MapReduce for Parallel Reinforcement Learning

Yuxi Li' and Dale Schuurmans?

1 College of Computer Science and Engineering
Univ. of Electronic Science and Technology of China
Chengdu, China
2 Department of Computing Science
University of Alberta
Edmonton, Alberta, Canada

Abstract. We investigate the parallelization of reinforcement learning
algorithms using MapReduce, a popular parallel computing framework.
We present parallel versions of several dynamic programming algorithms,
including policy evaluation, policy iteration, and off-policy updates. Fur-
thermore, we design parallel reinforcement learning algorithms to deal
with large scale problems using linear function approximation, includ-
ing model-based projection, least squares policy iteration, temporal dif-
ference learning and recent gradient temporal difference learning algo-
rithms. We give time and space complexity analysis of the proposed algo-
rithms. This study demonstrates how parallelization opens new avenues
for solving large scale reinforcement learning problems.

1 Introduction

Reinforcement learning (RL) can solve a wide range of problems in science, en-
gineering and economics that are modeled as Markov or Semi-Markov Decision
Processes (MDPs) [1, 14, 16]. For large problems, however, one encounters the
“curse of dimensionality”. In such cases, function approximation, and in par-
ticular, linear function approximation, have proved to be a critical strategy for
generalizing and scaling-up. Significant research effort is still devoted to devel-
oping efficient algorithms for large-scale problems.

For large problems, parallelism appears to be another promising approach
to scaling up, particularly since multi-core, cluster and cloud computing are be-
coming increasingly the norm. Among parallel computing frameworks, MapRe-
duce [5] has recently been attracting much attention in both industry and
academia. There are numerous successes of MapReduce [4, 8, 10], including ap-
plications for machine learning and data mining problems. Among these, the
most prominent is the complete rewrite of the production indexing system for
the Google web search service. However, there has yet to be significant research
effort on designing MapReduce parallel algorithms for reinforcement learning.

In this paper, we propose MapReduce algorithms to parallelize several impor-
tant reinforcement learning algorithms. We identify maximum, vector, and ma-
trix operations, such as matrix-vector multiplications, as the core enabling tech-
niques for parallelizing reinforcement learning algorithms in MapReduce. Using

these primitives, we show how MapReduce parallel algorithms can be designed
for classical dynamic programming (DP) algorithms, including policy evalua-
tion, policy iteration and off-policy updates, as well as tabular reinforcement
learning algorithms. To cope with large scale problems via linear function ap-
proximation, we show how MapReduce parallel algorithms can be developed for
approximate reinforcement learning algorithms, including the model-based pro-
jection method, least squares policy iteration, temporal difference (TD) learning,
and the recent gradient TD algorithms. We present time and space complexity
analysis for the proposed algorithms.

With such MapReduce reinforcement learning algorithms, one can handle
complex sequential decision problems more efficiently by exploiting parallelism.
MapReduce reinforcement learning algorithms are able to provide solutions to
problems that would be infeasible otherwise. For example, it is mentioned in [18]
that for the game of Go [15] over one million features were used when building
a value function, making least-squares methods infeasible. However, parallelism
can address such issues. Moreover, with MapReduce the programmer does not
have to explicitly manage the complexity of underlying parallel /distributed is-
sues, such as data distribution, load balancing and fault tolerance. In fact, paral-
lel computing broadens the range of problems that can be feasibly tackled with
tabular reinforcement learning methods, athough it enhances function approxi-
mation methods as well, as we will demonstrate.

The remainder of the paper is organized as follows. Section 2 first provides a
brief introduction of MapReduce and discuss a design of matrix-vector multipli-
cation. Then in Section 3, we discuss MapReduce algorithms for DP algorithms
and RL algorithms in the tabular setting. Finally, we discuss MapReduce algo-
rithms for RL with linear function approximation in Section 4, and conclude.

2 MapReduce

MapReduce is a framework introduced by Google for handling large data sets
via distributed processing on clusters of commodity computers. It allows one
to express parallel computations without worrying about the messy details of
parallelism, including data distribution, load balancing and fault tolerance.

In this model, computation is expressed as taking a set of input (key, value)
pairs and producing a set of output (key, value) pairs via two functions: Map and
Reduce. The Map function takes an input pair and produces a set of intermedi-
ate (key, value) pairs. The MapReduce library groups together all intermediate
values associated with the same intermediate key and passes them to the Reduce
function. The Reduce function accepts an intermediate key and a set of values
for that key, and merges these values to form a possibly smaller set of values.
Both the Map and Reduce functions are specified by the user. It is possible to
further improve performance via partition and combine functions. The partition
function divides the intermediate key space and assigns them to reducers. The
combine function allows for local aggregation before the shuffle and sort phase.

Iterative MapReduce. Most RL algorithms are iterative by nature. There
are several research efforts to design and implement iterative MapReduce, e.g.,
Haloop [3] and Twister [6]. Haloop extends Hadoop [20] for iterative programs
by providing new programming model and architecture, loop-aware scheduling,
caching for loop-invariant data and caching to support fixpoint evaluation.

MapReduce for matrix-vector multiplication. In the following, we
present a MapReduce implementation for multiplying an M x N matrix {a; ;}
with an N x 1 vector {b;}. The basic idea follows. We need two MapReduce
jobs for the multiplication. In MapReduce Step 1, we multiply the j-th vector
element b; with each element a; ; of the j-th column of the matrix to obtain
a set of (key : i,value : b; X a; ;) pairs, for ¢ € {1,2,...,M}; In Step 2, we
sum up values with key 7 to get the i-th vector element. Figures 1 and 2 present
the MapReduce pseudo code for matrix-vector multiplication. The sorting phase
dominates the algorithms complexity. Assuming the load is uniformly distributed
on P processing units, the running time complexity is O(2Xlog(2X)), and the
space complexity is O(@).

MV-Reducel(Key j, Value v'[1..m])
mu < ||
vo + []
for v in v'[1..m] do
if (k,v) is of type Vector then

Input Matrix M = {(i, (j, mval))},
Vector V' = {(i,vval)}
Output Vector V = {(i, mval x vval)}

MV-Mapl(Key i, Value v)

if (k,v) is Qf type Vector then elsqiev o
englﬁ‘put(ly v) if (k,v) is of type Matrix then
if (k,v) is of type Matrix then Ad-d v o m;

(G mval) v endif

Output(j, (i, mval)) end for

end if for (i',mval’) in mv do

Output (', mval’ x vv)
end for

Fig. 1. Matrix-Vector multiplication, step 1

Input Partial vector V' = {(i,vval’)} MV-Reduce2(Key 4, Value v[1..m])
Output Result vector V = {(i,vval)} sum <0

for v' in v[1l..m] do
MV-Map2(Key ¢, Value v) sum ¢« sum + v’
Output(i, v) end for

Output(i, v)

Fig. 2. Matrix-Vector multiplication, step 2

Such implementation assumes that a processing unit can not multiply a row
of the matrix and the vector. Otherwise, a single map function can handle the
matrix-vector multiplication. In the sequel, we decompose matrix operations

into matrix-vector multiplications; and we use vector and maximum operations
directly, since they are straightforward to parallelize in MapReduce. See more
discussions about designing matrix operations in [8, 11].

3 MapReduce for Tabular DP and RL

First, we introduce the notation we will use. An MDP is defined by a finite set
of states S, a finite set of actions A, an [S||A| x |S| transition matrix P and an
|S||A] x 1 reward vector r. The entry P4, ¢ specifies the conditional probability
of transiting to state s’ starting from state s and taking action a. The entry
I'(sq) specifies the reward obtained when taking action a in state s. A standard
objective is to maximize the infinite horizon discounted reward Y .o, 7"~ 'r;. In
this case, one can always have an optimal stationary, deterministic policy [1],
denoted as w. The entry m(,,) specifies the probability of taking action a in
state s. A policy is stationary if the selection probability does not change over
time. In a deterministic policy, there is an optimal action for each state, i.e.,
the probabilities are either 0 or 1. For convenience, let IT denote an |S| x |S||A]
matrix with I1(s, (s,a)) = 7(s,a).

3.1 Policy evaluation

We have v = II(r +vPv) for state value function v. A state-based policy evalu-
ation algorithm can be defined by repeatedly applying an operator O defined by
Ov = I[I(r+~Pv) = I[Ir+~II Pv. For a fixed policy 7, a MapReduce policy eval-
uation algorithm can first calculate v = IIr and H = II P using parallel matrix-
vector and matrix-matrix multiplications respectively. Then v <— v+~vyHv can be
iteratively calculated until convergence, which includes iterative calls of parallel
operations for matrix-vector multiplication and vector-vector addition. State-
action policy evaluation can be dealt with similarly.

For calculating H = ITP, the time complexity is O(|S] |Slz%log(‘s‘rz%)ﬁ and

S|2|A
I\P\ \)

the space complexity is O(. For the iteration, v < v + yHv, the time

complexity is O(Tglog(@))7 where T' is the number of iterations; and the

space complexity is O(g). Thus the complexity of the whole policy evaluation
depends on which part dominates.

One can also consider an iterative MapReduce implementation of policy eval-
uation using Haloop [3], as shown in Figure 3. In Haloop, one has the additional
functionality: AddMap and AddReduce to specify Map and Reduce function(s)
in each iteration; SetInput to specify the input to each iteration; AddInvariant-
Table to specify loop-invariant data; SetDistanceMeasure to specify a distance
for results for fixed-point check; and SetFixedPoint Threshold and/or SetMaxNu-
mOfIterations to specify the loop termination condition. Thus, for policy evalua-
tion one can first calculate H = IT P using MapReduce matrix-matrix multiplica-
tion; this remains invariant across iterations. Then we introduce a map function
(without reduce) to update v after the matrix-vector multiplication v/ = Hv;_;

IterationInput UpdateV-Map

Input: int i Input: Key k, vector r, constant v, v’

return the i-th column of matrix P Output(0, v = v + yv')

Main ResultDistance

Job job = new Job() Input: vi—1, v;

add job for matrix-vector multiplication retu'rn Vi1 = vill

job.AddInvariant Table(IT) Malp

job.SetInput(IterationInput) Job job = new Job()

job.setMaxNumOfTteration(|S|) add job for matrix-vector multiplication

job.Submit () job.AddMap(UpdateQ-Map)
job.AddInvariantTable(M)

(Above: Calculating H = IT P) job.SetInput(IterationInput)
job.SetDistanceMeasure(ResultDistance)

IterationInput job.setFixedPoint Threshold (e)

Input: int i job.setMaxNumOfIteration(T’)

return the (i — 1)-th step of v job.Submit()

Fig. 3. Haloop-based policy evaluation

in the main function.® IterationInput specifies that the most recent v;_; as the
input to each iteration; see Figure 3. We use the Lo-norm to calculate the differ-
ence of consecutive v’s to test convergence, as specified in ResultDistance. We
set the number of iterations and the fixed point threshold respectively as T and
€, two predefined numbers.

3.2 Policy iteration

Policy iteration is a standard MDP planning algorithm that iteratively con-
ducts policy evaluation and policy improvement. In policy improvement, given
a current policy 7, whose state value function v or state-action value func-
tion q have already been determined, one can obtain an improved policy =’ by
setting: a*(s) = argmax, q(sq) = argmax, r(sq) + YHFsa,)V, ﬂ’sa) =1,ifa =
a*(s); or, 0,if a # a*(s). The policy improvement theorem verifies that the
above update leads to an improved policy; that is, ITq < II'q implies v < v’.

It is straightforward to design parallel algorithms for policy improvement
in MapReduce. For example, given q, for each state s, one finds the maximum
state-action values q for all actions. Similarly, given v, for each state s and action
a, one calculates r(s,) +7P(sq,,)V, which involves a vector-vector multiplications
and an addition. Then, for state s, we find the maximum over the resulting
values for all actions.

Vector-vector multiplication, vector-vector addition and maximum operators
are linear in both time and space. Thus, policy evaluation dominates time and
space complexity in policy iteration.

3 Note, to make the implementation more efficient, one should integrate this update
step with the step for matrix-vector multiplication. We present it in this separated
manner for clarity.

3.3 Off-policy updates

Off-policy updates form the basis for many RL algorithms, in particular, value it-
eration and Q-learning. For a state value function v, the off-policy operator M is
defined as Mv = IT*(r +~vPv), where,II*(r +vPV)(s) = max,(r(sq) +7P(sa,:) V)
For a state-action value function q, the off-policy operator M is defined as
Mq = r + yPII*q, where, I1*q(,) = max, q(sq)- The above off-policy updates
alm at making the corresponding value functions closer to their respective Bell-
man equations; namely, v = IT*(r +~vPv) and q = r+~PII*q. It is straightfor-
ward to design parallelized algorithms for off-policy updates using MapReduce’s
vector-vector multiplication and max operation, which have linear complexity.

3.4 Tabular online algorithms

There are several tabular online algorithms, such as, TD()), Sarsa(\), and Q(A)-
learning, for A € [0, 1], where each online sample updates one entry of the value
function, and the current update is affected by previous updates. For simplicity,
we give updates for TD(0), Sarsa(0) and Q(0)-learning respectively.
V(s) « V(s) +afr +V(s') = V(s)]
Q(s,a) « Q(s,a) +afr +vQ(s',a’) — Q(s,a)]
Q(s,a) < Q(s,a) + afr +ymaxQ(s',a’) — Q(s,a)]

For large-scale problems, we can take advantage of parallel computing: in Q-
learning for picking the action that gives the largest state-action value given the
state; and in Sarsa and Q-learning for selecting an action given the current state
and state-action value function, for example, with e-greedy policy. Both involve
a maximum operation. These operations have linear complexity.

4 MapReduce for RL: Linear Function Approximation

In the linear architecture, the approximate value function is represented by:

Q(s,a;w) = Ele ¢i(s,a)w;, where ¢;(-,-) is a basis function, w; is its weight,
and k is the number of basis functions. Define

¢T(s7a) = {¢1(S,a),¢2(8,a), o 'a¢k(sva)}v
O = {p(s1,a1),...,9(s,a),.. S 0815, a14)))

w' = {wy,wa, ..., w}.

where T denotes matrix transpose. Then we have Q = dw.

4.1 Model-based Projection

Define an operator P that projects a state-action value function q to the column
span of @, Pq = argminge,qn(a) la—dal. = ¢(@72¢)"'@"Zq. Here, Z =
diag(z), where z is the stationary state-action visit distribution for PIT.

Approximate dynamic programming composes the on-policy operator O and
the subspace projection operator P to compute the best approximation of one-
step update of the value function representable with the basis functions. Such
combined operator is guaranteed to converge to a fixed point.

We discuss how to parallelize such a projection. Since ®(¢TZP)~1dTZ re-
mains fixed, we can calculate it using a matrix inversion and several matrix-
matrix multiplications. A matrix inversion can be calculated with singular value
decomposition (SVD)?*, whose MapReduce implementation is available in the
open source Apache Hama project. In the following, we discuss matrix inversion
with MapReduce based on the algorithm in [2].

We first describe briefly the fast iterative matrix inversion algorithm in [2,
Section 2.9]. Suppose A is an invertible square matrix. The algorithm is based
on the classical Newton method, which is motivated by the desire of low compu-
tational complexity and good numerical robustness. The algorithm starts with
some By such that || — BypA|| < 1. Then it iteratively improve By, by letting
Biy1 = 2B, — BLABy,. This iteration can be interpreted as solving X ! — A4 =0
with Newton’s method. A choice for By is By = AT /tr(AT A), where tr(ATA) is
the trace of AT A, the sum of the diagonal entries of AT A. It can be shown that
such a choice for By is suitable and the above iterative method is efficient.

Each iteration involves matrix multiplications and subtraction, so it is straight-
forward to parallelize in MapReduce. Since &7 Z® is a square matrix, we can use
this iterative method to invert it. For calculating &' Z®, the time complexity is
O((k+ |S||A|)%log(klsTM)), and the space complexity is O(W), assum-
ing we use matrix-vector multiplication. For each iteration, the time complexity
is O(%log(%))7 and the space complexity is O(k—PS). The complexity can be
improved by customizing a MapReduce algorithm for matrix multiplication.

4.2 Least-squares policy iteration

LSPI [9] combines the data efficiency of the least squares temporal difference
(LSTD) method and the policy search efficiency of policy iteration. As shown
in [9], for a given m, the weighted least squares fixed point solution is: w =
(@TA#(@ — vPH@))fl @TA, R, where A, is the diagonal matrix with the en-
tries of u(s, a), which is a probability distribution over state-action pairs (S x A).
This can be written as Aw = b, where A = ®TA, (¢ —yPIIP) and b= ST A,r.

Without a model of the MDP—that is, without the full knowledge of P, IT
and r—one needs a learning method to discover an optimal policy. It is shown
in [9] that A and b can be learned incrementally as, for a sample (s, a,r,s'):

A A+ (s, a)(d(s,a) — yo(s', m(s)))T
b < b+ ¢(s,a)r

4 For a real number matrix A, if its singular value decomposition is A = UXVT, the
pseudo-inverse is AT = VIXTUT. To get the pseudoinverse of the diagonal matrix
X, we first transpose X', and then take the reciprocal of each non-zero element on
the diagonal, and leave the zeros intact.

Input: samples = {(s,a,r,s')} LSPI-Ab-Reduce(Key k, Value Ab')

Output: A and b A+ [; b+
LSPI-Ab-Map(Key k, Value v) for (A’,b’) in AV’ do
A+ [; b+ A+ A4+ A
for (s,a,r,s’) in samples do b+ b+Db’
b0 — ¢(s,a) end for
ba ¢ o — (s, 7(5") Output (0, {4, b})
for i < 1 to k do
A(iy:) < A(i,:) + do(i) o) Input: Samples Samples
end for Output: Weight vector w
b =b+ ¢or Main
end for while w not convergent do
Output(1,{A4, b}) Calculate A, b

Calculate D~ 'b, D"'B
Calculate w (Figure 5)
end while

Fig. 4. Parallel LSPI with MapReduce

With the new weight vector w’ a new policy is obtained. Thus, one can iteratively
improve the policy until convergence.

To parallelize LSPI in MapReduce, consider the following. To calculate A
and b, one can parallelize the algorithm over samples (s, at, 4, s}). Moreover,
there is a special structure in ¢(ss, az)(d(se, ar) — v (s}, w(s;)))T; that is, it is a
vector-vector multiplication, resulting in a matrix. Thus, we can design a parallel
algorithm which guarantees that each element in one vector multiplies each ele-
ment in another vector. In this way, we obtain matrix A. The time complexity is
O(k—;log(%)), and the space complexity is O(%). Tt is straightforward to obtain
vector b, since it involves only vector-scalar multiplication.

In Figure 4, we provide a MapReduce algorithm to calculate A and b, then
present an implementation for LSPI. We divide the (s,a,r,s’) samples into
groups. Each MapReduce job handles one group of samples. We use ¢(s,a) to
denote the value vector of basis functions for state-action pair (s,a), which in-
volves an underlying evaluation of basis functions. We output the key as 0 and
value as a pair of {4, b} so that all outputs (that is, the partial results of A
and b) will go to a single reduce function. The reduce function collects partial
results of A and b and sums them, respectively For LSPI, we choose not to use
Haloop since the current version cannot support iterations with ”loop-within-
loop”. This remains an interesting potential future extension of Hadoop; namely,
a framework to support ”loop-within-loop” iterations.

To solve Aw = b, we note that the obvious solution of computing w = A~'b
may be inefficient. Instead, we deploy Jacobi iteration to solve this linear system.
This can be done efficiently in the proposed framework as follows. Set A = B+ D,
where D is a diagonal matrix, making it easy to obtain w = D~!(b — Bw). We
then obtain the following iteration:

Wit = D_l(b — BWt)

Update-w-Map Main

Input: Key k, vectors D~ 'b, w Job job = new Job()

Output(l,w = D™ 'b — w) add job for matrix-vector multiplication
IterationInput job.AddMap(Update-w-Map)

Input: int % job.SetInput(IterationInput)

return the (i — 1)-th step of w job.SetDistanceMeasure(ResultDistance)
ResultDistance job.setFixedPointThreshold(e)

Input: w;_1, w; job.setMaxNumOfIteration(T")

return ||w;—1 — w;|| job.Submit()

Fig. 5. Solve Aw =1

Note that D~'b and D~'B each only need to be calculated once, and each is
easy since D is diagonal. The time and space complexity will be linear in k. Thus,
the matrix inversion problem w = A~!b is converted into iterations that require
only matrix-vector multiplications. Thus, for each iteration, the time complexity
is O(%log(k—;))7 and the space complexity is O(%).

In Figure 5, we give an iterative MapReduce implementation in the Haloop
style for calculating w after calculating A and b. As above, D™'b and D~ 'B
are given so we can add a map function (without reduce) to update w after
the matrix-vector multiplication w’ = D~!Bw,_;. IterationInput specifies that
the most recent w;_; as the input to each iteration. We use the Ly-norm to
calculate the difference of consecutive w’s to test the convergence, as specified
in ResultDistance. We set the number of iterations as 7', and the fixed point
threshold as €, two predefined numbers.

An alternative method for solving Ax = b is to use a conjugate gradient
method [7]. If A is symmetric and positive semi-definite, then we can apply the
conjugate gradient method directly. Since A is usually not symmetric in our
problem, we need to solve the normal equations, AT Az = ATb. Unfortunately,
the condition number k(AT A) = k2(A) might be significantly increased, which
results in slow convergence. To address such a problem, choosing a good precon-
ditioner would be important.

Such techniques form the basis for parallelizing similar least squares RL meth-
ods in MapReduce, e.g., the backward approach and the fitted-Q iteration in [19].

4.3 Temporal difference learning

In TD learning with linear function approximation, with k£ basis functions, we
define ¢ (s) = {¢1(s), -, ¢1r(s)}. The approximate value function is then given
by V(s) = ¢(s)"w, where w is the weight vector.

The update procedure for approximate TD(0) is then

Wit = Wi + ap(se)re + 7¢>T(St+1)wt - ¢T(St)Wt]

With linear function approximation, TD(X), A € [0, 1], can be expressed by
the update rule

de =1 +70" (se11)We — &' (5¢) Wy

Input: Samples Samples

Output: Weight vector w

for sample (s,a,r,s’) in Samples do
Calculate ¢(s), (), 6(s') — B(s), [6(s') — o(s)]we
Calculate the scalar d; = r + [¢(s') — &(s)]w:
Calculate z: = YAzi—1 + &(s)
Calculate wiyr1 = Wi + aedi 2t

end for

Fig. 6. MapReduce TD())

2 = YAz—1 + P(s1)
Wip1 = Wi + opd 2y

where d; is the temporal difference, z; is the eligibility trace [16].

TD updates involve vector-vector additions, subtractions and multiplications
(resulting in scalars), which are straightforward to parallelize in MapReduce. It
is also straightforward to calculate basis functions for a state with MapReduce,
which needs only a map function. It is particular interesting to parallelize TD
learning algorithms when the feature dimension is huge, that is, when k is very
large, for example, at the scale of millions in Go [15].

To design parallel TD(A) MapReduce, we give the pseudo-code of a driver
in Algorithm 6. In each iteration, it calculates the basis functions, the tempo-
ral difference d;, the eligibility trace z; and updates the weight vector w with
samples (s,a,r,s’). We see that it is not complicated to design parallel TD())
in MapReduce. We choose to design a driver to implement the iterations in TD
learning, since we realize that the current Haloop or Twister does not support
the kind of iteration in TD. That is, in TD, before updating the weight vector
w, some operations are needed to calculate basis functions, d; and z;, which
themselves need MapReduce operations, and the inputs to each of them are dif-
ferent. A future work is to extend Hadoop to support more general iterations,
for example, that for TD learning.

Significantly, there are a series of recent papers about gradient TD algo-
rithms, e.g. [17, 13], addressing the instability and divergence problem of func-
tion approximation with off-policy TD learning/control. In the following, we give
TDC [17](linear TD with gradient correction) algorithm directly.

de =71+ 70" (s141)We — ¢ (s¢) Wy
Wil = Wi + audip(se) — at7¢($t+1)(¢T(5t)77t)
Nes1 =N + Be(de — & se)ne)p(se)

We can design parallel TDC algorithm with MapReduce similar to that for TD
algorithm, since the updates involve vector-vector additions, subtractions and
multiplications (resulting in scalars), so we do not discuss it further. As well,
other gradient TD algorithms can be dealt with similarly.

The above parellelization of TD and gradient TD algorithms have linear time
and space complexity in the number of basis functions, and thus are suitable for

problems with a large dimension or with a large number of features, e.g., for the
game of Go [15], over a million features are used when building a value function.

Recently, Zinkevich et al. propose a parallelized stochastic gradient descent
algorithm and gave theoretical analysis [21]. Both TD and gradient TD algo-
rithms can exploit such an algorithm for parallelization, so that the parallel
learning algorithm collects many sets of samples, then assigns each processing
unit to conducting learning with TD or gradient TD update rules, after that,
takes the average as the final result. Such an approach of parallelization assumes
that a TD or gradient TD can be handled by a processor, and averages results
from many processors to achieve high efficiency and accuracy.

5 Conclusions

We have investigated techniques for parallelizing reinforcement learning algo-
rithms with MapReduce. In particular, we have provided parallel dynamic pro-
gramming algorithms with MapReduce, including policy evaluation, policy itera-
tion and off-policy updates, as well as tabular reinforcement learning algorithms.
Furthermore, we proposed parallel algorithms with MapReduce for reinforcement
learning, to cope with large scale problems with linear function approximation;
namely the model-based projection method, least squares policy iteration, tem-
poral difference learning, and the very recent gradient TD algorithms. We em-
phasize that iterative MapReduce is critical for parallel reinforcement learning
algorithms, and provided algorithms in the Haloop style for tabular policy evalu-
ation and for solving a linear system Aw = b. We give time and space complexity
analysis of the proposed algorithms. These algorithms show that reinforcement
learning algorithms can be significantly parallelized with MapReduce and open
new avenues for solving large scale reinforcement learning problems.

We also observe that the current Hadoop and its iterative proposals, including
Haloop and Twister, are not general enough to support certain iteration styles in
a natrual way, for example, for LSPI and TD()). Tt is desirable to extend Hadoop
for more general iterative structures, for example, the ”loop-in-loop” iterations.
Our preliminary experiments show that a cluster of machines running Hadoop
can solve large scale linear systems Aw = b efficiently; while Matlab on a single
computer can easily encounter ”Out of memory”. It is desirable to further study
the performance of proposed parallel DP and RL algorithms with MapReduce
empiricaly. It would also be interesting to study alternative parallel frameworks,
e.g., GraphLab [12], which address potential inefficiency with MapReduce, e.g.,
for problems with data-dpendancy due to MapReduce’s share-nothing feature.

References

[1] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Sci-
entific, Massachusetts, USA, 1996.

[2] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Nu-
merical Methods. Athena Scientific, Massachusetts, USA, 1997.

3]

(4]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
21]

Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. Haloop: Efficient iterative data
processing on large clusters. In The 36th International Conference on Very Large
Data Bases (VLDB’10). Singapore, September 2010.

C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Ng, and K. Olukotun.
Map-reduce for machine learning on multicore. In Advances in Neural Information
Processing Systems 19 (NIPS 2006), pages 281-288. Vancouver, December 2006.
J. Dean and S. Ghemawat. Mapreduce: Simplied data processing on large clusters.
In OSDI 2004, pages 137—150. San Francisco, USA, December 2004.

J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and G. Fox.
Twister: A runtime for iterative mapreduce. In The First International Workshop
on MapReduce and its Applications. Chicago, USA, June 2010.

G. H. Golub and C. F. V. Loan. Matriz Computations. The Johns Hopkins
University Press, Baltimore, Maryland, USA, 1996.

U. Kung, C. E. Tsourakakis, and C. Faloutsos. Pegasus: A peta-scale graph mining
system - implementation and observations. In ICDM 2009, pages 229-238. Miami,
December 2009.

M. G. Lagoudakis and R. Parr. Least-squares policy iteration. The Journal of
Machine Learning Research, 4:1107 — 1149, December 2003.

J. Lin and C. Dyer. Data-Intensive Text Processing with MapReduce. Morgan &
Claypool, 2009.

C. Liu, H.-C. Yang, J. Fan, L.-W. He, and Y.-M. Wang. Distributed nonneg-
ative matrix factorization for web-scale dyadic data analysis on mapreduce. In
Proceedings of the 19th International World Wide Web Conference (WWW’10),
pages 681-690. Raleigh, North Carolina, USA, April 26C30, 2010.

Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein.
Graphlab: A new parallel framework for machine learning. In Uncertainty in
Artificial Intelligence (UAI). Catalina Island, USA, July 2010.

H. R. Maei and R. S. Sutton. GQ(\): A general gradient algorithm for temporal-
difference prediction learning with eligibility traces. In Proceedings of the Third
Conference on Artificial General Intelligence. Lugano, Switzerland, 2010.

M. L. Puterman. Markov decision processes : discrete stochastic dynamic pro-
gramming. John Wiley & Sons, New York, 1994.

D. Silver, R. S. Sutton, and M. Muller. Reinforcement learning of local shape
in the game of Go. In Proceedings of the 20th International Joint Conference on
Artificial Intelligence (IJCAI), pages 1053-1058. Hyderabad, India, Jan. 2007.
R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT
Press, 1998.

R. S. Sutton, H. R. Maei, D. Precup, S. Bhatnagar, D. Silver, C. Szepesvari,
and E. Wiewiora. Fast gradient-descent methods for temporal-difference learning
with linear function approximation. In Proceedings of The 26th International
Conference on Machine Learning (ICML), pages 993-1000. Montreal, Canada,
June 2009.

C. Szepesvari. Algorithms for Reinforcement Learning. Morgan & Claypool, 2010.
J. N. Tsitsiklis and B. Van Roy. Regression methods for pricing complex
American-style options. IEFEE Transactions on Neural Networks (special issue
on computational finance), 12(4):694-703, July 2001.

T. White. Hadoop: The Definitive Guide. O’Reilly, 2009.

M. Zinkevich, M. Weimer, A. Smola, and L. Li. Parallelized stochastic gradient
descent. In Proceedings of Advances in Neural Information Processing Systems 2/
(NIPS 2010), pages 2217-2225. Vancouver, Canada, December 2010.

