

Multiple Sleep Modes Leakage Control in Peripheral Circuits
of a All Major SRAM-Based Processor Units

Houman Homayoun
Department of Computer Science

University of California Irvine, U.S.A
hhomayou@uci.edu

Avesta Sasan
 ECE Department

University of California Irvine, U.S.A
mmakhzan@uci.edu

Aseem Gupta
Freescale Semiconductor Inc.

Austin, TX, U.S.A
aseemg@uci.edu

Alex Veidenbaum
Department of Computer Science

University of California Irvine, U.S.A
alexv@ics.uci.edu

Fadi Kurdahi
ECE Department

University of California Irvine, U.S.A
kurdahi@uci.edu

Nikil Dutt
Department of Computer Science

University of California Irvine, U.S.A
dutt@uci.edu

ABSTRACT
Leakage currents in on-chip SRAMs: caches, branch predictor,
register files and TLBs, are major contributors to the energy
dissipated by processors in deep sub-micron technologies. High
leakage also increases chip temperature and some SRAM-based
structures become thermal hotspots. Previous work has addressed
major sources of SRAM leakage in memory cells and bit-lines,
making remaining SRAM components, in particular large drivers,
the primary source of leakage. This paper proposes an approach to
reduce this source of leakage in all major SRAM-based units of the
processor, controlling them in a uniform way, yet treating each unit
individually based on its behavior and memory organization. The
new approach uses multiple bias voltages in sleep transistors
allowing a trade-off between leakage reduction and wakeup delay in
multi-stage peripheral drivers. Four low-power modes are defined,
from basic to ultra low power, and SRAMs dynamically transition
between these modes to minimize leakage without sacrificing
performance. A novel control mechanism monitors and predicts
future processor behavior for mode control. The leakage reduction in
individual units is evaluated and shown to vary from 25% for IL1 to
75% for L2 caches. Resulting temperature reduction, including the
effect of positive feedback between temperature and leakage power,
is evaluated. A significant temperature reduction is achieved in each
unit. It is also shown to reduce hot spots in the instruction TLB and
branch predictor.

Categories and Subject Descriptors
B.3.2 [MEMORY STRUCTURES], Design Styles: Cache
memories; C.1.1 [PROCESSOR ARCHITECTURES], Single
Data Stream Architectures: Pipeline processors Systems.

General Terms: Design.

Keywords
SRAM Memory, Leakage Power, Peripheral Circuits, Multiple Sleep
Mode, Temperature Reduction.

1. INTRODUCTION
Leakage energy dissipation has become the dominant component of
the total energy dissipation in deep sub-micron technologies. On-
chip SRAM memories such as caches, branch predictor, and TLBs
account for a large fraction of total processor power consumption
and much of it is leakage power because of their large size. High
leakage power dissipation not only increases the overall processor
power dissipation but also increases its temperature. The positive
feedback loop between temperature and leakage power causes a
further increase in both of them [27, 42]. Furthermore, some of the
SRAM-based structures are temperature hot-spots on a chip, e.g.
register files, BTB, and ITLB [28]. Finally, higher temperature
reduces chip reliability and usable lifetime and increases the
complexity of packaging and cooling design.
A number of process and circuit techniques have been proposed to
significantly reduce the leakage of the memory cell array in SRAMs.
Recent results have shown that leakage in SRAM peripheral circuits,
such as word-line, input and output drivers, etc. are now the main
sources of leakage [2, 3, 8, 12, 17, 37]. For instance, a wordline
driver drives its signal to a large number of memory cells. Given
such a high capacitive load a chain of inverter buffers of increasing
size is used, typically with three to five levels. We compared the
leakage power consumption of a 45nm SRAM6T memory cell 1with
an inverter of different sizes. The results are shown in Figure 1. It
shows that the leakage power of a standard memory cell is
significantly lower than the leakage power of inverter buffers and
that the inverter leakage grows exponentially with its size.

For instance let us assume that a driver has to drive 256 one-bit
memory cells. This will require three stages of inverter buffers (of
increasing size, by a factor of e). The combined leakage power of
these three drivers is 12 times larger than the leakage of the 256
memory cells. In addition to the wordline driver one has to consider
leakage in data input and output drivers which are also high. Such a
large leakage power in peripheral circuits of SRAM memories has
been analyzed and discussed in detail in [2]. In brief two main
reasons explain this difference in leakage

1 Results were obtained for TSMC, TOSHIBA, IBM and UMC foundries
using their libraries and evaluating leakage with Spice.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CF’10, May 17–19, 2010, Bertinoro, Italy.
Copyright 2010 ACM 978-1-4503-0044-5/10/05...$10.00.

297

1

10

100

1000

10000

100000

mem
ory

 cell

IN
VX

IN
V2X

IN
V3X

IN
V4X

IN
V5X

IN
V6X

IN
V8X

IN
V12

X

IN
V16

X

IN
V20

X

IN
V24

X

IN
V32

X

(pw)

200X

6300X

0%

20%

40%

60%

80%

100%

B
PR

ED FR
F

IR
F

IL
1

D
L1 L2

D
TL

B

IT
LB

IN
T/

FP
 M

A
P

data output driver

row pre/decoder and driver

data input driver

address input driver

others (sense amp, memory cell and etc)

Figure 1. (a) Leakage power dissipation of one SRAM6T
memory cell compared with different size inverter buffers
(INVX is the smallest inverter buffer with drive strength of 1) (b)
Leakage power in on-chip SRAMs.
• Memory cells are designed with minimal sized transistor mainly

for area considerations. Unlike memory cells, peripheral circuits
use larger, faster and accordingly more leaky transistors in order
to satisfy timing requirements.

• Memory cells use high threshold voltage transistors which have
a significantly lower leakage reduction compared with typical
threshold voltage transistors used in peripheral circuit

In summary, SRAM memory cells are optimized for low leakage
current and area without a significant impact on the cell performance
[2, 3, 8, 12, 41]. In addition, circuit techniques such as gated-vdd and
drowsy cache can be applied to further reduce the memory cell
leakage and widen the gap between cell array and peripheral leakage
power dissipation.
A similar result is obtained using CACTI 5.1 [22]. CACTI uses
characteristics of transistors modeled by the ITRS [43]. It includes
data for two device types that the ITRS defines - High Performance
(HP) and Low Standby Power (LSTP). The HP transistors are fast
transistors with short gate lengths, thin gate oxides, low Vth, and low
VDD. The LSTP transistors, on the other hand, have longer gate
lengths, thicker gate oxides, higher Vth, and higher VDD. As
explained in [2] HP transistors are used in the peripheral circuitry
while the LSTP transistors are used in the memory cells array. While
it is possible to use LSTP transistors in peripheral circuits for
reducing leakage the impact on memory access time would be
significant (for instance an increase from 3.8ns to 12.5ns access
delay for a 2MB L2 cache). CACTI results show that the peripheral
circuitry are leaking considerably more than memory cell array.
Figure 1(b) shows the leakage for different components of various
on-chip SRAMs, such as branch predictor, TLBs, L1 and L2 caches,
register files and register map table for 45nm technology (based on
CACTI 5.1 [22]). It demonstrates that the peripheral circuits – data
drivers, address driver, decoder, and wordline drivers – account for
over 80% of the overall SRAM leakage.

This paper proposes a combination of circuit and architectural
techniques to minimize leakage power dissipation and consequently
also reduce the temperature of on-chip SRAMs. Unlike some of the
previous work, it targets all large on-chip SRAMs simultaneously:
branch predictor, register files, L1 data and instruction cache (DL1
and IL1), L2 cache (L2), instruction and data translation lookaside
buffers (ITLB/DTLB), and register map tables. It focuses on leakage
in SRAM peripheral circuits. Some of the on-chip SRAMs are small,
such as register files, while others are very large, such as the L2
cache. Reducing leakage in small SRAMs has a minor impact on
overall chip leakage compared to large SRAMs, but our leakage
reduction approach leads to significant temperature reduction in
these small SRAMs. For large SRAMs, it provides both leakage and
temperature reduction.
Reducing leakage in units such as branch predictor, register files and
TLBs is also important because these small SRAMs are among the
hottest units due to their small size and high power density [28]. Any
leakage reduction in these units is further increased due to the
positive feedback loop between temperature and leakage. At the
circuit level, one approach to reduce the sub-threshold leakage in
SRAM peripheral circuits is to use stacked sleep transistors [3, 10,
40]. The drawback of using sleep transistors is the time delay that
they add to SRAM access time, which may lead to increased
execution time and therefore potentially higher energy consumption.
To reduce SRAM “wakeup” delay [3] proposed sharing sleep
transistors and using them in a zig-zag, or alternating, fashion across
stages of multi-stage drivers, such as the SRAM word-line driver.
This paper shows that by increasing the bias voltage of the NMOS
footer sleep transistor in zig-zag share circuit (and decreasing it for
the PMOS header transistor) one can trade leakage reduction and
wakeup delay in the zig-zag share scheme. It proposes to use several
low-leakage power modes with different wakeup times to better
control the SRAM peripheral circuit leakage. For instance, one can
have a low-leakage mode for DL1 cache peripheral circuit with a
one-cycle wakeup delay but it would reduce leakage by only 47%.
Alternatively, one can define an ultra low power mode with a 3-
cycle wakeup that saves 84% of leakage. Only the sleep transistor
bias voltage used in these modes is different, otherwise the circuit is
the same. Thus one can dynamically switch modes during execution
with almost no delay. The question is when and how to use these
different low-leakage modes for each of the SRAM units to
maximize the leakage reduction while minimizing the wakeup delay
and its impact on performance.
This paper first defines a mechanism that exploits both L1 and L2
cache miss information to decide when to transition on-chip SRAM
peripherals to different low-power modes. It uses a state machine
which is quite small and does not impact area or power consumption.
The state machine tracks L2 or multiple L1 cache misses to guide
these transitions because such events usually stall the processor.
Applying the same general mechanism may not deliver optimal
results in each unit. Furthermore, it can degrade performance
significantly in some units, such as the IL1 cache which is accessed
frequently. Therefore, to maximize the leakage reduction at no
performance cost the control algorithm is optimized for individual
on-chip SRAM-based units depending on their behavior and their
ability to hide the wakeup delay associated with various low power
modes. We thus propose to customize the general algorithm for each
on-chip SRAM unit and to make the control local. For instance, for
branch predictor (BP) we propose a novel run-time history-based
mechanism to predict the period when BP is accessed very
infrequently. Once such a period is identified the branch predictor
peripheral is put into a low power mode.

298

The leakage and the corresponding temperature reduction of various
SRAM-based units in the processor are evaluated in this paper using
the proposed circuit and architectural techniques. Temperature is
evaluated using a modified version of HotSpot [28]. The
modification replaced the library of temperature vs. leakage power
data with post-fabrication measurements for 45nm technology for
different types of transistors in the range from 27oC to 150oC in
increments of 0.1oC; a similar methodology was introduced in [42].
This paper makes the following major contributions:
1) Defines several low-leakage modes using multiple bias voltages

in sleep transistors to allow a trade-off between wakeup delay
and leakage reduction. These are combined with a recently
proposed zig-zag share circuit technique (multiple sleep mode
zig-zag share).

2) Proposes a general state machine control which exploits DL1
and L2 cache miss information to control multiple sleep mode
zig-zag share circuitry.

3) An optimized state machine for each individual unit to exploit
its behavior and ability to hide the wakeup delay associated
with each low power mode.

4) Evaluates leakage power and corresponding steady state and
peak temperature reduction for individual SRAM-based units.
Evaluates the power/area overhead of the controlling circuitry.

Overall, the average leakage reduction is very significant across all
SRAM units; 75% for L2, 57% for Branch Predictor, 57% for DL1,
25% for IL1, 38% for Floating Point and Integer Register File (FRF
and IRF), 49% for INT/FP Rename, and 45% for DTLB/ITLB. The
peak temperature across different blocks can be reduced by as much
as 10.2oC. A noticeable steady state temperature reduction is
observed across all the units, varying form 3.5 oC for register map
unit to 7.3 oC for L2 cache.

2. SLEEP TRANSISTOR STACKING
Stacking sleep transistors have been proposed to reduce sub-
threshold (IDsub) or weak inversion current [9]. As shown in Figure 2
by stacking transistor N with slpN source to body voltage (VM) of
transistor N increases. When both transistors are off increase in VM
reduces the TV of the transistor N and therefore reduces sub-
threshold leakage current. [9]. Size (W/L) and bias (Vgslpn) voltage of
the stacked sleep transistor determines the VM [9,15]. Reducing sleep
transistor bias reduces the leakage but increases the circuit wakeup
period, the time to pull the VM down to ground. Thus there is a trade-
off between the amount of leakage saved and the wakeup overhead
[15]. Now let us study the source of subthreshold leakage in a
wordline driver. A wordline driver drives the gate of access
transistors of all connected memory cells. The number and size of
inverters in the chain are chosen to meet the timing requirements for
charging or discharging the wordline. The inverter chain has to drive
a logic value 0 to the pass transistors when a memory row is not
selected. Thus the driver cannot be simply shut down when idle.
Transistors N1, N3 and P2, P4 are in the off state and thus they are
leaking.
Stacking header and footer sleep transistors with all NMOS and
PMOS transistors in the chain reduces their leakage; however, aside
from the area overhead, it increases the propagation delay of the
inverters in the driver chain followed by an increase in the rise/fall
time of the wordline [3,7]. While increasing the rise time and
propagation delay (due to its impact on access time) is not desirable,
increasing the fall time is not tolerable since it can affect memory
functionality [18, 20]. Increase in the fall times of the wordline
increases the access transistor’s active period of a memory cell

during a read operation. This results in the bitline over-discharge and
the memory content over-charge during the read operation. Such
over-discharge not only increases the dynamic power dissipation of
bitlines but, more importantly, can cause a memory cell content to
flip if the over-discharge period is large [7,20]. In brief, to avoid
impacting memory functionality the sense amplifier timing circuit
and the wordline pulse generator circuit need to be redesigned. To
avoid the redesign of these critical units and, moreover, not to
increase bitline dynamic power dissipation we use the zig-zag
horizontal and vertical share circuit technique proposed in [3].

MV

gnV

gslpnV
LC

CV

Figure 2. Stacking sleep transistor to reduce leakage.

2.1 Zig-zag Share Circuit
In [3] several approaches for reducing leakage power through sleep
transistor insertion has been studied. They proposed zig-zag share
scheme which uses typical Vth sleep transistors. They have shown
this technique to be the most effective in reducing leakage in SRAM
peripheral while requiring minimal design overhead with minimal/no
impact on circuit speed. Note that while it is possible to use high Vth
transistors in the peripheral circuits to reduce leakage it is not
justified due to the extra mask layer cost and the impact on circuits
speed [3, 44]. Unlike zig-zag share scheme which has minimal/no
impact on peripheral circuits timing components, due to timing
impact of using high Vth transistors, the peripheral circuits required
to be redesigned. To avoid such an extra design spin and cost
overhead, in this work we deploy and further explore zig-zag
horizontal and vertical share circuit technique.
In this approach, sleep transistors are inserted in a zig-zag fashion
[38, 39] keeping the Rpeq of the first and third inverters and Rneq of
the second and fourth inverters constant. This technique keeps the
fall time of the circuit the same as in the baseline circuit with no
leakage control. However, the rise time of the circuit is affected by
the zig-zag scheme. In addition, using one sleep transistor per
inverter logic increases the area for the zig-zag scheme. To improve
both leakage reduction and area-efficiency of the zig-zag scheme,
one set of sleep transistors is being shared between multiple stages of
inverters which have similar logic behavior, such as stage 1 and 3 in
a studied chain of inverters. To further reduce leakage power one set
of sleep transistors (slpN and slpP) is shared vertically with adjacent
rows of a (wordline) driver. [3] further explored the design space of
sleep transistor insertion in SRAM peripheral circuitry and shown
the effect of sleep transistor size, number of horizontal and vertical
level sharing on the trade off between the leakage power savings and
the impact on instability, area, dynamic power, propagation delay,
rise time and fall time delay increases on the peripheral circuit of
SRAM.
Intuitively, in vertical sharing, the virtual ground voltage (VM in
Figure 2) increases in comparison to when there is no vertical
sharing. Results show that using zz-hvs reduces the leakage power
significantly, by 10 to 100X, when 1 to 10 wordlines share the same
sleep transistors. Such noticeable savings comes at negligible impact

299

on memory access time, dynamic power and area increase. The
maximum switching power of the sleep transistors in zz-hvs scheme
is shown to be ~8% of total inverter chain power dissipation. Sharing
the sleep transistor across multiple stages of inverter chain, both
horizontally and vertically, combined with infrequent switching of
sleep transistors makes the additional power dissipation much
smaller. Also the memory access delay shown to be increased by up
to 5% in a non- pipelined memory [3]. Pipelined memories such as
L1 and L2 caches, can hide this small increase in peripheral circuit
latency. In this paper we assumed that other on-chip SRAMs, register
file, branch predictor, DTLB/ITLB and rename table, can tolerate
such an increase without impacting the processor operating clock
frequency.

3. ZIGZAG-SHARE WITH MULTIPLE
SLEEP MODES

As explained in Section 2, to benefit the most from the leakage
savings of stacking sleep transistors we need to keep the bias voltage
of NMOS footer sleep transistor as low as possible (and for PMOS
header transistor as high as possible). The drawback of such biasing
is its impact on wakeup latency of the circuit transitioning from sleep
mode to active mode, which requires the voltage of virtual ground to
reach the true ground. Such wakeup delay would significantly impact
performance if incurred frequently. Appropriately sizing the sleep
transistor (both footer and header) [3] and controlling its bias voltage
[15] are two effective ways to minimize the impact on wakeup delay.
For instance, increasing the gate voltage of footer sleep transistor (in
Figure 2) reduces the virtual ground voltage (VM), which
consequently reduces the circuit wakeup delay. The negative impact
of such biasing is a reduction in leakage power savings. By
controlling the gate voltage of footer and header transistors we can
thus define different sleep modes where each mode has a different
wakeup delay overhead and a different amount of leakage power
reduction. Multiple gate bias voltage levels for multiple sleep modes
can be generated by a robust bias generation circuit such as [15, 46,
47, 48]. Note that generating multiple bias voltages requires using
on-chip voltage converters. Several recent memory product from
Intel [46, 47], Hitachi, Renesas [48] and others use such on-chip
voltage converters for body bias generation. The area overhead of
body bias generation AND distribution was shown to be small, 1~3%
of total chip area [47, 49]. The proposed multiple sleep mode zig-zag
share approach was applied to various SRAM wordline drivers.
Several test experiments were set up in which the wordline inverter
chain drives 256, 128, 64 and 32 one-bit memory cells. The drivers
were laid out using Mentor Graphic IC-Station in a 45nm
technology and simulated using Synopsis Hspice at typical corner
(25 º) with extracted netlist and the supply voltage of 1.0V. A
standard SRAM6T memory cell was used. In we report the impact
of sleep transistor sharing and sizing on wakeup delay when each
wordline drives 256 one-bit memory cells. More sharing of sleep
transistor results in larger wakeup delay. This is also consistent with
results reported in [3], with a larger sleep transistor we can reduce
the wakeup delay. Figure 3 shows normalized wakeup delay and
normalized leakage power for different pairs of footer and header
gate bias voltage when zz-hvs is shared by 10 rows of wordline
drivers with each wordline driving 256 one-bit memory cells. A
clear trade-off can be seen between the normalized wakeup delay
and leakage power. For other cases where the driver load changes
(driving 32, 64 and 128 one-bit memory cell) we observed that the
relative leakage reduction does not change significantly. Also it
should be noted that when the peripheral circuits are in low power

mode the overall time delay for transition to/from standby mode,
STL, is the sum of sleep transistors wakeup delay and propagation
delay of sleep signal. Both of these delays increase as the memory
area increases, especially the later delay, because the sleep signal
needs to be transmitted over a greater distance. Accordingly,
depending on memory size and configuration, there is a different
wakeup delay overhead for a specific zz-hvs bias voltage. To find the
STL delay for different SRAM memories, Spice and CACTI were
used to measure the wakeup delay of sleep transistor and propagation
delay of the sleep signal, respectively, for various SRAM units. To
estimate the propagation delay we assume that the sleep signal has to
be transmitted across the SRAM peripherals. Based on these
experimental results, four sleep modes with different wakeup delays
were defined for each on-chip SRAM memory. The first sleep mode
is the basic-lp mode, which requires
a near-zero wakeup overhead. In fact, for on-chip SRAMs with
access delay smaller than clock period, the zz-hvs circuit is biased
such that the overall access delay and wakeup delay overhead is less
than the clock period, so that the SRAM still can be accessed in one
(processor clock) cycle while waking its peripherals from basic-lp
mode. The other low-power modes are low power (lp), aggressive
low power (aggr-lp) and ultra low power (ultra-lp). Their peripheral
wakeup delays are 1,2 and above 3 cycles, respectively.

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

(0,
1)

(0.
05

,.9
6)

(0.
1,0

.93
)

(0.
15

,0.
89)

(0.
20

,0.
85)

(0.
25

,0.
80)

(0.
30

,0.
75)

(Footer,Header) Gate Bias Voltage Pair

N
or

m
al

iz
ed

 L
ea

ka
ge

 P
ow

er

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 W
ak

e-
U

p
D

el
ay

Normalized leakage Normalized wake-up delay
Figure 3. Normalized wakeup delay and leakage power for
different pair of footer and header gate bias voltage.
Table 2 shows relative peripheral circuit leakage reduction for
different modes for each on-chip SRAMs. For IL1, DL1 and L2, due
to their large size, the overall wakeup delay (sleep transistor wakeup
delay+sleep signal propagation delay) is more than 1 cycle for any
bias voltage. As such, these units can not be put into basic-lp mode.
As the results suggest, the rest of the SRAMs can be put into basic-lp
mode to reduce their leakage but their access can still be completed
in one processor cycle. Recall that the wakeup delay for basic-lp

Table 1. Impact of sleep transistor sharing and sizing
on the wakeup delay

#shared
inverter
chains

W(1X)
(ns)

W(2X)
(ns)

W(3X)
(ns)

W(4X)
(ns)

W(5X)
(ns)

W(6X)
(ns)

W(7X)
(ns)

W(8X)
(ns)

1 0.256 0.137 0.093 0.064 0.045 0.037 0.032 0.029
2 0.620 0.367 0.273 0.205 0.155 0.136 0.124 0.115
3 1.190 0.732 0.583 0.464 0.381 0.345 0.321 0.309
4 1.655 1.072 0.877 0.736 0.637 0.596 0.564 0.556
5 2.130 1.438 1.214 1.065 0.952 0.905 0.884 0.882
6 2.595 1.817 1.609 1.453 1.336 1.298 1.277 1.275
7 3.050 2.196 1.983 1.830 1.739 1.708 1.699 1.696
8 3.525 2.609 2.432 2.291 2.203 2.178 2.171 2.170
9 4.010 3.036 2.887 2.767 2.695 2.675 2.667 2.663
10 4.450 3.471 3.338 3.235 3.182 3.168 3.163 3.160

300

mode is virtually zero. Aggressive and ultra sleep power modes have
higher leakage savings but also a longer wakeup delay. Access to an
SRAM in one of these modes requires two or more extra cycles in
addition to its access time. For instance, FRF/IRF access while in
aggr-lp mode requires 3 cycles (a 2-cycle wakeup and 1-cycle
access) while for L2 and DL1 this is 4 cycles. (a 2-cycle wakeup and
2-cycle access).
Table 2. On-chip SRAM peripherals multiple sleep mode
normalized leakage power savings

 BPRE
D

FRF IRF IL1 DL
1

L2 DTL
B

ITLB RENAM
E

basic- 0.29 0.21 0.2 -- -- -- 0.25 0.25 0.31
lp 0.63 0.51 0.5 0.4 0.4 -- 0.54 0.54 0.53

aggr-lp 0.75 0.68 0.6 0.5 0.5 0.5 0.69 0.69 0.67
ultra-lp 0.91 0.85 0.8 0.7 0.8 0.9 0.93 0.93 0.87
Finally, note that the power overhead of waking up peripheral
circuits from any low power mode is negligible and almost
equivalent to the switching power of sleep transistors (and they do
not switch very frequently). Sharing a set of sleep transistors
horizontally and vertically (as explained in zz-hvs) for multiple
stages of (wordline) drivers makes the power overhead even smaller.
As a result, the power benefit of the proposed circuit scheme is less
sensitive to transition frequency between different power modes.

4. CONTROLLING MULTIPLE SLEEP
MODE ZZ-HVS FOR ON-CHIP SRAMS

This section describes the architectural approach used to control
multiple low-power modes based on zz-hvs sleep transistors in
BPRED, FRF, IRF, IL1, DL1, L2, DTLB, ITLB and RENAME
SRAMs. The approach was evaluated for a 64-bit processor similar
to Alpha 21264, described in Table 3, The processor clock frequency
was assumed to be 2.2 GHz. It was simulated using an extensively
modified version of SimpleScalar4 [11] and SPEC2K benchmarks
with reference data sets. Benchmarks were compiled using the
Compaq compiler with the -O4 flag targeted for the Alpha 21264
processor. The benchmarks were fast–forwarded for 2 billion
instructions, then fully simulated for 2 billion instructions.

Table 3. Processors Configuration
L1 I-
cache

128KB, 64
byte/line, 2

cycles

Instruction
queue

64 entry (32
INT and 32 FP)

L1 D-
cache

128KB, 64
byte/line, 2

cycles, 2 R/W
ports

Register file 128 integer and
128 floating

point

L2 cache 2MB, 8 way, 64
byte/line, 20

cycles

Load/store
queue

32 entry load
and 32 entry

store
issue 4 way out of

order
Arithmetic

unit
4 integer, 4

floating point
units

Branch
predictor

“tournament”
predictor

Complex unit 2 INT, 2 FP
multiply/divide

units
Reorder
buffer

128 entry Pipeline 15 cycles (some
stages are multi-

cycles)

4.1 Reducing Leakage In On-Chip SRAM
Peripherals

To maximize the leakage reduction in each of the on-chip SRAM
memories peripherals one solution would be to always put them into
ultra low power mode. However, this requires wakeup of their
peripheral circuits before accessing them adding 3 cycles to their
access latency and significantly reducing performance. In addition to
performance degradation, increased access time for some units, such
as a register file, would require significant modification of the
pipeline and further complicate the instruction scheduler [24].
Alternatively, one can put SRAM peripherals into the basic low
power mode (except for IL1, DL1 and L2), which requires virtually
zero cycles to wakeup thus not degrading performance. However,
this doesn’t significantly reduce leakage power (see Table 2). To
achieve the large leakage reduction of ultra and aggressive low
power modes with the performance impact of basic-lp mode one has
to dynamically change the peripheral circuit sleep modes. During
periods of frequent access they need to be kept in basic-lp mode and
when their access frequency is low they can be kept in aggr-lp or
ultra-lp modes.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

am
m

p

ap
pl

u

ap
si ar
t

bz
ip

2

cr
af

ty

eo
n

eq
ua

ke

fa
ce

re
c

ga
lg

el

ga
p

gc
c

gz
ip

lu
ca

s

m
cf

m
es

a

m
gr

id

pa
rs

er

pe
rlb

m
k

si
xt

ra
ck

sw
im

tw
ol

f

vo
rt

ex vp
r

w
up

w
is

e

av
er

ag
e

scenario I scenario II

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

am
m

p

ap
pl

u

ap
si ar

t

bz
ip

2

cr
af

ty

eo
n

eq
ua

ke

fa
ce

re
c

ga
lg

el

ga
p

gc
c

gz
ip

lu
ca

s

m
cf

m
es

a

m
gr

id

pa
rs

er

pe
rlb

m
k

si
xt

ra
ck

sw
im

tw
ol

f

vo
rt

ex vp
r

w
up

w
is

e

av
er

ag
e

L2 miss stall period L2miss pre-stall period 3 pending L1 misses period normal period
Figure 4 (a) Performance decrease for scenarios I and II. (b)
Fraction of execution time in different periods.
One period of infrequent access to any of discussed units is when the
processor performance (in terms of IPC) drops significantly. Our
study shows that during such period access to many on-chip SRAM
units such as L1 cache, L2 cache, DTLB/ITLB, register file, branch
predictor and rename table drops significantly. Cache misses are the
main reason for processor performance drops significantly. For
instance, after an L2 cache miss the processor executes some
independent instructions but finally ends up stalled [52] (scenario I).
Similarly, a considerable performance reduction occurs during any
period in which multiple L1 misses are pending (scenario II).
Performance degradation in both cases is due to the fact that a load
instruction missing in a cache (DL1 or L2) prevents any dependent
instruction from being issued until the miss is serviced. For a long-
latency L2 miss, after the processor executes a number of
independent instructions, either the ROB, LQ/SQ or instruction queue
fills up with subsequent instructions and the processor ends up

301

stalled until the miss is serviced. We refer to the interval between L2
miss occurrence and processor stall as L2 miss pre-stall period. We
refer to the stall period following L2 miss as L2 miss stall period. In
the event of a DL1 miss, the service time is much smaller than it
would be for L2 and it is less likely that any of LQ/SQ, ROB and IQ
(collectively referred as queues) fills up before the cache miss is
serviced. Note that when a DL1 cache miss occurs, its dependent
instructions cannot be issued and that all the subsequent instructions
cannot be committed as discussed above. This reduces the
performance and increases the occupancy of the aforementioned
queues. In the presence of many pending DL1 cache misses (referred
as L1 miss period), the impact on performance could be large.
We refer to a period during which one or more L2 miss/misses
and/or multiple DL1 misses are pending as a “cache miss period,”
and to the rest of program execution time as a “normal period.” It
should be noted that the two scenarios discussed above would occur
when the missed load is part of a correct prediction path, otherwise
after the correct path has been identified, the missed load instruction
will be flushed and will release ROB/IQ/ LQ/SQ entries so that
program execution can continue (return to the normal period). Figure
4(a) shows the IPC reduction for scenario I compared to when there
is no pending L2 miss and the IPC reduction for scenario II
compared to the period where there are less than 3 pending DL1
misses. The IPC decreases significantly in both cases. Across all
benchmarks, the IPC drops by more than 88% for scenario I and
more than 31% for scenario II. Figure 4(b) presents the fraction of
execution time the processor spends in different low-power periods.
On average, the processor pipeline is stalled for more than 30% of
execution time due to L2 cache misses, it spends 8% of execution
time during L2 miss pre-stall period. For benchmarks such as ammp,
applu, lucas, mcf, mesa, and swim there is a large fraction of stall
time - more than 60%. For more than 7% of program execution time
there are at least 3 pending L1 misses in the pipeline. The processor
spends 53% of execution time in normal period.

5. LEAKAGE CONTROL MECHANISM
Based on the results presented in Figure 4, one can use the L2 and L1
cache miss information to decide when to put SRAM peripherals into
different low power modes.The following general state machine is
proposed to control the power transitions:

Figure 5. General state machine to control power mode
transitions.
On an L2 cache miss the SRAM peripheral circuits are transitioned
from basic to a deep low power mode, aggr-lp. The pipeline
continues issuing and executing instructions (pre-stall period) until
one of the ROB, instruction queue, or load/store queue fills up. Once
the pipeline stalls, the SRAM peripherals transition to the ultra-lp
mode until the miss is serviced. A transition from basic-lp to lp

mode occurs when at least three DL1 misses are pending (a L1 cache
miss period). Occurrences of multiple DL1 misses increase the
probability of pipeline stalls due to data dependencies. It thus makes
sense to put the on-chip SRAM peripherals into a sleep mode with
higher leakage savings (lp). A processor stall is detected by
monitoring the issue width of the processor after L2/multiple DL1
cache miss/es occur. The processor is transitioned into ultra-lp once
it doesn’t issue any instructions for at least five consecutive cycles.
The processor returns from any of these low power states back to the
basic-lp mode once one of the two following conditions is met:
• Stall condition removed, i.e. instruction issue resumes
• All pending DL1 misses are serviced
The proposed general algorithm may not deliver optimal results for
all units. Therefore, the algorithm is modified for individual on-chip
SRAM-based units to maximize the leakage reduction at NO
performance cost, as described next.

5.1 Branch Predictor
On average, one out of every 9 fetched instructions in integer
benchmarks and out of 63 fetched instructions in floating point
benchmarks accesses the branch predictor (see in Table 4). Such
infrequent access would seem to make the branch predictor a good
candidate for always staying in deep low power modes (lp, ultra-lp or
aggr-lp) and waking up on access. However, this approach results in
noticeable performance degradation for some benchmarks (results
not presented here).

Table 4. Instruction per branch count
 IPB IPB IPB IPB
ammp 4.5 equake 4.21 mcf 3.9 twolf 7.6
applu 324.1 facerec 20.0 mesa 11.0 vortex 5.7
apsi 28.9 galgel 14.3 mgrid 310.4 vpr 9.0
art 8.1 gap 14.2 parser 6.0 wupwise 8.7
bzip2 6.7 gcc 6.3 perlbmk 7.2 average 37.8
crafty 8.5 gzip 9.5 sixtrack 11.9
eon 8.2 lucas 25.6 swim 77.1

One reason is that in some benchmarks the branch predictor is
accessed very frequently, such as ammp, equake and mcf. Another is
that within a benchmark there is significant variation in Instructions
Per Branch (IPB). Figure 6 shows IPB measured every 512 cycles
for two benchmarks with different average IPB: swim with a very
high average IPB and equake with a very low average IPB. The
highlighted circles for swim identify regions in which the number of
branch in a 512-instruction interval is significantly lower than its
average IPB of 77. A similar situation is true for equake. Also note
the duration of a period where the IPB stays low (or high): once the
IPB drops (increases) significantly it may remain low (high) for a
long period of time. Based on these observations one can identify the
high IPB period, once the first low IPB period is detected. The
following algorithm is proposed for this prediction:
The number of fetched branches is counted every 512 cycles, once
the number of branches is found to be less than a certain threshold
(24 in this work) a high IPB period identified. The IPB is then
predicted to remain high for the next twenty 512 cycles intervals
(10K cycles).
Using this algorithm branch predictor peripherals transition from
basic-lp mode to lp mode when a high IPB period is identified.
During pre-stall and stall periods the branch predictor peripherals
transition to aggr-lp and ultra-lp mode, respectively.

302

equake

0

5

10

15

20

25

30

1 M cycles

IP
B

 e
ve

ry
 5

12
 c

yc
le

s

swim

0

50

100

150

200

250

300

350

1M cycles

IP
B

 e
ve

ry
 5

12
 c

yc
le

s

Figure 6. Distribution of the number of branches per 512-
instruction interval (over 1M cycles)

5.2 L1 Data Cache
DL1 cache read ports are accessed more frequently than its write
ports. Results in
 show that on average a DL1 write port is accessed once every 30
cycles, while a read port is accessed every 8 cycles. Such different
access pattern, require different control mechanism for reducing
leakage. Our evaluation showed that making a write port one cycle
slower has almost no impact on performance. But a one extra cycle
of delay on every DL1 read (port) leads to noticeable performance
degradation in some of the benchmarks (e.g. gzip, twolf and vpr).
Therefore, the DL1 write port is always kept in lp mode and is
awaken only when it is accessed. The read port is put into lp mode
only during L1 cache miss period where processor performance
drops noticeably and slowing load instructions execution by one
cycle does not appreciably degrade performance. During pre-stall
period the L1 peripherals are put into aggr-lp mode. Both read and
write ports are put into ultra-lp mode once processor is stalled.
Table 5. Average latency (number of cycles) between two
successive accesses to DL1 read and write ports

 DL1 read DL1 write DL1 read DL1 write
ammp 15.8 73.8 lucas 22.7 58.1
applu 10.5 23.6 mcf 28.9 203.8
apsi 5.4 11.1 mesa 3.7 9.8
art 6.3 29.5 mgrid 7.0 52.9

bzip2 4.2 14.3 parser 6.4 18.2
crafty 3.2 17.8 perlbmk 5.9 11.5
eon 3.9 6.02 sixtrack 3.7 10.3

equake 5.7 14.1 swim 18.1 44.8
facerec 6.1 10.8 twolf 6.6 22.2
galgel 3.5 33.6 vortex 4.0 7.6
gap 7.8 15.5 vpr 6.6 20.8
gcc 5.8 8.9 wupwise 8.9 18.2
gzip 5.3 19.7 average 8.2 30.4

5.3 L1 Instruction Cache
IL1 is accessed very frequently. As explained in Sec. 3, due to its
large size, the overall wakeup delay of its peripherals from basic-lp
mode (sleep transistor wakeup delay plus sleep signal wakeup delay)
takes more than 1 cycle for any bias voltage. Therefore, because of

frequent accesses, putting IL1 cache peripherals into basic-lp mode
would result in significant performance degradation. Therefore, the
IL1 cache peripherals transition to the ultra-lp mode only when an
L2 cache miss is detected. Our results indicate that this approach
doesn’t degrade performance. By putting IL1 peripherals into ultra-lp
mode every access to it will take 5 cycles (2 cycles access time + 3
cycles wakeup time). Since during L2 miss period processor execute
few independent instructions and finally ends up being stalled,
slowing down the execution of independent instructions by slowing
down the IL1 cache access, does not degrade the performance as
long as independent instructions execution can be completed before
the L2 cache miss serviced.

5.4 L2 Cache
L2 cache is accessed infrequently (on average 1 out of 500
instruction access L2). It thus makes a lot of sense to always keep it
in deep low power mode (aggr-lp) and only wake it up before
accessing it. The wakeup delay of aggr-lp mode is 2 cycles which is
much less than the L2 cache latency (20 cycles). As a result the
performance impact of always keeping the L2 in aggr-lp mode is
minimal. Once an L2 miss occurs, we put L2 into ultra-lp mode.

5.5 Register File
Register file is a multi-ported SRAM structure. For a 4-wide issue
processor it has 4 write and 8 read ports. Evaluation results in Figure
7 (a) show that, on average, in more than 50% of all cycles there are
no read and write port accesses to integer register file. The fraction is
even higher for FRF: more than 80%. Given such low port
utilizations, all register files read and write ports are kept in basic-lp
mode. Note that as shown in Sec. 3 the register files can still be
accessed in one cycle while waking up its peripherals from basic-lp
mode. While such low port utilization makes it feasible to put
register file peripherals into deeper low power mode and potentially
save more leakage, it is not done to avoid significant modifications to
the processor pipeline. Register file peripherals transition to the
ultra-lp mode once the processor stalls completely.

5.6 DTLB/ITLB and Rename Unit
ITLB, DTLB and register rename unit are accessed very frequently
(almost once every 2 cycles for DTLB and renamer and at least once
every cycle for ITLB) as can be seen in Figure 7(b) (ammp, mcf,
lucas and swim spend a large fraction of their execution time stalled,
and thus behave differently). Therefore, these units are always in
basic-lp mode and only woken up when accessed. They transition to
the ultra-lp mode once the processor stalls. Other low power modes
are not utilized to minimize the complexity overhead.

6. EXPERIMENTAL EVALUATION
This section describes the power and timing assumptions used and
presents results for power and temperature reduction. We used the
relative leakage power reduction of various power modes for
different SRAM units reported in Table 2. These numbers were
obtained using Hspice with extracted netlist at a supply voltage of
1.0V in a 45nm technology. The energy and power consumption for
each unit were computed by multiplying its access counts by its per-
access SRAM energy consumption. The energy per access and
leakage power dissipation for individual SRAM units were obtained
using CACTI-5.1 assuming 45nm technology, an operating
frequency of 2.2GHz, and 1.0V supply voltage. For temperature
calculations the floor plan shown in Figure 8 was used. The units
marked as “X” are the SRAM units to which we applied the new
leakage reduction techniques. Thermal model is described in Table 6.

303

0%

20%

40%

60%

80%

100%

120%
am

m
p

ap
pl

u
ap

si ar
t

bz
ip

2
cr

af
ty

eo
n

eq
ua

ke
fa

ce
re

c
ga

lg
el

ga
p

gc
c

gz
ip

lu
ca

s
m

cf
m

es
a

m
gr

id
pa

rs
er

pe
rl

bm
k

si
xt

ra
ck

sw
im

tw
ol

f
vo

rte
x

vp
r

w
up

w
is

e
av

er
ag

e

IRF read FRF read IRF write FRF write

0.0

0.5

1.0

1.5

2.0

2.5

am
m

p
ap

pl
u

ap
si ar
t

bz
ip

2
cr

af
ty

eo
n

eq
ua

ke
fa

ce
re

c
ga

lg
el

ga
p

gc
c

gz
ip

lu
ca

s
m

cf
m

es
a

m
gr

id
pa

rs
er

pe
rlb

m
k

si
xt

ra
ck

sw
im

tw
ol

f
vo

rt
ex vp

r
w

up
w

is
e

av
er

ag
e

ac

ce
ss

 p
er

 c
yc

le

DTLB ITLB Rename
Figure 7. (a) % execution time when register file ports are not
accessed. (b) DTLB, ITLB and Renamer relative accesses per
cycle.
HotSpot [28] was used to estimate both power density and thermal
profiles for different processor blocks. As explained earlier, both
steady state temperatures and temperature traces were obtained every
10K cycles. From these temperature traces the peak temperatures
reached by individual processor blocks during execution was
determined. We also evaluated the power/area overhead of the
controlling circuitry; a simple 2-bit state machine, a 2-bit saturating
counter for keeping the number of pending DL1 misses and a 1-bit
registers for keeping the L2 miss.

FPMAP
FMD
FRF

FALU

BPRED

FPQ

INTMAP INTQ
LDSTQ

ITLB
DTLB

IRF

INTEXEC

IL1 DCACHE

L2

Figure 8. Processor floorplan

Table 6. Thermal Model
Die
thickness
(μm)

150
Convection
resistance 0.1

K/W

Ambient
temperature 30°C Heat sink

side
0.076
m

Convection
capacitance 140

J/K

Heat
spreader
side

0.035
m

Heat sink
temperature 70°C

Using Synopsys dc_compiler [50] we synthesized the state machine
with a 45nm standard-cells which estimated the area overhead to be
less than 150 gates (NAND2-gate). For branch predictor a 5-bit
saturating counter is required which is counting for only 512-cycles
in an every 10K-cycles intervals. The synthesized results estimate the
gate count to be less than 80. The overall power overhead estimated
to be less than 0.9 mw (the power is almost 3nW/gate/MHz). Note
that the exact area/energy measurements require the detailed
floorplaning and post placement and routing information.

6.1 Leakage reduction
Figure 9 shows leakage reduction from applying our techniques to
different on-chip SRAM units. These results consider the
interdependence of leakage and temperature. The maximum leakage
power reduction of 75% was achieved for L2 cache. This result is not
unexpected since during execution the L2 cache is always kept in
one of the deep low power modes except when it is accessed. On the
other hand, the instruction cache (IL1) has the lowest leakage
reduction, 25% on average.
However, this reduction is very significant given the fact that the IL1
is almost continuously accessed providing fewer opportunities to
change its power mode. Another interesting observation is that the
reduction due to ultra-lp mode is very significant and is the highest
of all low-leakage modes in many cases. This is because all on-chip
SRAM units transition to this mode when the processor stalls. Large
number of stalls, reported in Figure 4, combined with large leakage
savings associated with the ultra-lp mode make this mode the major
source of leakage reduction for all SRAM units. This is most
noticeable in benchmarks with a large L2 miss period, such as
ammp, applu, lucas, mcf and swim. The basic-lp mode makes a
relatively small contribution to total leakage power reduction varying
from 10 to 20%. While the basic-lp mode occurs more frequently
than the ultra-lp mode, its contribution to total leakage reduction is
less than the ultra-lp mode. The reason is that the peripheral leakage
reduction of ultra-lp mode is 2 to 3 times that of basic-lp mode. The
only SRAM units benefiting from the lp mode are the branch
predictor and DL1 cache. In fact, these are the only units which are
occasionally put into the lp mode. Overall, the average leakage
reduction is very significant across all SRAM units; 75% (2.66 watt
reduction) for L2, 57% (1.17 watt) for DL1, 25% (0.34 watt) for IL1,
57% (0.07 watt) for Branch Predictor, 38% (0.122 watt) for IRF,
38% (0.151 watt) for FRF, 49% (0.2 watt) for INT/FP Rename, and
45% (0.2 watt) for DTLB, 45% (0.31 watt) for ITLB. The total
power reduction is 5.15 watt which translate to 10.86% of processor
power dissipation (The studied processor dissipates 47 watt).
These results show the effectiveness of the proposed leakage
reduction techniques. Our simulation results also show that applying
our techniques does not degrade performance noticably. The
maximum performance loss observed while applying the proposed
techniques in all of the benchmarks was 0.063% in mcf. The reason
is that the architectural algorithm hides the wake-up latency of de-
activated SRAM peripherals. For instance all SRAM units transition
to ultra-lp mode, which has a large wakeup delay, only once the
processor stalls. During the stall period there is no access to the de-
activated units and as a result there is no performance loss.

Table 7. Average Peak temperature for different blocks
before (B) and after (A) applying the leakage reduction
techniques

L2 IL1 DL1 Branch
PRED

DTLB FALU FRF FMD

B A B A B A B A B A B A B A B A

68 62 81 76 73 68 71 67 70 65 68 64 70 66 68 65
FP
Map

Int
Map

IntQ IRF Int
ExecU

FPQ LdStQ ITLB

B A B A B A B A B A B A B A B A

66 63 67 64 75 70 80 76 79 74 71 67 88 82 91 85

304

DL1

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
am

m
p

ap
pl

u
ap

si ar
t

bz
ip

2
cr

af
ty

eo
n

eq
ua

ke
fa

ce
re

c
ga

lg
el

ga
p

gc
c

gz
ip

lu
ca

s
m

cf
m

es
a

m
gr

id
pa

rs
er

pe
rlb

m
k

si
xt

ra
ck

sw
im

tw
ol

f
vo

rte
x

vp
r

w
up

w
is

e
av

er
ag

e

lp aggr-lp ultra-lp

IL1

0%

10%

20%

30%

40%

50%

60%

70%

am
m

p
ap

pl
u

ap
si ar
t

bz
ip

2
cr

af
ty

eo
n

eq
ua

ke
fa

ce
re

c
ga

lg
el

ga
p

gc
c

gz
ip

lu
ca

s
m

cf
m

es
a

m
gr

id
pa

rs
er

pe
rlb

m
k

si
xt

ra
ck

sw
im

tw
ol

f
vo

rte
x

vp
r

w
up

w
is

e
av

er
ag

e

ultra-lp
IRF/FRF

0%

10%

20%

30%

40%

50%

60%

70%

am
m

p
ap

pl
u

ap
si ar
t

bz
ip

2
cr

af
ty

eo
n

eq
ua

ke
fa

ce
re

c
ga

lg
el

ga
p

gc
c

gz
ip

lu
ca

s
m

cf
m

es
a

m
gr

id
pa

rs
er

pe
rlb

m
k

si
xt

ra
ck

sw
im

tw
ol

f
vo

rte
x

vp
r

w
up

w
is

e
av

er
ag

e

basic-lp ultra-lp

BPRED

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

am
m

p
ap

pl
u

ap
si ar
t

bz
ip

2
cr

af
ty

eo
n

eq
ua

ke
fa

ce
re

c
ga

lg
el

ga
p

gc
c

gz
ip

lu
ca

s
m

cf
m

es
a

m
gr

id
pa

rs
er

pe
rlb

m
k

si
xt

ra
ck

sw
im

tw
ol

f
vo

rte
x

vp
r

w
up

w
is

e
av

er
ag

e

basic-lp lp aggr-lp ultra-lp

DTLB/ITLB

0%
10%
20%
30%
40%
50%
60%
70%
80%

am
m

p
ap

pl
u

ap
si ar
t

bz
ip

2
cr

af
ty

eo
n

eq
ua

ke
fa

ce
re

c
ga

lg
el

ga
p

gc
c

gz
ip

lu
ca

s
m

cf
m

es
a

m
gr

id
pa

rs
er

pe
rlb

m
k

si
xt

ra
ck

sw
im

tw
ol

f
vo

rte
x

vp
r

w
up

w
is

e
av

er
ag

e

basic-lp ultra-lp

INT/FP RENAME

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

am
m

p
ap

pl
u

ap
si ar
t

bz
ip

2
cr

af
ty

eo
n

eq
ua

ke
fa

ce
re

c
ga

lg
el

ga
p

gc
c

gz
ip

lu
ca

s
m

cf
m

es
a

m
gr

id
pa

rs
er

pe
rlb

m
k

si
xt

ra
ck

sw
im

tw
ol

f
vo

rte
x

vp
r

w
up

w
is

e
av

er
ag

e

basic-lp ultra-lp
L2

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

am
m

p
ap

pl
u

ap
si ar
t

bz
ip

2
cr

af
ty

eo
n

eq
ua

ke
fa

ce
re

c
ga

lg
el

ga
p

gc
c

gz
ip

lu
ca

s
m

cf
m

es
a

m
gr

id
pa

rs
er

pe
rlb

m
k

si
xt

ra
ck

sw
im

tw
ol

f
vo

rte
x

vp
r

w
up

w
is

e
av

er
ag

e

aggr-lp ultra-lp

Figure 9. Leakage reduction with thermal consideration for
various on-chip SRAM units.

6.2 Temperature Impact of Leakage
Reduction

 shows the average peak temperature for different blocks before and
after applying the leakage reduction techniques (per benchmark
results are not presented due to space limitation).
For all units a large average temperature reduction is observed. We
observe that the peak temperature across different blocks can be
reduced by as much as 10.2oC (for mcf). Reduction in the peak
temperature of a processor is desirable because it eases the
constraints on package design parameters and dynamic thermal
management techniques, and may allow higher operating
frequency. We also observed a large peak temperature reduction in
LdStQ and ITLB. Temperature reduction of LdStQ is of particular
interest because we did not apply our leakage reduction technique to
this block. The temperature reduction can be explained by thermal
diffusion. The floor plan in Figure 8 shows that the LdStQ is placed
next to the ITLB which has high leakage power and temperature
reductions. The average reduction in peak temperature is the highest
for the L2 cache (6.3oC) corresponding to 75% reduction in L2
leakage power. Table 8 shows the reduction in the steady state
temperature of different blocks of the processor (per benchmark
results are not presented due to space limitation). An average
reduction is higher for the steady state temperature compared to the
peak temperature.
Table 8. Reduction in Steady-State Temperature in Different
Units

L2 IL1 DL1 B-

PRED
D-
TLB

F-
ALU

FRF FMD

Ave. 7.3 5.2 6.2 4.8 5.9 4.1 4.3 3.8
 FP

Map
Int
Map

IntQ IRF Int
ExecU

FPQ LdQ/StQ ITLB

Ave. 3.5 3.6 6.2 5.5 5.4 4.7 7.2 7.2
Due to a positive feedback loop between temperature and leakage
power reduction in temperature, shown in Table 6, is accompanied
by a further reduction in leakage power (leakage results reported

305

earlier account for this). Thermal consideration has further enhanced
the significance of leakage reduction as a result of our proposed
techniques.

7. RELATED WORK
A number of techniques were proposed for reducing leakage power
at technology, circuit, architecture and compiler/OS levels.

7.1 Circuit-level leakage control
Several circuit techniques proposed to reduce the leakage power in
SRAM memories. These techniques were mainly targeting the
SRAM memory cell leakage. The primary technique is voltage
scaling which due to short-channel effects in deep submicron
processes reduces the leakage current significantly [21]. Another
technique is Gated-Vdd which turns off the supply voltage of memory
cells by using a sleep transistor and eliminating the leakage virtually
completely [53]. The third technique, ABB-MTCMOS, increases
threshold voltage of a SRAM cell dynamically through controlling
its body voltage [16]. Device scaling leads to threshold voltage
fluctuation, which makes the cell bias control difficult to achieve. In
response, [8] proposed a Replica Cell Biasing scheme in which the
cell bias is not affected by Vdd and Vth of peripheral transistors. [4,
14] proposed a forward body biasing scheme (FBB) in which the
leakage power is suppressed in the unselected memory cells of cache
by utilizing super Vt devices. In addition to these four major
techniques applied to SRAM memories, there are also some leakage
reduction techniques in literature which concentrated on generic
logic circuits. Examples are sleepy stack [10] and sleepy keeper [45].

7.2 Architectural techniques
A number of architecturally driven techniques have been proposed in
literature to reduce leakage in different on-chip SRAM memories.
Powell et al. proposed applying gated-Vdd approach to gate the power
supply for cache lines that are not likely to be accessed [13]. Kaxiras
et al. proposed a cache decay technique which reduces cache leakage
by turning off cache lines not likely to be reused [19]. Flautner et al.
proposed a drowsy cache which reduces the supply voltage of the L1
cache line instead of gating it off completely [21]. The advantage of
this technique is that it preserves the cache line information but
introduces a delay in accessing drowsy lines. Zhang et al. proposed a
compiler approach to turn off the cache lines for the region of the
code that would not be accessed for a long period of time [6]. Meng
et al presented a perfecting scheme which combines the drowsy
caches and the Gated-Vdd techniques to optimize cache leakage
reduction [30]. In addition to caches, there has been several works on
reducing leakage in other on-chip SRAM memories. Hu et al.
applied decay techniques to branch predictor, exploring strategies for
spatial and temporal locality to make decay effective [25]. Many
leakage optimized design techniques use low leakage, slow
transistors, (with high-Vt) on non-critical paths [32]. However, these
methods cannot be applied to critical path, such as register read path
as shown to impact processor performance significantly [31, 36, 51].
Jin et al. proposed a low-leakage register file cell design exploiting
the observation that physical registers have short life cycles [33].
Heo et. al. proposed segmenting register file read bitline [26]. Once
an entire register file subbank is dead, the subbank read bitline is
turned off, saving the leakage on the bitline. Kondo and Nakamura
proposed bit-partitioned register file to reduce leakage based on the
observation that many operands do not need the full-bit width of a
register entry. [34]
All research mentioned above primarily targeted the leakage in the
SRAM cells. Given the results in Figure 1, peripheral circuits are

equally if not more important to address in SRAM memories. In
addition there is a significant body of work on reducing temperature
in processor [1, 2, 5, 23]. Our work considers the effect of
temperature on leakage power and we report temperature reduction
as well.

8. CONCLUSION
This paper addressed the issue of leakage power dissipation in
peripheral circuits of on-chip SRAMs. It showed how to
simultaneously reduce leakage and temperature in the L2, DL1 and
IL1 caches, Branch Predictor, Floating Point and Integer Register
Files, Floating Point and Integer Rename units, and Instruction and
Data TLBs using a novel zig-zag share circuit, with minimal area and
delay overheads. It proposed multiple low-power modes which differ
in the bias voltage of sleep transistors used, allowing a tradeoff
between leakage reduction and wakeup delay in peripheral circuits.
At the architectural level a new control mechanism was proposed for
switching between different low-power modes in each SRAM unit,
achieving leakage and temperature reduction with minimal impact on
performance. We observed a very significant average leakage
reduction varying from 75% for L2 cache to 25% for IL1cache. This
resulted in a reduction of up to 10.8 degree Celsius in the steady state
temperature based on the interdependency of leakage and
temperature.

9. REFERENCES
[1] I. Koren et al. Temperature Aware Floorplanning, in TACS 2005.
[2] Y. Nakagome et al. Review and future prospects of low-voltage

RAM circuits, IBM Journal of R&D’03.
[3] H. Homayoun et al., ZZ-HVS: Zig-Zag Horizontal and Vertical

Sleep Transistor Sharing to Reduce Leakage Power in On-Chip
SRAM Peripheral Circuits. In Proc. IEEE International
Conference on Computer Design, ICCD, 2008.

[4] C. H. Kim et al,. A forward body-biased low-leakage SRAM
cache: device, circuit and architecture considerations. TVLSI-
2005.

[5] J. Donald and Margaret Martonosi, Techniques for Multicore
Thermal Management, Classification and New Exploration.
ISCA 2006.

[6] W. Zhang and J. S. Hu. Compiler-directed instruction cache
leakage optimization. In Proc. In MICRO-35, 2002.

[7] J. M. Rabaey et al., Digital integrated circuits: a design
perspective, Prentice Hall, Second. Edition, 2003.

[8] Y. Takeyama et al,. A Low Leakage SRAM Macro with Replica
Cell Biasing Scheme. IEEE Journal Of Solid- State Circuits,
2006.

[9] J. Kao, S. Narendra, and A. Chandrakasan,“MTCMOS
hierarchical sizing based on mutual exclusive discharge
patterns,” DAC, 1998.

[10] J. C. Park, V. J. Mooney III. Sleepy stack leakage reduction.
IEEE Trans. VLSI Syst. 14(11): 1250-1263 (2006).

[11] SimpleScalar4 tutorial,
http://www.simplescalar.com/tutorial.html.

[12] K. Nii et al., A 90-nm low-power 32 KByte embedded SRAM
with gate leakage suppression circuit for mobile applications,
ISSCC 2004.

[13] M.D. Powell et al,. Gated Vdd: A circuit technique to reduce
leakage in deep-submicron cache memories. in ISLPED, 2000 .

306

[14] A. Agarawal et al., DRG-Cache: A data retention gated-ground
cache for low Power, DAC 2002.

[15] K. Agarwal, H. Deogun, D. Sylvester, K. Nowka. Power gating
with multiple sleep modes. In ISQED 2006.

[16] K. Nii, et al. A low power SRAM using auto-backgate-
controlled MT-CMOS. In ISLPED, 1998, pp. 293-298.

[17] M. Mamidipaka, et al, Analytical models for leakage power
estimation of memory array structures. IEEE CODES+ISSS,
2004.

[18] B S. Amrutur et al,. Speed and power scaling of SRAMs, IEEE
Journal of Solid State Circuits. Feb 2000, vol. 35.

[19] S. Kaxiras et al,. Cache decay: exploiting generational behavior
to reduce cache leakage power. IEEE-ISCA, 2001.

[20] B.S. Amrutur, et al., A replica technique for wordline and sense
control in low-power SRAM's, IJSSC, vol. 2000.

[21] K. Flautner et al,. Drowsy caches: simple techniques for
reducing leakage power. IEEE ISCA, 2002.

[22] . Thoziyoor, N. Muralimanohar, J. H. Ahn, and N P. Jouppi
“CACTI 5.1 Technical Report” HP Laboratories, Palo Alto,
April 2, 2008.

[23] H. Homayoun, A. Gupta, A. Veidenbaum, F. J. Kurdahi, N.
Dutt , RELOCATE: Register File Local Access Pattern
Redistribution Mechanism for Power and Thermal
Management in Out-of-Order Embedded Processor., 5th
International Conference of High Performance Embedded
Architectures and Compilers, 2010.

[24] J.L. Cruz, A. González, et al., “Multiple-banked register file
architectures”, in ISCA 2000.

[25] Z. Hu et al., “Applying Decay Strategies to Branch Predictors
for Leakage Energy Savings,” Proc. ICCD 2002.

[26] S. Heo, K. Barr, M. Hampton, and K. Asanovic, “Dynamic fine-
grain leakage reduction using leakage-biased bitlines,” the 30th
International Symposium on Computer Architecture, 2003.

[27] L. He et al.,“Considering the Interdependence of Temperature
andLeakage Interdependence of Temperature and Leakage,” in
DAC 2004.

[28] K. Skadron et al., “Temperature-aware microarchitecture,” in
Proc. ACM ISCA, pp. 2–13, Jun. 2003.

[29] S. Rusu et al,. A 65-nm Dual-Core Multithreaded Xeon®
Processor With 16-MB L3 Cache, IJSSC 2007.

[30] Y. Meng, T. Sherwood, and R. Kastner. On the limits of leakage
power reduction in caches. In HPCA-11, 2005.

[31] A. Alvandpour, et al, A low-leakage dynamic multi-ported
register file in 0.13mm CMOS, Proc. IEEE ISLPED 2001.

[32] S. Tang, et al. A leakage-tolerant dynamic register file using
leakage bypass with stack forcing (LBSF) and source follower
NMOS (SFN) techniques, Symposium on VLSI Circuits, 2002.

[33] L. Jin et al., Reduce Register Files Leakage Through
Discharging Cells, in ICCD 2006.

[34] M. Kondo and H. Nakamura, A Small, Fast and Low-Power
Register File by Bit-Partitioning, in HPCA 2005.

[35] D. Brooks, V. Tiwari and M. Martonosi. “Wattch: A framework
for architectural-level power analysis and optimizations.” in
ISCA 2000.

[36] H. Homayoun, S. Pasricha, M. A. Makhzan, A. V. Veidenbaum,
“Improving performance and reducing energy-delay with
adaptive resource resizing for out-of-order embedded
processors”. Conference on Languages,Compilers and Tools for
Embedded Systems 2008.

[37] G. Gerosa et al., A Sub-lW to 2W Low-Power IA Processor for
Mobile Internet Devices and Ultra-Mobile PCs in 45nm Hi-K
Metal Gate CMOS, In ISSCC-2008.

[38] K.-S. Min et al., “Zigzag super cut-off CMOS (ZSCCMOS)
block activation with self-adaptive voltage level controller: an
alternative to clock-gating scheme in leakage dominant era,”
ISSCC 2003.

[39] M. Horiguchi et al., “Switched-source-impedence CMOS circuit
for low-standby subthreshold current giga-scale LSI’s,” , VLSI
circuits Dig. 1993

[40] Y. Wang et al., “A 1.1GHz 12μA/Mb-Leakage SRAM Design
in 65nm Ultra-Low-Power CMOS with Integrated Leakage
Reduction For Mobile Applications.”, ISSCC Dig. Tech.
Papers, Feb. 2007.

[41] E. Grossara et al., Statistically Aware SRAM Memory Array
Design, in International Symposium on Quality Electronic
Design, ISQED-2006.

[42] A. Gupta, et al., STEFAL: A System Level Temperature- and
Floorplan-Aware Leakage Power Estimator for SoCs. In
VLSID 2007.

[43] Semiconductor Industries Association, “International
Technology Roadmap for Semiconductors,” 2005,
http://www.itrs.net/.

[44] D. Chinnery and K. Keutzer, “Closing the Power Gap Between
ASIC & Custom, Tools and Techniques for Low Power
Design”, Chinnery, David, Keutzer, Kurt, 2007, XII, ISBN:
978-0-387-25763-1.

[45] S. H. Kim and V. J. Mooney, Sleepy keeper: a new approach to
low-leakage power VLSI design. VLSI-SoC 2006

[46] Bias generator for body bias, US Patent 7164307, Vivek De et
al.

[47] J. Tschanz, Adaptive body bias for reducing impacts of die-to-
die and within-die parameter variations on microprocessor
frequency and leakage. et al. JSSC’02

[48] M. Yamaoka1,et al., A 65nm Low-Power High-Density SRAM
Operable at 1.0V Under 3σ Systematic Variation Using
Separate Vth Monitoring and Body Bias for NMOS and PMOS,
ISSCC’08.

[49] T. Kuroda et al., Leakage in Nanometer CMOS Technologies.
Springer’06.

[50] Design Compiler, Synopsys Incorporation.
[51] H. Homayoun et al, “Dynamic register file resizing and

frequency scaling to improve embedded processor performance
and energy-delay efficiency”. in DAC 2008.

[52] H. Li, et al. “VSV: L2-miss-driven variable supply-voltage
scaling for low power.” In MICRO 2003.

[53] M. Powell et al,. Gated-Vdd: A Circuit Technique to Reduce
Leakage in Deep-Submicron Cache Memories. ISLPED 2000.

307

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

