; STPtSTtN0t;

STtSTLCtN0t; STtSTRCtN0t; STtN0tN0LCt
7 N0 word N0wN1tN2t; STtN0wN1t; STPtSTtN0w;

STtSTLCtN0w; STtSTRCtN0w; STtN0wN0LCt

w = word; t = POS-tag.

133

Computational Linguistics Volume 37, Number 1

Figure 9
Transition-based feature context for the dependency parser.

words from the input (N1, N2, N3), and the leftmost child of N0 (N0LC). Word and POS
information from the context are manually combined, and the combination of feature
templates is decided by development tests.

Table 14 shows the templates used to extract graph-based features from partial
parses. Templates 1–6 are taken from MSTParser (McDonald and Pereira 2006), a
second-order graph-based parser. They are defined in the context of a word, its parent
and its sibling. To give more templates, features from templates 1–5 are also conjoined
with the arc direction and distance, whereas features from template 6 are also conjoined
with the direction and distance between the child and its sibling. Here “distance” refers
to the difference between word indexes. Templates 7–8 are two extra feature templates
that capture information about grandchildren and arity (i.e., the number of children
to the left or right). They are difficult to include in an efficient dynamic-programming
decoder, but easy to include in a beam-search decoder. During decoding, the graph-
based feature templates are instantiated at the earliest possible situation. For example,
the first-order arc and second-order sibling feature templates are instantiated when
ARCLEFT or ARCRIGHT is performed, with sibling information for the newly added
link. The arity features are added as soon as the left or right arity of a word becomes
fixed, the left arity templates being instantiated when ARCLEFT or SHIFT is performed,
with the right arity templates being instantiated when ARCLEFT or REDUCE is per-
formed. Similarly, the leftmost grandchild features are instantiated when ARCLEFT or
ARCRIGHT is performed, and the rightmost grandchild features are instantiated when
ARCLEFT or REDUCE is performed.

Table 14
Graph-based feature templates for the dependency parser.

1 Parent word (P) Pw; Pt; Pwt
2 Child word (C) Cw; Ct; Cwt
3 P and C PwtCwt; PwtCw; PwCwt; PwtCt; PtCwt; PwCw; PtCt
4 Tag Bt between P, C PtBtCt
5 Neighbor words PtPLtCtCLt; PtPLtCtCRt; PtPRtCtCLt; PtPRtCtCRt;

of P and C, left (L) PtPLtCLt; PtPLtCRt; PtPRtCLt; PtPRtCRt; PLtCtCLt; PLtCtCRt;
and right (R) PRtCtCLt; PRtCtCRt; PtCtCLt; PtCtCRt; PtPLtCt; PtPRtCt

6 sibling (S) of C CwSw; CtSt; CwSt; CtSw; PtCtSt
7 leftmost (CLC) and PtCtCLCt; PtCtCRCt

rightmost (CRC)
children of C

8 left (la) and right (ra) Ptla; Ptra; Pwtla; Pwtra
arity of P

w = word; t = POS-tag.

134

Zhang and Clark Syntactic Processing

5.1.1 The Comparability of State Items. Our dependency parsers are based on the incre-
mental shift-reduce parsing process. During decoding, state items built with the same
number of transition actions are put onto the agenda and compared with each other. To
build any full parse tree, each word in the input sentence must be put onto the stack
once, and each word except the root of the sentence must be popped off the stack
once. Because the four transition actions are either stack-pushing or stack-popping,
each full parse must be built with 2n− 1 transition actions, where n denotes the size
of the input. Therefore, the decoding process consists of 2n− 1 steps, and in each step
all state items in the agenda have been built using the same number of actions. Our
experiments showed that start-of-the-art accuracy can be achieved by this intuitive
method of candidate comparison.

5.2 Experiments for English

We used Penn Treebank 3 for our experiments, which was separated into the training,
development, and test sets in the same way as McDonald, Crammer, and Pereira
(2005), shown in Table 15. Bracketed sentences from the Treebank were translated
into dependency structures using the head-finding rules from Yamada and Matsumoto
(2003).

Before parsing, POS-tags are assigned to the input sentence using our baseline
POS-tagger of Zhang and Clark (2008a), which can be seen as the perceptron tagger
of Collins (2002) with beam-search. Like McDonald, Crammer, and Pereira (2005), we
evaluated the parsing accuracy by the precision of lexical heads (the percentage of input
words, excluding punctuation, that have been assigned the correct parent) and by the
percentage of complete matches, in which all words excluding punctuation have been
assigned the correct parent.

A set of development tests, including the convergence of the perceptron, can be
found in Zhang and Clark (2008a). In this article, we report only the final test accu-
racies and a set of additional speed/accuracy tradeoff results. The accuracies of our
transition-based and combined parsers on English data are shown together with other
systems in Table 16. In the table, each row represents a parsing model. Rows Yamada
2003 and MSTParser represent Yamada and Matsumoto (2003), and MSTParser with
templates 1–6 from Table 14 (McDonald and Pereira 2006), respectively. Rows Transition
and Combined represent our pure transition-based and combined parsers, respectively.
Row Huang 2010 shows the recent work of Huang and Sagae (2010), which applies
dynamic-programming packing to transition-based dependency parsing. Rows Koo
2008 and Chen 2009 represent the models of Koo, Carreras, and Collins (2008) and
Chen et al. (2009), which perform semi-supervised learning by word-clustering and
self-training, respectively. Columns Word and Complete show the precision of lexical

Table 15
The training, development, and test data for English dependency parsing.

Sections Sentences Words

Training 2–21 39,832 950,028
Development 22 1,700 40,117
Test 23 2,416 56,684

135

Computational Linguistics Volume 37, Number 1

Table 16
Accuracy comparisons between various dependency parsers on English data.

Word Complete

Yamada 2003 90.3 38.4
Transition 91.4 41.8
MSTParser 91.5 42.1
Combined 92.1 45.4
Huang 2010 92.1 –

Koo 2008 93.2 –
Chen 2009 93.2 47.2

See text for details.

Figure 10
The accuracy/speed tradeoff graph for the transition-based and combined dependency parsers.

heads and complete matches, respectively. The combined parser achieved 92.1% per-
word accuracy, which was significantly higher than the pure transition-based parser.4

These results showed the effectiveness of utilizing both graph-based and transition-
based information in a single model. Represented by features that are not available in a
pure transition-based system, graph-based information helped the combined parser to
achieve higher accuracy.

As in the previous sections, we plot the speed/accuracy tradeoff for the transition-
based and combined parsers. For each point in each curve in Figure 10, we run the
development test to decide the number of training iterations, and read the speed and
accuracy from the final test. Each point in the transition curve corresponds to B = 1, 2, 4,
8, 16, 32, 64, and 128, respectively, and each point in the combined curve corresponds to
B = 1, 2, 4, 8, 16, 32, and 64, respectively. When the speed was above 100 sentences per
second, the pure transition-based parser outperformed the combined parser with the
same speed. However, as the size of the beam increases, the accuracy of the combined
parser increased more rapidly. The combined parser gave higher accuracies at the same
speed when the speed was below 50 sentences per second. The accuracy of the pure

4 In Zhang and Clark (2008a) we showed that the combined parser also significantly outperformed the
graph-based parser.

136

Zhang and Clark Syntactic Processing

Table 17
Training, development, and test data for Chinese dependency parsing.

Sections Sentences Words

Training 001–815 16,118 437,859
1,001–1,136

Dev 886–931 804 20,453
1,148–1,151

Test 816–885 1,915 50,319
1,137–1,147

transition parser did not increase beyond B = 64. Our experiments were performed on
a Linux platform with a 2.0GHz CPU and a gcc 4.0.1 compiler.

When B = 1, the transition-based parser was similar to MaltParser, because our
transition-based parser is built upon the arc-each transition process of MaltParser,
and uses similar feature sets. The main difference is that our transition-based parser
performs global training using the perceptron algorithm, whereas MaltParser performs
local training using a support vector machine (SVM) with a polynomial kernel. Because
global training optimizes the model for full sequences of transition actions, a small beam
can potentially have a negative impact on learning, and hence the overall performance.

5.3 Experiments for Chinese

We used the Penn Chinese Treebank 5 for our experiments. Following Duan, Zhao, and
Xu (2007), we split the corpus into training, development, and test data as shown in
Table 17. We used a set of head-finding rules to turn the bracketed sentences into depen-
dency structures, and they can be found in Zhang and Clark (2008a). Like Duan, Zhao,
and Xu (2007), we used gold-standard POS-tags for the input. The parsing accuracy
was evaluated by the percentage of non-root words that have been assigned the correct
head, the percentage of correctly identified root words, and the percentage of complete
matches, all excluding punctuation.

The accuracies are shown in Table 18. Rows Transition and Combined show our
models in the same way as for the English experiments from Section 5.2. Row Duan 2007
represents the transition-based model from Duan, Zhao, and Xu (2007), which applied
beam-search to the deterministic model from Yamada and Matsumoto (2003). Row

Table 18
Test accuracies of various dependency parsers on CTB5 data.

Non-root Root Complete

Duan 2007 84.36 73.70 32.70
Transition 84.69 76.73 32.79
Huang 2010 85.52 78.32 33.72
Combined 86.21 76.26 34.41

See text for details.

137

Computational Linguistics Volume 37, Number 1

Huang 2010 represents the model of Huang and Sagae (2010), which applies dynamic-
programming packing to transition-based parsing. The observations were similar to the
English tests. The combined parser outperformed the transition-based parsers. It gave
the best accuracy we are aware of for supervised dependency parsing using the CTB.

One last question we investigate for this article is the overall performance when the
parser is pipelined with a POS-tagger, or with the joint segmentation and POS-tagging
algorithm in Section 4, forming a complete pipeline for Chinese inputs. The results are
shown in Table 19. For these experiments, we tune the pipelined POS-tagger and the
joint segmentor and POS-tagger on the CTB5 corpus in Table 17, using the development
test data to decide the number of training iterations and reporting the final test accuracy.
The overall accuracy is calculated in F-score: Defining nc as the number of output words
that have been correctly segmented and assigned the correctly segmented head word,
no as the number of words in the output, and nr the number of words in the reference,
precision is p = nc/no and recall is r = nc/nr. When pipelined with a pure POS-tagger
using gold-standard segmentation, the pipelined system gave 93.89% POS accuracy
and 81.21% joint tagging and parsing F-score for non-root words. When combined
with the joint segmentation and POS-tagging system, the segmentation F-score, joint
segmentation and POS-tagging F-score were 95.00% and 90.17%, respectively, and the
joint segmentation and parsing F-score for non-root words (excluding punctuations)
was 75.09%, where the corresponding accuracy with gold-standard segmented and POS-
tagged input was 86.21%, as shown in Table 18.

5.4 Related Work

MSTParser (McDonald and Pereira 2006) is a graph-based parser with an exhaustive
search decoder, and MaltParser (Nivre et al. 2006) is a transition-based parser with
a greedy search decoder. Representative of each method, MSTParser and MaltParser
gave comparable accuracies in the CoNLL-X shared task (Buchholz and Marsi 2006).
However, they make different types of errors, which can be seen as a reflection of their
theoretical differences (McDonald and Nivre 2007). By combining graph-based and
transition-based information, our dependency parser achieved higher accuracy than
both graph-based and transition-based baselines. The combination of information is
enabled by our general framework. Our global model does not impose any limitation
on the kind of features that can be used, and therefore allows both graph-based
and transition-based features. Moreover, beam-search frees the decoder from locality
restrictions such as the “optimal sub-problem” requirement for dynamic-programming,
which limits the range of features in order to achieve reasonable decoding speed.
Compared to the greedy local search decoder for MaltParser, beam-search can reduce
error propagation by keeping track of a set of candidate items.

Table 19
The combined segmentation, POS-tagging, and dependency parsing F-scores using different
pipelined systems.

Seg F Tag F Dep F

Gold seg tag 100.00 100.00 86.21
Gold seg auto tag 100.00 93.89 81.21
Auto seg tag 95.00 90.17 75.09

138

Zhang and Clark Syntactic Processing

Our transition-based parser is based on the arc-eager parsing process of MaltParser
(Nivre et al. 2006), although our parser is different from MaltParser in two aspects.
First, we applied beam-search in decoding, which helps to prevent error propagation
of local search. Johansson and Nugues (2007) also use beam search. Second, we use the
perceptron to train whole sequences of transition actions globally, whereas MaltParser
uses SVM to train each transition action locally. Our global training corresponds to beam-
search decoding, which searches for a globally optimal sequence of transition actions
rather than an optimal action at each step.

An existing method to combine multiple parsing algorithms is the ensemble ap-
proach (Sagae and Lavie 2006), which was reported to be useful in improving depen-
dency parsing (Hall et al. 2007). A more recent approach (Nivre and McDonald 2008)
combined MSTParser and MaltParser by using the output of one parser for features
in the other in a stacking framework. Both Hall et al. (2007) and Nivre and McDonald
(2008) can be seen as methods to combine separately defined models. In contrast, our
parser combines two components in a single model, in which all parameters are trained
consistently.

6. Phrase-Structure Parsing

Phrase-structure parsing is the problem of producing the syntactic structure of an
input sentence according to a phrase-structure grammar. An example phrase-structure
parse tree is shown in Figure 11. Similar to dependency parsing, dominant approaches
to phrase-structure parsing include the transition-based method (Briscoe and Carroll
1993), which builds an output parse tree by choosing a series of transition actions such as
SHIFT and REDUCE, and the graph-based method (Collins 1999; Charniak 2000), which
explores the search space of possible parse trees to find the best output according to
graph-based scores.

For English constituent parsing using the Penn Treebank, the best performing
transition-based parser lags behind the current state-of-the-art (Sagae and Lavie 2005).
However, for Chinese constituent parsing using the Chinese Treebank, Wang et al.
(2006) have shown that a shift-reduce parser can give competitive accuracy scores to-
gether with high speeds by using an SVM to make a single decision at each point in the
parsing process.

In Zhang and Clark (2009) we proposed a transition-based constituent parser for
Chinese, which is based on the transition process of Wang et al. (2006). Rather than
making a single decision at each processing step, our parser uses a global linear model

Figure 11
An example Chinese lexicalized phrase-structure parse tree.

139

Computational Linguistics Volume 37, Number 1

and beam-search decoding, and achieved competitive accuracy. This phrase-structure
parser can be expressed as an instance of our general framework.

6.1 Instantiating the General Framework

The incremental parsing process of our parser is based on the shift-reduce parsers of
Sagae and Lavie (2005) and Wang et al. (2006), with slight modifications. The input
is assumed to be segmented and POS-tagged, and the word–POS pairs waiting to be
processed are stored in a queue. A stack holds the partial parse trees that are built during
the parsing process. The output of this process is a binarized parse tree. The four types
of action used to build a parse are:

r SHIFT, which pushes the next word-POS pair in the queue onto the stack.
r REDUCE–unary–X, which makes a new unary-branching node with

label X; the stack is popped and the popped node becomes the child of
the new node; the new node is pushed onto the stack.

r REDUCE–binary–{L/R}–X, which makes a new binary-branching node
with label X; the stack is popped twice, with the first popped node
becoming the right child of the new node and the second popped node
becoming the left child; the new node is pushed onto the stack. The left (L)
and right (R) versions of the rules indicate whether the head of the new
node is to be taken from the left or right child.

r TERMINATE, which pops the root node off the stack and ends parsing. This
action can only be applied when the input queue is empty, and the stack
contains only one item. The popped node is taken as the output.

Defining the start state as the stack being empty and the queue containing the input
sentence, and the final state as the state immediately after a TERMINATE action, the
incremental process builds a parse tree by repeatedly applying actions from the start
state until the final state is reached. Note that not all sequences of actions produce valid
binarized trees. In the deterministic parser of Wang et al. (2006), the highest scoring
action predicted by the classifier may prevent a valid binary tree from being built. In
this case, Wang et al. simply return a partial parse consisting of all the subtrees on
the stack. In our parser a set of restrictions is applied which guarantees a valid parse
tree. For example, two simple restrictions are that a SHIFT action can only be applied
if the queue of incoming words is non-empty, and the binary reduce actions can only
be performed if the stack contains at least two nodes. Some of the restrictions are more
complex than this; the full set can be found in Zhang and Clark (2009). Wang et al.
(2006) give a detailed example showing how a segmented and POS-tagged sentence can
be incrementally processed using the shift-reduce actions to produce a binary tree. We
show this example in Figure 12.

For the decoding problem, our parser performs beam-search using an agenda to
find the output parse from possible candidates. Initially containing a start state item, a
set of state items is used to generate new state items for each processing step. At each
step, each of the state items is extended using all applicable actions, generating a set of
new state items, which are put onto the agenda. After each step, the B-best items from
the agenda are taken for the generation of new state items in the next step. The same

140

Zhang and Clark Syntactic Processing

Figure 12
An example shift-reduce parsing process.

process repeats until the highest scored item from the agenda is in the final state, and it
is taken as the final parse.

This decoding process can be seen as an instance of the generic algorithm in Fig-
ure 1. Here a state item is a pair 〈S, Q〉, where S represents the stack with partial parses,
and Q represents the incoming queue. The initial state item STARTITEM(constituent
parsing) is the start state item, where the stack is empty and the queue contains the

141

Computational Linguistics Volume 37, Number 1

whole input sentence, the function EXPAND(candidate, constituent parsing) extends can-
didate by using all applicable actions to generate a set of new state items, and
GOALTEST (constituent parsing, best) returns true if best reaches the final state, and false
otherwise.

The score of a parse tree is computed by the global linear model in Equation (2),
where the parameter vector ~w for the model is computed by the averaged perceptron
training algorithm described in Section 2.2. As in the training of the dependency parser,
the early-update strategy of Collins and Roark (2004) is used.

Table 20 shows the set of feature templates for the model. Individual features are
generated from these templates by first instantiating a template with particular labels,
words, and tags, and then pairing the instantiated template with a particular action.
In the table, the symbols S0, S1, S2, and S3 represent the top four nodes on the stack,
and the symbols N0, N1, N2, and N3 represent the first four words in the incoming
queue. S0L, S0R, and S0U represent the left and right child for binary branching S0,
and the single child for unary branching S0, respectively; w represents the lexical head
token for a node; and c represents the label for a node. When the corresponding node
is a terminal, c represents its POS-tag, whereas when the corresponding node is a non-
terminal, c represents its constituent label; t represents the POS-tag for a word.

The context S0, S1, S2, S3, N0, N1, N2, N3 for the feature templates is taken from Wang
et al. (2006). However, Wang et al. (2006) used a polynomial kernel function with an
SVM and did not manually create feature combinations. Because we used the linear per-
ceptron algorithm we manually combined Unigram features into Bigram and Trigram
features.

The Bracket row shows bracket-related features, which were inspired by Wang et al.
(2006). Here brackets refer to left brackets including “�”, “�”, and “
” and right brackets
including “	”, “�”, and “�”. In the table, b represents the matching status of the last
left bracket (if any) on the stack. It takes three different values: 1 (no matching right
bracket has been pushed onto stack), 2 (a matching right bracket has been pushed
onto stack), and 3 (a matching right bracket has been pushed onto stack, but then
popped off).

Table 20
Feature templates for the phrase-structure parser.

Description Feature templates

Unigrams S0tc, S0wc, S1tc, S1wc, S2tc, S2wc, S3tc, S3wc,
N0wt, N1wt, N2wt, N3wt,
S0lwc, S0rwc, S0uwc, S1lwc, S1rwc, S1uwc,

Bigrams S0wS1w, S0wS1c, S0cS1w, S0cS1c,
S0wN0w, S0wN0t, S0cN0w, S0cN0t,
N0wN1w, N0wN1t, N0tN1w, N0tN1t
S1wN0w, S1wN0t, S1cN0w, S1cN0t,

Trigrams S0cS1cS2c, S0wS1cS2c, S0cS1wS2c, S0cS1cS2w,
S0cS1cN0t, S0wS1cN0t, S0cS1wN0t, S0cS1cN0w

Bracket S0wb, S0cb
S0wS1cb, S0cS1wb, S0cS1cb, S0wN0tb, S0cN0wb, S0cN0tb

Separator S0wp, S0wcp, S0wq, S0wcq, S1wp, S1wcp, S1wq, S1wcq
S0cS1cp, S0cS1cq

w = word; c = constituent label; t = POS-tag.

142

Zhang and Clark Syntactic Processing

Table 21
The standard split of CTB2 data for phrase-structure parsing.

Sections Sentences Words

Training 001–270 3,475 85,058
Development 301–325 355 6,821
Test 271–300 348 8,008

The Separator row shows features that include one of the separator punctuations
(i.e., “�”, “�”, “�”, and “�”) between the head words of S0 and S1. These templates apply
only when the stack contains at least two nodes; p represents a separator punctuation
symbol. Each unique separator punctuation between S0 and S1 is only counted once
when generating the global feature vector. q represents the count of any separator
punctuation between S0 and S1.

6.1.1 The Comparability of State Items. Just as in our dependency parsers, the phrase-
structure parser is based on an incremental shift-reduce parsing process, and state
items built with the same number of transition actions are compared with each other
during decoding. However, due to the possibility of unary-reduce actions, the number
of actions used to build full parse trees can vary given an input sentence. This makes the
comparison of state items more difficult than for dependency parsing, because when
some state items on the agenda are completed (i.e., in the final state), others on the
agenda may still need more actions to complete. We choose to push completed state
items back onto the agenda during the decoding process, without changing them. The
decoding continues until the highest scored state item on the agenda is completed.
When decoding stops, the highest scored state item on the agenda is taken as the final
output. In this process, completed state items that do not have the highest score in the
agenda are kept unchanged and compared with incomplete state items, even though
they may have been built with different numbers of actions. Our experiments showed
that this approach gave reasonable accuracies.

6.2 Experiments

The experiments were performed using the Chinese Treebank 2 (Table 21) and Chinese
Treebank 5 data. Standard data preparation was performed before the experiments:
Empty terminal nodes were removed; any non-terminal nodes with no children were
removed; any unary X → X nodes resulting from the previous steps were collapsed
into one X node.

For all experiments, we used the EVALB tool5 for evaluation, and used labeled recall
(LR), labeled precision (LP) and F1 score (which is the harmonic mean of LR and LP) to
measure parsing accuracy.

6.2.1 Test Results on CTB2. The following tests were performed using both gold-standard
POS-tags and POS-tags automatically assigned by a POS-tagger. We used our base-
line POS-tagger in Section 4 for automatic POS-tagging. The results of various models

5 http://nlp.cs.nyu.edu/evalb/.

143

Computational Linguistics Volume 37, Number 1

Table 22
Accuracies of various phrase-structure parsers on CTB2 with gold-standard POS-tags.

Model LR LP F1

Bikel Thesis 80.9% 84.5% 82.7%
Wang 2006 SVM 87.2% 88.3% 87.8%
Wang 2006 Stacked 88.3% 88.1% 88.2%
Our parser 89.4% 90.1% 89.8%

See text for details.

evaluated on sentences with less than 40 words and using gold-standard POS-tags are
shown in Table 22. The rows represent the model from Bikel and Chiang (2000) and
Bikel (2004), the SVM and ensemble models from Wang et al. (2006), and our parser,
respectively. The accuracy of our parser is competitive using this test set.

The results of various models using automatically assigned POS-tags are shown in
Table 23. The rows in the table represent the models from Bikel and Chiang (2000), Levy
and Manning (2003), Xiong et al. (2005), Bikel (2004), Chiang and Bikel (2002), the SVM
model from Wang et al. (2006), the ensemble system from Wang et al. (2006), and the
parser of this article, respectively. Our parser gave comparable accuracies to the SVM
and ensemble models from Wang et al. (2006). However, comparison with Table 22
shows that our parser is more sensitive to POS-tagging errors than some of the other
models. One possible reason is that some of the other parsers (e.g., Bikel 2004) use the
parser model itself to resolve tagging ambiguities, whereas we rely on a POS-tagger to
accurately assign a single tag to each word. In fact, for the Chinese data, POS-tagging
accuracy is not high, with the perceptron-based tagger achieving an accuracy of only
93%. The beam-search decoding framework we use could accommodate joint parsing
and tagging, although the use of features based on the tags of incoming words com-
plicates matters somewhat, because these features rely on tags having been assigned to
all words in a pre-processing step. One possible solution would be generating multiple
POS-tags for each word during tagging, and incorporating tag information into the shift
action, so that the parser will resolve the POS-tag ambiguity. We leave this problem for
future work.

Table 23
Accuracies of various phrase-structure parsers on CTB2 with automatically assigned tags.

≤ 40 words ≤ 100 words Unlimited

LR LP F1 POS LR LP F1 POS LR LP F1 POS

Bikel 2000 76.8% 77.8% 77.3% - 73.3% 74.6% 74.0% - - - - -
Levy 2003 79.2% 78.4% 78.8% - - - - - - - - -
Xiong 2005 78.7% 80.1% 79.4% - - - - - - - - -
Bikel Thesis 78.0% 81.2% 79.6% - 74.4% 78.5% 76.4% - - - - -
Chiang 2002 78.8% 81.1% 79.9% - 75.2% 78.0% 76.6% - - - - -
W06 SVM 78.1% 81.1% 79.6% 92.5% 75.5% 78.5% 77.0% 92.2% 75.0% 78.0% 76.5% 92.1%
W06 Stacked 79.2% 81.1% 80.1% 92.5% 76.7% 78.4% 77.5% 92.2% 76.2% 78.0% 77.1% 92.1%
Our parser 80.2% 80.5% 80.4% 93.5% 76.5% 77.7% 77.1% 93.1% 76.1% 77.4% 76.7% 93.0%

See text for details.

144

Zhang and Clark Syntactic Processing

Figure 13
The accuracy/speed tradeoff graph for the phrase-structure parser.

Petrov and Klein (2007) reported LR and LP of 85.7% and 86.9% for sentences
with less than 40 words and 81.9% and 84.8% for all sentences on the CTB2 test set,
respectively. These results are significantly better than any model from Table 23.
However, we did not include their scores in the table because they used a different
training set from CTB5, which is much larger than the CTB2 training set used by all
parsers in the table. In order to make a comparison, we split the data in the same way
as Petrov and Klein and tested our parser using automatically assigned POS-tags. It
gave LR and LP of 82.0% and 80.9% for sentences with less than 40 words and 77.8%
and 77.4% for all sentences, significantly lower than Petrov and Klein. Possible reasons
include the sensitivity of our parser to POS-tag errors, and perhaps the use of a latent
variable model by Petrov and Klein.

As in the previous sections, we plot the speed/accuracy tradeoff for our phrase-
structure parser. For each point in each curve in Figure 13, we run the development
test to decide the number of training iterations, and draw the point with speed and
accuracy from the final test. Each point in the curve corresponds to B = 1, 2, 4, 8, 16,
and 32, respectively. The accuracies increased when the beam increased from 1 to 4, but
fluctuated when the beam increased beyond 4. In contrast to the development tests, the
accuracy reached its maximum when the beam size was 4 rather than 16. However,
the general trend of increased accuracy as the speed decreases can still be observed,
and the amount of increase diminishes as the speed decreases. These experiments were
performed on a Linux platform with a 2.0GHz CPU and a gcc 4.0.1 compiler.

6.2.2 Test Accuracy Using CTB5. Table 24 presents the performance of the parser on CTB5.
We adopt the data split from the previous section, as shown in Table 17. We used the
same parser configurations as Section 6.2.1.

Table 24
Accuracies of our phrase-structure parser on CTB5 using gold-standard and automatically
assigned POS-tags.

≤ 40 words Unlimited

LR LP F1 POS LR LP F1 POS

87.9% 87.5% 87.7% 100% 86.9% 86.7% 86.8% 100%
80.2% 79.1% 79.6% 94.1% 78.6% 78.0% 78.3% 93.9%

145

Computational Linguistics Volume 37, Number 1

As an additional evaluation we also produced dependency output from the phrase-
structure trees, using the head-finding rules, so that we can compare with dependency
parsers. We compare the dependencies read off our constituent parser using CTB5 data
with the dependency parser from Section 5, which currently gives the best dependency
parsing accuracy on CTB5. The same measures are taken and the accuracies with gold-
standard POS-tags are shown in Table 25. Our constituent parser gave higher accuracy
than the combined dependency parser. It is interesting that, though the constituent
parser uses many fewer feature templates than the dependency parser, the features do
include constituent information, which is unavailable to the dependency parser.

6.3 Related Work

Our parser is based on the shift-reduce parsing process from Sagae and Lavie (2005)
and Wang et al. (2006), and therefore it can be classified as a transition-based parser
(Nivre et al. 2006). An important difference between our parser and the Wang et al.
(2006) parser is that our parser is based on a discriminative learning model with global
features, whereas the parser from Wang et al. (2006) is based on a local classifier that
optimizes each individual choice. Instead of greedy local decoding, we used beam-
search in the decoder.

An early work that applies beam-search to constituent parsing is Ratnaparkhi
(1999). The main difference between our parser and Ratnaparkhi’s is that we use a
global discriminative model, whereas Ratnaparkhi’s parser has separate probabilities
of actions chained together in a conditional model.

Both our parser and the parser from Collins and Roark (2004) use a global discrim-
inative model and an incremental parsing process. The major difference is that Collins
and Roark, like Roark (2001), follow a top–down derivation strategy, whereas we chose
to use a shift-reduce process which has been shown to give state-of-the-art accuracies
for Chinese (Wang et al. 2006). In addition, we did not include a generative baseline
model in the discriminative model, as did Collins and Roark (2004).

7. Discussion

We have demonstrated in the previous sections that accuracies competitive with the
state-of-the-art can be achieved by our general framework for Chinese word segmen-
tation, joint word segmentation and POS-tagging, Chinese and English dependency
parsing, and Chinese phrase-structure parsing. Besides these tasks, our baseline POS-
tagger in Section 4 is also implemented in the framework. When it is applied to English
POS-tagging using feature templates from Collins (2002), it gave similar accuracy to the

Table 25
Comparison of dependency accuracies between phrase-structure parsing and dependency
parsing using CTB5 data.

Non-root Root Complete

Dependency parser 86.21% 76.26% 34.41%
Constituent parser 86.95% 79.19% 36.08%

146

Zhang and Clark Syntactic Processing

dynamic-programming decoder of Collins (2002). All these experiments suggest that the
general yet efficient framework provides a competitive solution for structural prediction
problems with an incremental output-building process. In this section, we discuss the
main reasons for the effectiveness of the general framework, as well as its prerequisites,
advantages, and limitations when applied to a general task.

One of the main reasons for the high accuracies achieved by this framework is the
freedom in using arbitrary features to capture statistical patterns, including those that
lead to impractical time complexity with alternative learning and decoding frameworks
and algorithms such as CRFs and dynamic programming. This freedom was exploited
by our effort to incorporate larger sources of statistical information for the improve-
ment of accuracy. For example, our word-based segmentor extends the character-based
approach by including word information; our joint word segmentor and POS-tagger
utilizes POS information for word segmentation; our combined dependency parser
includes statistical information from two different methods in a single, consistently
trained model. The models gave state-of-the-art accuracies in these problems, demon-
strating the advantage of using flexible information covering large parts of the output
structure.

Compared to alternative discriminative training algorithms such as structural SVM
(Tsochantaridis et al. 2004) and CRFs (Lafferty, McCallum, and Pereira 2001; Clark and
Curran 2007), the perceptron has a simple parameter update process, which is often
efficient in both memory usage and running time depending on the decoding algorithm.
Consider joint word segmentation and POS-tagging for example; we found in our
experiments that practical training times can be achieved by the perceptron algorithm,
but not with structural SVM. MIRA (Crammer and Singer 2003) and its simplifications
(McDonald, Crammer, and Pereira 2005; Crammer et al. 2006) are also commonly used
learning algorithms to train a global linear model. They can be treated as slower but
potentially more accurate alternatives to the perceptron for the general framework. We
experimented with these for joint segmentation and tagging but did not improve upon
the perceptron.

Beam-search enables training to be performed efficiently for extremely large com-
plex search spaces, for which dynamic programming algorithms may be impractical.
For the joint word segmentation and POS-tagging problem, a dynamic-programming
decoder is prohibitively slow but a beam-search decoder runs in reasonable time.
A more important advantage of beam-search compared to dynamic-programming
is that beam-search allows arbitrary features, whereas the efficiency of a dynamic-
programming decoder is restricted by the range of features, due to its requirement
for optimal substructure. For our combined dependency parser, the feature set makes
a dynamic-programming decoder infeasibly slow. From this perspective, beam-search
is in line with other recent research on the improvement of accuracies by incorporat-
ing non-local features via approximation, such as belief propagation for dependency
parsing (Smith and Eisner 2008), integer linear programming for dependency parsing
(Martins, Smith, and Xing 2009), and forest reranking for phrase-structure parsing
(Huang 2008).

The only prerequisite of the framework is an incremental process, which consumes
the input sentence and builds the output structure using a sequence of actions. All
four problems studied in the article were first turned into an incremental process, and
then solved by applying the framework. The number of distinct actions for a problem
is dependent on the complexity of the output. For word segmentation, there are only
two actions (append or separate). For transition-based unlabeled dependency parsing,
there are four actions (shift, arc-left, arc-right, and reduce). For joint segmentation and

147

Computational Linguistics Volume 37, Number 1

POS-tagging and constituent parsing, there are many more distinct actions according
to the set of labels. For example, the number of distinct unary-reduce actions for con-
stituent parsing is equal to the number of distinct constituent labels that form unary-
branching nodes. The incremental processes for all four problems have linear time
complexity, and a larger number of distinct actions leads to a slower decoder.

One of the most important issues in using beam-search is the comparability of par-
tially built structures at each incremental step during decoding. For word segmentation
and joint segmentation and POS-tagging, we compare partially built sentences that have
the same number of characters. For word segmentation, partial words can be treated in
the same way as full words, without losing much accuracy. The same approach was
not effective when applied to joint segmentation and POS-tagging, for which partial
words must be treated differently, or avoided by alternative inference such as using
multiple-beams. For dependency parsing, we compared partial outputs that have been
built using the same number of transition actions. Because all parses for a sentence with
size n are built using exactly 2n− 1 transition actions, this comparison is consistent
throughout the decoding process. For constituent parsing, we initially compare partial
outputs that have been built using the same number of actions. However, because
different output parse trees can contain a different number of unary-reduce actions,
some candidate outputs will be completed earlier than others. When this happens, we
choose to retain fully built outputs in the agenda while continuing the decoding process,
until the highest scored item in the agenda is a complete parse. Therefore, there are
situations when different parses in the agenda have a different number of actions. This
did not turn out to be a significant problem. We believe that the most effective way to
organize output comparison is largely an empirical question.

Finally, alternative components can be used to replace the learning or decoding
algorithms of the framework to give higher accuracies. Huang and Sagae (2010) have
recently applied dynamic-programming to dependency parsing to pack items that have
the same signature in the beam, and obtained higher accuracy than our transition-based
dependency parser in Section 5.

8. Conclusion

We explored word segmentation, joint word segmentation and POS-tagging, depen-
dency parsing, and phrase-structure parsing using a general framework of a global
linear model, trained by the perceptron algorithm and decoded with beam-search.
We have chosen to focus on Chinese; the framework itself and our algorithms for the
specific problems are language-independent, however. In Section 5 we reported results
on English dependency parsing. Despite the rather simple nature of the decoding and
training processes, the framework achieved accuracies competitive with the state-of-
the-art for all the tasks we considered, by making use of a large range of statistical
information. As further evidence of the effectiveness of our framework, we have re-
cently adapted our phrase-structure parser in Section 6 to parsing with a lexicalized
grammar formalism, Combinatory Categorial Grammar (CCG), and achieved higher
F-scores than the state-of-the-art C&C CCG parser (Clark and Curran 2007). The range of
problems that we have studied suggests that our framework is a simple yet competitive
option for structural prediction problems in general.

Our source code can be found at www.sourceforge.net/projects/zpar. It contains
the general framework, our implementations of the four tasks addressed in this article,
and other tools for syntactic processing.

148

Zhang and Clark Syntactic Processing

Acknowledgments
This work was largely carried out while
Yue Zhang was a DPhil student at the
Oxford University Computing Laboratory,
where he was supported by an ORS
Scholarship and the Clarendon Fund.
Stephen Clark was supported by EPSRC
grant EP/E035698/1.

References
Bikel, Daniel M. 2004. On the Parameter Space

of Generative Lexicalized Statistical Parsing
Models. Ph.D. thesis, University of
Pennsylvania.

Bikel, Daniel M. and David Chiang. 2000.
Two statistical parsing models applied
to the Chinese Treebank. In Proceedings of
SIGHAN Workshop, pages 1–6, Hong Kong.

Briscoe, Ted and John Carroll. 1993.
Generalized probabilistic LR parsing
of natural language (corpora) with
unification-based grammars.
Computational Linguistics, 19(1):25–59.

Buchholz, Sabine and Erwin Marsi. 2006.
aonll-X shared task on multilingual
dependency parsing. In Proceedings of
CoNLL, pages 149–164, New York, NY.

Carreras, Xavier, Michael Collins, and Terry
Koo. 2008. Tag, dynamic programming,
and the perceptron for efficient,
feature-rich parsing. In Proceedings of
CoNLL, pages 9–16, Manchester.

Carreras, Xavier, Mihai Surdeanu, and Lluis
Marquez. 2006. Projective dependency
parsing with perceptron. In Proceedings of
CoNLL, pages 181–185, New York, NY.

Charniak, Eugene. 2000. A
maximum-entropy-inspired parser. In
Proceedings of NAACL, pages 132–139,
Seattle, WA.

Chen, Wenliang, Jun’ichi Kazama, Kiyotaka
Uchimoto, and Kentaro Torisawa. 2009.
Improving dependency parsing with
subtrees from auto-parsed data. In
Proceedings of EMNLP, pages 570–579,
Singapore.

Chiang, David and Daniel M. Bikel. 2002.
Recovering latent information in
treebanks. In Proceedings of COLING,
pages 183–198, Taipei.

Clark, Stephen and James R. Curran.
2007. Wide-coverage efficient statistical
parsing with CCG and log-linear
models. Computational Linguistics,
33(4):493–552.

Collins, Michael. 1999. Head-driven Statistical
Models for Natural Language Parsing. Ph.D.
thesis, University of Pennsylvania.

Collins, Michael. 2002. Discriminative
training methods for hidden Markov
models: Theory and experiments with
perceptron algorithms. In Proceedings of
EMNLP, pages 1–8, Philadelphia, PA.

Collins, Michael and Brian Roark. 2004.
Incremental parsing with the perceptron
algorithm. In Proceedings of ACL,
pages 111–118, Barcelona.

Crammer, Koby, Ofer Dekel, Joseph Keshet,
Shai Shalev-Shwartz, and Yoram Singer.
2006. Online passive-aggressive
algorithms. Journal of Machine Learning
Research, 7:551–585.

Crammer, Koby and Yoram Singer. 2003.
Ultraconservative online algorithms for
multiclass problems. Journal of Machine
Learning Research, 3:951–991.

Duan, Xiangyu, Jun Zhao, and Bo Xu. 2007.
Probabilistic models for action-based
Chinese dependency parsing. In
Proceedings of ECML/ECPPKDD,
pages 559–566, Warsaw.

Emerson, Thomas. 2005. The second
international Chinese word segmentation
bakeoff. In Proceedings of SIGHAN
Workshop, pages 123–133, Jeju.

Finkel, Jenny Rose, Alex Kleeman, and
Christopher D. Manning. 2008. Efficient,
feature-based, conditional random field
parsing. In Proceedings of ACL/HLT,
pages 959–967, Columbus, OH.

Freund, Y. and R. Schapire. 1999. Large
margin classification using the perceptron
algorithm. In Rob Holte, editor, Machine
Learning. Kluwer, Boston, MA,
pages 277–296.

Hall, Johan, Jens Nilsson, Joakim Nivre,
Gülsen Eryigit, Beáta Megyesi, Mattias
Nilsson, and Markus Saers. 2007. Single
malt or blended? A study in multilingual
parser optimization. In Proceedings of the
CoNLL Shared Task Session of EMNLP/
CoNLL, pages 933–939, Prague.

Huang, Liang. 2008. Forest reranking:
Discriminative parsing with non-local
features. In Proceedings of ACL/HLT,
pages 586–594, Columbus, OH.

Huang, Liang and Kenji Sagae. 2010.
Dynamic programming for linear-time
incremental parsing. In Proceedings of ACL,
pages 1077–1086, Uppsala.

Jiang, Wenbin, Liang Huang, Qun Liu, and
Yajuan Lü. 2008. A cascaded linear model
for joint Chinese word segmentation and
part-of-speech tagging. In Proceedings of
ACL/HLT, pages 897–904, Columbus, OH.

Jiang, Wenbin, Haitao Mi, and Qun Liu. 2008.
Word lattice reranking for Chinese word

149

Computational Linguistics Volume 37, Number 1

segmentation and part-of-speech tagging.
In Proceedings of COLING, pages 385–392,
Manchester.

Johansson, Richard and Pierre Nugues. 2007.
Incremental dependency parsing using
online learning. In Proceedings of the
CoNLL/EMNLP, pages 1134–1138, Prague.

Koo, Terry, Xavier Carreras, and Michael
Collins. 2008. Simple semi-supervised
dependency parsing. In Proceedings of
ACL/HLT, pages 595–603, Columbus, OH.

Kruengkrai, Canasai, Kiyotaka Uchimoto,
Jun’ichi Kazama, Yiou Wang, Kentaro
Torisawa, and Hitoshi Isahara. 2009. An
error-driven word-character hybrid model
for joint Chinese word segmentation and
POS tagging. In Proceedings of ACL/AFNLP,
pages 513–521, Suntec.

Lafferty, J., A. McCallum, and F. Pereira.
2001. Conditional random fields:
Probabilistic models for segmenting and
labeling sequence data. In Proceedings of
ICML, pages 282–289, Williamstown, MA.

Levy, Roger and Christopher D. Manning.
2003. Is it harder to parse Chinese, or the
Chinese treebank? In Proceedings of ACL,
pages 439–446, Sapporo.

Martins, Andre, Noah Smith, and Eric Xing.
2009. Concise integer linear programming
formulations for dependency parsing. In
Proceedings of ACL/AFNLP, pages 342–350,
Suntec.

McDonald, Ryan, Koby Crammer, and
Fernando Pereira. 2005. Online
large-margin training of dependency
parsers. In Proceedings of ACL, pages 91–98,
Ann Arbor, MI.

McDonald, Ryan and Joakim Nivre. 2007.
Characterizing the errors of data-driven
dependency parsing models. In Proceedings
of EMNLP/CoNLL, pages 122–131, Prague.

McDonald, Ryan and Fernando Pereira.
2006. Online learning of approximate
dependency parsing algorithms. In
Proceedings of EACL, pages 81–88, Trento.

McDonald, Ryan, Fernando Pereira,
Kiril Ribarov, and Jan Hajic. 2005.
Non-projective dependency parsing
using spanning tree algorithms. In
Proceedings of HLT/EMNLP, pages 523–530,
Vancouver.

Nakagawa, Tetsuji and Kiyotaka Uchimoto.
2007. A hybrid approach to word
segmentation and POS tagging. In
Proceedings of ACL Demo and Poster
Session, Prague.

Ng, Hwee Tou and Jin Kiat Low. 2004.
Chinese part-of-speech tagging:
One-at-a-time or all-at-once? Word-based

or character-based? In Proceedings of
EMNLP, pages 227–284, Barcelona.

Nivre, Joakim, Johan Hall, Sandra Kübler,
Ryan McDonald, Jens Nilsson, Sebastian
Riedel, and Deniz Yuret. 2007. The CoNLL
2007 shared task on dependency parsing.
In Proceedings of the CoNLL Shared Task
Session of EMNLP/CoNLL, pages 915–932,
Prague.

Nivre, Joakim, Johan Hall, Jens Nilsson,
Gülşen Eryiǧit, and Svetoslav Marinov.
2006. Labeled pseudo-projective
dependency parsing with support vector
machines. In Proceedings of CoNLL,
pages 221–225, New York, NY.

Nivre, Joakim and Ryan McDonald.
2008. Integrating graph-based and
transition-based dependency parsers. In
Proceedings of ACL/HLT, pages 950–958,
Columbus, OH.

Peng, F., F. Feng, and A. McCallum. 2004.
Chinese segmentation and new word
detection using conditional random fields.
In Proceedings of COLING, pages 562–568,
Geneva.

Petrov, Slav and Dan Klein. 2007. Improved
inference for unlexicalized parsing. In
Proceedings of HLT/NAACL, pages 404–411,
Rochester, NY.

Ratnaparkhi, Adwait. 1998. Maximum
Entropy Models for Natural Language
Ambiguity Resolution. Ph.D. thesis,
University of Pennsylvania.

Ratnaparkhi, Adwait. 1999. Learning to
parse natural language with maximum
entropy models. Machine Learning,
34(1-3):151–175.

Roark, Brian. 2001. Probabilistic top–down
parsing and language modeling.
Computational Linguistics, 27:249–276.

Sagae, Kenji and Alon Lavie. 2005. A
classifier-based parser with linear
run-time complexity. In Proceedings of
IWPT, pages 125–132, Vancouver.

Sagae, Kenji and Alon Lavie. 2006. Parser
combination by reparsing. In Proceedings
of HLT/NAACL, Companion Volume: Short
Papers, pages 129–132, New York, NY.

Shi, Yanxin and Mengqiu Wang. 2007. A
dual-layer CRF based joint decoding
method for cascade segmentation and
labelling tasks. In Proceedings of IJCAI,
pages 1707–1712, Hyderabad.

Smith, David and Jason Eisner. 2008.
Dependency parsing by belief
propagation. In Proceedings of the 2008
Conference on Empirical Methods in Natural
Language Processing, pages 145–156,
Honolulu, HI.

150

Zhang and Clark Syntactic Processing

Sproat, R., C. Shih, W. Gail, and N. Chang.
1996. A stochastic finite-state
word-segmentation algorithm for Chinese.
Computational Linguistics, 22(3):377–404.

Sproat, Richard and Thomas Emerson. 2003.
The first international Chinese word
segmentation bakeoff. In Proceedings of The
Second SIGHAN Workshop, pages 282–289,
Sapporo.

Tsochantaridis, I., T. Hofmann, T. Joachims,
and Y. Altun. 2004. Support vector
machine learning for interdependent and
structured output spaces. In Proceedings
of ICML, pages 102–114, Banff.

Wang, Xinhao, Xiaojun Lin, Dianhai Yu,
Hao Tian, and Xihong Wu. 2006. Chinese
word segmentation with maximum
entropy and n-gram language model.
In Proceedings of SIGHAN Workshop,
pages 138–141, Sydney.

Xia, Fei. 2000. The Part-of-Speech Tagging
Guidelines for the Chinese Treebank (3.0),
University of Pennsylvania.

Xiong, Deyi, Shuanglong Li, Qun Liu,
Shouxun Lin, and Yueliang Qian. 2005.
Parsing the Penn Chinese Treebank with
semantic knowledge. In Proceedings of
IJCNLP, pages 70–81, Jeju.

Xue, N. 2003. Chinese word segmentation as
character tagging. International Journal of
Computational Linguistics and Chinese
Language Processing, 8(1):29–48.

Yamada, H. and Y. Matsumoto. 2003.
Statistical dependency analysis using
support vector machines. In Proceedings
of IWPT, pages 195–206, Nancy.

Zhang, Ruiqiang, Genichiro Kikui, and
Eiichiro Sumita. 2006. Subword-based
tagging by conditional random
fields for Chinese word segmentation.
In Proceedings of the HLT/NAACL,
Companion, volume Short Papers,
pages 193–196, New York, NY.

Zhang, Yue and Stephen Clark. 2007.
Chinese segmentation with a word-based
perceptron algorithm. In Proceedings of
ACL, pages 840–847, Prague.

Zhang, Yue and Stephen Clark. 2008a. Joint
word segmentation and POS tagging using
a single perceptron. In Proceedings of
ACL/HLT, pages 888–896, Columbus, OH.

Zhang, Yue and Stephen Clark. 2008b.
A tale of two parsers: Investigating
and combining graph-based and
transition-based dependency parsing
using beam-search. In Proceedings of
EMNLP, pages 562–571, Honolulu, HI.

Zhang, Yue and Stephen Clark. 2009.
Transition-based parsing of the Chinese
Treebank using a global discriminative
model. In Proceedings of IWPT,
pages 162–171, Paris.

Zhang, Yue and Stephen Clark. 2010. A fast
decoder for joint word segmentation and
POS-tagging using a single discriminative
model. In Proceedings of EMNLP,
pages 843–852, Cambridge, MA.

Zhao, Hai, Chang-Ning Huang, and Mu Li.
2006. An improved Chinese word
segmentation system with conditional
random field. In Proceedings of SIGHAN
Workshop, pages 162–165, Sydney.

151

152

