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ABSTRACT 
Leakage currents in on-chip SRAMs: caches, branch predictor, 
register files and TLBs, are major contributors to the energy 
dissipated by processors in deep sub-micron technologies. High 
leakage also increases chip temperature and some SRAM-based 
structures become thermal hotspots. Previous work has addressed 
major sources of SRAM leakage in memory cells and bit-lines, 
making remaining SRAM components, in particular large drivers, 
the primary source of leakage. This paper proposes an approach to 
reduce this source of leakage in all major SRAM-based units of the 
processor, controlling them in a uniform way, yet treating each unit 
individually based on its behavior and memory organization. The 
new approach uses multiple bias voltages in sleep transistors 
allowing a trade-off between leakage reduction and wakeup delay in 
multi-stage peripheral drivers. Four low-power modes are defined, 
from basic to ultra low power, and SRAMs dynamically transition 
between these modes to minimize leakage without sacrificing 
performance. A novel control mechanism monitors and predicts 
future processor behavior for mode control. The leakage reduction in 
individual units is evaluated and shown to vary from 25% for IL1 to 
75% for L2 caches. Resulting temperature reduction, including the 
effect of positive feedback between temperature and leakage power, 
is evaluated. A significant temperature reduction is achieved in each 
unit. It is also shown to reduce hot spots in the instruction TLB and 
branch predictor. 

Categories and Subject Descriptors 
B.3.2 [MEMORY STRUCTURES], Design Styles: Cache 
memories; C.1.1 [PROCESSOR ARCHITECTURES], Single 
Data Stream Architectures: Pipeline processors Systems. 

General Terms: Design. 

Keywords 
SRAM Memory, Leakage Power, Peripheral Circuits, Multiple Sleep 
Mode, Temperature Reduction. 

1. INTRODUCTION 
Leakage energy dissipation has become the dominant component of 
the total energy dissipation in deep sub-micron technologies. On-
chip SRAM memories such as caches, branch predictor, and TLBs 
account for a large fraction of total processor power consumption 
and much of it is leakage power because of their large size. High 
leakage power dissipation not only increases the overall processor 
power dissipation but also increases its temperature. The positive 
feedback loop between temperature and leakage power causes a 
further increase in both of them [27, 42]. Furthermore, some of the 
SRAM-based structures are temperature hot-spots on a chip, e.g. 
register files, BTB, and ITLB [28]. Finally, higher temperature 
reduces chip reliability and usable lifetime and increases the 
complexity of packaging and cooling design. 
A number of process and circuit techniques have been proposed to 
significantly reduce the leakage of the memory cell array in SRAMs. 
Recent results have shown that leakage in SRAM peripheral circuits, 
such as word-line, input and output drivers, etc. are now the main 
sources of leakage [2, 3, 8, 12, 17, 37]. For instance, a wordline 
driver drives its signal to a large number of memory cells. Given 
such a high capacitive load a chain of inverter buffers of increasing 
size is used, typically with three to five levels. We compared the 
leakage power consumption of a 45nm SRAM6T memory cell 1with 
an inverter of different sizes.  The results are shown in Figure 1. It 
shows that the leakage power of a standard memory cell is 
significantly lower than the leakage power of inverter buffers and 
that the inverter leakage grows exponentially with its size. 
 
For instance let us assume that a driver has to drive 256 one-bit 
memory cells. This will require three stages of inverter buffers (of 
increasing size, by a factor of e). The combined leakage power of 
these three drivers is 12 times larger than the leakage of the 256 
memory cells. In addition to the wordline driver one has to consider 
leakage in data input and output drivers which are also high. Such a 
large leakage power in peripheral circuits of SRAM memories has 
been analyzed and discussed in detail in [2]. In brief two main 
reasons explain this difference in leakage 
 

                                                 
1 Results were obtained for TSMC, TOSHIBA, IBM and UMC foundries 
using their libraries and evaluating leakage with Spice. 
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Figure 1. (a) Leakage power dissipation of one SRAM6T 
memory cell compared with different size inverter buffers 
(INVX is the smallest inverter buffer with drive strength of 1) (b) 
Leakage power in on-chip SRAMs. 
• Memory cells are designed with minimal sized transistor mainly 

for area considerations. Unlike memory cells, peripheral circuits 
use larger, faster and accordingly more leaky transistors in order 
to satisfy timing requirements. 

• Memory cells use high threshold voltage transistors which have 
a significantly lower leakage reduction compared with typical 
threshold voltage transistors used in peripheral circuit 

In summary, SRAM memory cells are optimized for low leakage 
current and area without a significant impact on the cell performance 
[2, 3, 8, 12, 41]. In addition, circuit techniques such as gated-vdd and 
drowsy cache can be applied to further reduce the memory cell 
leakage and widen the gap between cell array and peripheral leakage 
power dissipation. 
A similar result is obtained using CACTI 5.1 [22]. CACTI uses 
characteristics of transistors modeled by the ITRS [43]. It includes 
data for two device types that the ITRS defines - High Performance 
(HP) and Low Standby Power (LSTP). The HP transistors are fast 
transistors with short gate lengths, thin gate oxides, low Vth, and low 
VDD. The LSTP transistors, on the other hand, have longer gate 
lengths, thicker gate oxides, higher Vth, and higher VDD. As 
explained in [2] HP transistors are used in the peripheral circuitry 
while the LSTP transistors are used in the memory cells array. While 
it is possible to use LSTP transistors in peripheral circuits for 
reducing leakage the impact on memory access time would be 
significant (for instance an increase from 3.8ns to 12.5ns access 
delay for a 2MB L2 cache). CACTI results show that the peripheral 
circuitry are leaking considerably more than memory cell array. 
Figure 1(b) shows the leakage for different components of various 
on-chip SRAMs, such as branch predictor, TLBs, L1 and L2 caches, 
register files and register map table for 45nm technology (based on 
CACTI 5.1 [22]). It demonstrates that the peripheral circuits – data 
drivers, address driver, decoder, and wordline drivers – account for 
over 80% of the overall SRAM leakage.  

This paper proposes a combination of circuit and architectural 
techniques to minimize leakage power dissipation and consequently 
also reduce the temperature of on-chip SRAMs. Unlike some of the 
previous work, it targets all large on-chip SRAMs simultaneously: 
branch predictor, register files, L1 data and instruction cache (DL1 
and IL1), L2 cache (L2), instruction and data translation lookaside 
buffers (ITLB/DTLB), and register map tables. It focuses on leakage 
in SRAM peripheral circuits. Some of the on-chip SRAMs are small, 
such as register files, while others are very large, such as the L2 
cache. Reducing leakage in small SRAMs has a minor impact on 
overall chip leakage compared to large SRAMs, but our leakage 
reduction approach leads to significant temperature reduction in 
these small SRAMs.  For large SRAMs, it provides both leakage and 
temperature reduction. 
Reducing leakage in units such as branch predictor, register files and 
TLBs is also important because these small SRAMs are among the 
hottest units due to their small size and high power density [28]. Any 
leakage reduction in these units is further increased due to the 
positive feedback loop between temperature and leakage. At the 
circuit level, one approach to reduce the sub-threshold leakage in 
SRAM peripheral circuits is to use stacked sleep transistors [3, 10, 
40].  The drawback of using sleep transistors is the time delay that 
they add to SRAM access time, which may lead to increased 
execution time and therefore potentially higher energy consumption. 
To reduce SRAM “wakeup” delay [3] proposed sharing sleep 
transistors and using them in a zig-zag, or alternating, fashion across 
stages of multi-stage drivers, such as the SRAM word-line driver. 
This paper shows that by increasing the bias voltage of the NMOS 
footer sleep transistor in zig-zag share circuit (and decreasing it for 
the PMOS header transistor) one can trade leakage reduction and 
wakeup delay in the zig-zag share scheme. It proposes to use several 
low-leakage power modes with different wakeup times to better 
control the SRAM peripheral circuit leakage. For instance, one can 
have a low-leakage mode for DL1 cache peripheral circuit with a 
one-cycle wakeup delay but it would reduce leakage by only 47%. 
Alternatively, one can define an ultra low power mode with a 3-
cycle wakeup that saves 84% of leakage. Only the sleep transistor 
bias voltage used in these modes is different, otherwise the circuit is 
the same. Thus one can dynamically switch modes during execution 
with almost no delay. The question is when and how to use these 
different low-leakage modes for each of the SRAM units to 
maximize the leakage reduction while minimizing the wakeup delay 
and its impact on performance.  
This paper first defines a mechanism that exploits both L1 and L2 
cache miss information to decide when to transition on-chip SRAM 
peripherals to different low-power modes. It uses a state machine 
which is quite small and does not impact area or power consumption. 
The state machine tracks L2 or multiple L1 cache misses to guide 
these transitions because such events usually stall the processor. 
Applying the same general mechanism may not deliver optimal 
results in each unit. Furthermore, it can degrade performance 
significantly in some units, such as the IL1 cache which is accessed 
frequently.  Therefore, to maximize the leakage reduction at no 
performance cost the control algorithm is optimized for individual 
on-chip SRAM-based units depending on their behavior and their 
ability to hide the wakeup delay associated with various low power 
modes. We thus propose to customize the general algorithm for each 
on-chip SRAM unit and to make the control local. For instance, for 
branch predictor (BP) we propose a novel run-time history-based 
mechanism to predict the period when BP is accessed very 
infrequently. Once such a period is identified the branch predictor 
peripheral is put into a low power mode. 
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The leakage and the corresponding temperature reduction of various 
SRAM-based units in the processor are evaluated in this paper using 
the proposed circuit and architectural techniques.  Temperature is 
evaluated using a modified version of HotSpot [28]. The 
modification replaced the library of temperature vs. leakage power 
data with post-fabrication measurements for 45nm technology for 
different types of transistors in the range from 27oC to 150oC in 
increments of 0.1oC; a similar methodology was introduced in [42]. 
This paper makes the following major contributions: 
1) Defines several low-leakage modes using multiple bias voltages 

in sleep transistors to allow a trade-off between wakeup delay 
and leakage reduction. These are combined with a recently 
proposed zig-zag share circuit technique (multiple sleep mode 
zig-zag share).  

2) Proposes a general state machine control which exploits DL1 
and L2 cache miss information to control multiple sleep mode 
zig-zag share circuitry. 

3) An optimized state machine for each individual unit to exploit 
its behavior and ability to hide the wakeup delay associated 
with each low power mode. 

4) Evaluates leakage power and corresponding steady state and 
peak temperature reduction for individual SRAM-based units. 
Evaluates the power/area overhead of the controlling circuitry. 

Overall, the average leakage reduction is very significant across all 
SRAM units; 75% for L2, 57% for Branch Predictor, 57% for DL1, 
25% for IL1, 38% for Floating Point and Integer Register File (FRF 
and IRF), 49% for INT/FP Rename, and 45% for DTLB/ITLB. The 
peak temperature across different blocks can be reduced by as much 
as 10.2oC.  A noticeable steady state temperature reduction is 
observed across all the units, varying form 3.5 oC for register map 
unit to 7.3 oC for L2 cache.  

2. SLEEP TRANSISTOR STACKING  
Stacking sleep transistors have been proposed to reduce sub-
threshold (IDsub) or weak inversion current [9]. As shown in Figure 2 
by stacking transistor N with slpN source to body voltage (VM ) of 
transistor N  increases. When both transistors are off increase in VM 
reduces the TV  of the transistor N and therefore reduces sub-
threshold leakage current. [9]. Size (W/L) and bias (Vgslpn) voltage of 
the stacked sleep transistor determines the VM [9,15]. Reducing sleep 
transistor bias reduces the leakage but increases the circuit wakeup 
period, the time to pull the VM down to ground. Thus there is a trade-
off between the amount of leakage saved and the wakeup overhead 
[15]. Now let us study the source of subthreshold leakage in a 
wordline driver. A wordline driver drives the gate of access 
transistors of all connected memory cells. The number and size of 
inverters in the chain are chosen to meet the timing requirements for 
charging or discharging the wordline. The inverter chain has to drive 
a logic value 0 to the pass transistors when a memory row is not 
selected. Thus the driver cannot be simply shut down when idle. 
Transistors N1, N3 and P2, P4 are in the off state and thus they are 
leaking.  
Stacking header and footer sleep transistors with all NMOS and 
PMOS transistors in the chain reduces their leakage; however, aside 
from the area overhead, it increases the propagation delay of the 
inverters in the driver chain followed by an increase in the rise/fall 
time of the wordline [3,7].  While increasing the rise time and 
propagation delay (due to its impact on access time) is not desirable, 
increasing the fall time is not tolerable since it can affect memory 
functionality [18, 20]. Increase in the fall times of the wordline 
increases the access transistor’s active period of a memory cell 

during a read operation. This results in the bitline over-discharge and 
the memory content over-charge during the read operation. Such 
over-discharge not only increases the dynamic power dissipation of 
bitlines but, more importantly, can cause a memory cell content to 
flip if the over-discharge period is large [7,20]. In brief, to avoid 
impacting memory functionality the sense amplifier timing circuit 
and the wordline pulse generator circuit need to be redesigned. To 
avoid the redesign of these critical units and, moreover, not to 
increase bitline dynamic power dissipation we use the zig-zag 
horizontal and vertical share circuit technique proposed in [3]. 

MV

gnV

gslpnV
LC

CV

 
Figure 2. Stacking sleep transistor to reduce leakage. 

2.1 Zig-zag Share Circuit  
In [3] several approaches for reducing leakage power through sleep 
transistor insertion has been studied. They proposed zig-zag share 
scheme which uses typical Vth sleep transistors. They have shown 
this technique to be the most effective in reducing leakage in SRAM 
peripheral while requiring minimal design overhead with minimal/no 
impact on circuit speed. Note that while it is possible to use high Vth 
transistors in the peripheral circuits to reduce leakage it is not 
justified due to the extra mask layer cost and the impact on circuits 
speed [3, 44]. Unlike zig-zag share scheme which has minimal/no 
impact on peripheral circuits timing components, due to timing 
impact of using high Vth transistors, the peripheral circuits required 
to be redesigned. To avoid such an extra design spin and cost 
overhead, in this work we deploy and further explore zig-zag 
horizontal and vertical share circuit technique. 
In this approach, sleep transistors are inserted in a zig-zag fashion 
[38, 39] keeping the Rpeq of the first and third inverters and Rneq of 
the second and fourth inverters constant. This technique keeps the 
fall time of the circuit the same as in the baseline circuit with no 
leakage control. However, the rise time of the circuit is affected by 
the zig-zag scheme. In addition, using one sleep transistor per 
inverter logic increases the area for the zig-zag scheme. To improve 
both leakage reduction and area-efficiency of the zig-zag scheme, 
one set of sleep transistors is being shared between multiple stages of 
inverters which have similar logic behavior, such as stage 1 and 3 in 
a studied chain of inverters. To further reduce leakage power one set 
of sleep transistors (slpN and slpP) is shared vertically with adjacent 
rows of a (wordline) driver. [3] further explored the design space of 
sleep transistor insertion in SRAM peripheral circuitry and shown 
the effect of sleep transistor size, number of horizontal and vertical 
level sharing on the trade off between the leakage power savings and 
the impact on instability, area, dynamic power, propagation delay, 
rise time and fall time delay increases on the peripheral circuit of 
SRAM. 
Intuitively, in vertical sharing, the virtual ground voltage (VM in 
Figure 2) increases in comparison to when there is no vertical 
sharing.   Results show that using zz-hvs reduces the leakage power 
significantly, by 10 to 100X, when 1 to 10 wordlines share the same 
sleep transistors. Such noticeable savings comes at negligible impact 
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on memory access time, dynamic power and area increase. The 
maximum switching power of the sleep transistors in zz-hvs scheme 
is shown to be ~8% of total inverter chain power dissipation. Sharing 
the sleep transistor across multiple stages of inverter chain, both 
horizontally and vertically, combined with infrequent switching of 
sleep transistors makes the additional power dissipation much 
smaller. Also the memory access delay shown to be increased by up 
to 5% in a non- pipelined memory [3]. Pipelined memories such as 
L1 and L2 caches, can hide this small increase in peripheral circuit 
latency. In this paper we assumed that other on-chip SRAMs, register 
file, branch predictor, DTLB/ITLB and rename table, can tolerate 
such an increase without impacting the processor operating clock 
frequency. 

3. ZIGZAG-SHARE WITH MULTIPLE 
SLEEP MODES 

As explained in Section 2, to benefit the most from the leakage 
savings of stacking sleep transistors we need to keep the bias voltage 
of NMOS footer sleep transistor as low as possible (and for PMOS 
header transistor as high as possible). The drawback of such biasing 
is its impact on wakeup latency of the circuit transitioning from sleep 
mode to active mode, which requires the voltage of virtual ground to 
reach the true ground. Such wakeup delay would significantly impact 
performance if incurred frequently. Appropriately sizing the sleep 
transistor (both footer and header) [3] and controlling its bias voltage 
[15] are two effective ways to minimize the impact on wakeup delay. 
For instance, increasing the gate voltage of footer sleep transistor (in 
Figure 2) reduces the virtual ground voltage (VM), which 
consequently reduces the circuit wakeup delay. The negative impact 
of such biasing is a reduction in leakage power savings. By 
controlling the gate voltage of footer and header transistors we can 
thus define different sleep modes where each mode has a different 
wakeup delay overhead and a different amount of leakage power 
reduction. Multiple gate bias voltage levels for multiple sleep modes 
can be generated by a robust bias generation circuit such as [15, 46, 
47, 48]. Note that generating multiple bias voltages requires using 
on-chip voltage converters. Several recent memory product from 
Intel [46, 47], Hitachi, Renesas [48] and others use such on-chip 
voltage converters for body bias generation. The area overhead of 
body bias generation AND distribution was shown to be small, 1~3% 
of total chip area [47, 49]. The proposed multiple sleep mode zig-zag 
share approach was applied to various SRAM wordline drivers. 
Several test experiments were set up in which the wordline inverter 
chain drives 256, 128, 64 and 32 one-bit memory cells. The drivers 
were laid out using Mentor Graphic IC-Station in a 45nm 
technology and simulated using Synopsis Hspice at typical corner 
(25 º) with extracted netlist and the supply voltage of 1.0V. A 
standard SRAM6T memory cell was used. In  we report the impact 
of  sleep transistor sharing and sizing on wakeup delay when each 
wordline drives 256 one-bit memory cells. More sharing of sleep 
transistor results in larger wakeup delay. This is also consistent with 
results reported in [3], with a larger sleep transistor we can reduce 
the wakeup delay. Figure 3 shows normalized wakeup delay and 
normalized leakage power for different pairs of footer and header 
gate bias voltage when zz-hvs is shared by 10 rows of wordline 
drivers with each wordline driving 256 one-bit memory cells. A 
clear trade-off can be seen between the normalized wakeup delay 
and leakage power. For other cases where the driver load changes 
(driving 32, 64 and 128 one-bit memory cell) we observed that the 
relative leakage reduction does not change significantly. Also it 
should be noted that when the peripheral circuits are in low power 

mode the overall time delay for transition to/from standby mode, 
STL, is the sum of sleep transistors wakeup delay and propagation 
delay of sleep signal. Both of these delays increase as the memory 
area increases, especially the later delay, because the sleep signal 
needs to be transmitted over a greater distance. Accordingly, 
depending on memory size and configuration, there is a different 
wakeup delay overhead for a specific zz-hvs bias voltage. To find the 
STL delay for different SRAM memories, Spice and CACTI were 
used to measure the wakeup delay of sleep transistor and propagation 
delay of the sleep signal, respectively, for various SRAM units. To 
estimate the propagation delay we assume that the sleep signal has to 
be transmitted across the SRAM peripherals.  Based on these 
experimental results, four sleep modes with different wakeup delays 
were defined for each on-chip SRAM memory. The first sleep mode 
is the basic-lp mode, which requires  
a near-zero wakeup overhead. In fact, for on-chip SRAMs with 
access delay smaller than clock period, the zz-hvs circuit is biased 
such that the overall access delay and wakeup delay overhead is less 
than the clock period, so that the SRAM still can be accessed in one 
(processor clock) cycle while waking its peripherals from basic-lp 
mode. The other low-power modes are low power (lp), aggressive 
low power (aggr-lp) and ultra low power (ultra-lp). Their peripheral 
wakeup delays are 1,2 and above 3 cycles, respectively.  

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

(0,
1)

(0.
05

,.9
6)

(0.
1,0

.93
)

(0.
15

,0.
89)

(0.
20

,0.
85)

(0.
25

,0.
80)

(0.
30

,0.
75)

(Footer,Header) Gate Bias Voltage Pair

N
or

m
al

iz
ed

 L
ea

ka
ge

 P
ow

er
 

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 W
ak

e-
U

p 
D

el
ay

Normalized leakage Normalized wake-up delay  
Figure 3. Normalized wakeup delay and leakage power for 
different pair of footer and header gate bias voltage. 
Table 2 shows relative peripheral circuit leakage reduction for 
different modes for each on-chip SRAMs. For IL1, DL1 and L2, due 
to their large size, the overall wakeup delay (sleep transistor wakeup 
delay+sleep signal propagation delay) is more than 1 cycle for any 
bias voltage. As such, these units can not be put into basic-lp mode. 
As the results suggest, the rest of the SRAMs can be put into basic-lp 
mode to reduce their leakage but their access can still be completed 
in one processor cycle. Recall that the wakeup delay for basic-lp 

Table 1. Impact of sleep transistor sharing and sizing  
on the wakeup delay 

#shared 
inverter 
chains 

W(1X) 
(ns) 

W(2X) 
(ns) 

W(3X) 
(ns) 

W(4X) 
(ns) 

W(5X) 
(ns) 

W(6X) 
(ns) 

W(7X) 
(ns) 

W(8X) 
(ns) 

1 0.256 0.137 0.093 0.064 0.045 0.037 0.032 0.029 
2 0.620 0.367 0.273 0.205 0.155 0.136 0.124 0.115 
3 1.190 0.732 0.583 0.464 0.381 0.345 0.321 0.309 
4 1.655 1.072 0.877 0.736 0.637 0.596 0.564 0.556 
5 2.130 1.438 1.214 1.065 0.952 0.905 0.884 0.882 
6 2.595 1.817 1.609 1.453 1.336 1.298 1.277 1.275 
7 3.050 2.196 1.983 1.830 1.739 1.708 1.699 1.696 
8 3.525 2.609 2.432 2.291 2.203 2.178 2.171 2.170 
9 4.010 3.036 2.887 2.767 2.695 2.675 2.667 2.663 
10 4.450 3.471 3.338 3.235 3.182 3.168 3.163 3.160 
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mode is virtually zero. Aggressive and ultra sleep power modes have 
higher leakage savings but also a longer wakeup delay. Access to an 
SRAM in one of these modes requires two or more extra cycles in 
addition to its access time. For instance, FRF/IRF access while in 
aggr-lp mode requires 3 cycles (a 2-cycle wakeup and 1-cycle 
access) while for L2 and DL1 this is 4 cycles. (a 2-cycle wakeup and 
2-cycle access). 
Table 2. On-chip SRAM peripherals multiple sleep mode 
normalized leakage power savings 

 BPRE
D

FRF IRF IL1 DL
1

L2 DTL
B

ITLB RENAM
E

basic- 0.29 0.21 0.2 -- -- -- 0.25 0.25 0.31 
lp 0.63 0.51 0.5 0.4 0.4 -- 0.54 0.54 0.53 

aggr-lp 0.75 0.68 0.6 0.5 0.5 0.5 0.69 0.69 0.67 
ultra-lp 0.91 0.85 0.8 0.7 0.8 0.9 0.93 0.93 0.87 
Finally, note that the power overhead of waking up peripheral 
circuits from any low power mode is negligible and almost 
equivalent to the switching power of sleep transistors (and they do 
not switch very frequently). Sharing a set of sleep transistors 
horizontally and vertically (as explained in zz-hvs) for multiple 
stages of (wordline) drivers makes the power overhead even smaller. 
As a result, the power benefit of the proposed circuit scheme is less 
sensitive to transition frequency between different power modes.  

4. CONTROLLING MULTIPLE SLEEP 
MODE ZZ-HVS FOR ON-CHIP SRAMS 

This section describes the architectural approach used to control 
multiple low-power modes based on zz-hvs sleep transistors in 
BPRED, FRF, IRF, IL1, DL1, L2, DTLB, ITLB and RENAME 
SRAMs.  The approach was evaluated for a 64-bit processor similar 
to Alpha 21264, described in Table 3, The processor clock frequency 
was assumed to be 2.2 GHz. It was simulated using an extensively 
modified version of SimpleScalar4 [11] and SPEC2K benchmarks 
with reference data sets. Benchmarks were compiled using the 
Compaq compiler with the -O4 flag targeted for the Alpha 21264 
processor. The benchmarks were fast–forwarded for 2 billion 
instructions, then fully simulated for 2 billion instructions. 

Table 3. Processors Configuration 
L1 I-
cache 

128KB, 64 
byte/line, 2 

cycles 

Instruction 
queue 

64 entry (32 
INT and 32 FP) 

L1 D-
cache 

128KB, 64 
byte/line, 2 

cycles, 2 R/W 
ports 

Register file 128 integer and 
128 floating 

point 

L2 cache 2MB, 8 way, 64 
byte/line, 20 

cycles 

Load/store 
queue 

32 entry load 
and 32 entry 

store 
issue 4 way out of 

order 
Arithmetic 

unit 
4 integer, 4 

floating point 
units 

Branch 
predictor 

“tournament” 
predictor  

Complex unit 2 INT, 2 FP 
multiply/divide 

units 
Reorder 
buffer 

128 entry Pipeline 15 cycles (some 
stages are multi-

cycles) 

4.1 Reducing Leakage In On-Chip SRAM 
Peripherals 

To maximize the leakage reduction in each of the on-chip SRAM 
memories peripherals one solution would be to always put them into 
ultra low power mode. However, this requires wakeup of their 
peripheral circuits before accessing them adding 3 cycles to their 
access latency and significantly reducing performance. In addition to 
performance degradation, increased access time for some units, such 
as a register file, would require significant modification of the 
pipeline and further complicate the instruction scheduler [24].  
Alternatively, one can put SRAM peripherals into the basic low 
power mode (except for IL1, DL1 and L2), which requires virtually 
zero cycles to wakeup thus not degrading performance. However, 
this doesn’t significantly reduce leakage power (see Table 2). To 
achieve the large leakage reduction of ultra and aggressive low 
power modes with the performance impact of basic-lp mode one has 
to dynamically change the peripheral circuit sleep modes. During 
periods of frequent access they need to be kept in basic-lp mode and 
when their access frequency is low they can be kept in aggr-lp or 
ultra-lp modes.  
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L2 miss stall period L2miss pre-stall period 3 pending L1 misses period normal period  
Figure 4 (a) Performance decrease for scenarios I and II. (b) 
Fraction of execution time in different periods. 
One period of infrequent access to any of discussed units is when the 
processor performance (in terms of IPC) drops significantly. Our 
study shows that during such period access to many on-chip SRAM 
units such as L1 cache, L2 cache, DTLB/ITLB, register file, branch 
predictor and rename table drops significantly. Cache misses are the 
main reason for processor performance drops significantly. For 
instance, after an L2 cache miss the processor executes some 
independent instructions but finally ends up stalled [52] (scenario I). 
Similarly, a considerable performance reduction occurs during any 
period in which multiple L1 misses are pending (scenario II). 
Performance degradation in both cases is due to the fact that a load 
instruction missing in a cache (DL1 or L2) prevents any dependent 
instruction from being issued until the miss is serviced. For a long-
latency L2 miss, after the processor executes a number of 
independent instructions, either the ROB, LQ/SQ or instruction queue 
fills up with subsequent instructions and the processor ends up 
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stalled until the miss is serviced. We refer to the interval between L2 
miss occurrence and processor stall as L2 miss pre-stall period.  We 
refer to the stall period following L2 miss as L2 miss stall period. In 
the event of a DL1 miss, the service time is much smaller than it 
would be for L2 and it is less likely that any of LQ/SQ, ROB and IQ 
(collectively referred as queues) fills up before the cache miss is 
serviced.  Note that when a DL1 cache miss occurs, its dependent 
instructions cannot be issued and that all the subsequent instructions 
cannot be committed as discussed above. This reduces the 
performance and increases the occupancy of the aforementioned 
queues. In the presence of many pending DL1 cache misses (referred 
as L1 miss period), the impact on performance could be large.   
We refer to a period during which one or more L2 miss/misses 
and/or multiple DL1 misses are pending as a “cache miss period,” 
and to the rest of program execution time as a “normal period.” It 
should be noted that the two scenarios discussed above would occur 
when the missed load is part of a correct prediction path, otherwise 
after the correct path has been identified, the missed load instruction 
will be flushed and will release ROB/IQ/ LQ/SQ entries so that 
program execution can continue (return to the normal period). Figure 
4(a) shows the IPC reduction for scenario I compared to when there 
is no pending L2 miss and the IPC reduction for scenario II 
compared to the period where there are less than 3 pending DL1 
misses. The IPC decreases significantly in both cases. Across all 
benchmarks, the IPC drops by more than 88% for scenario I and 
more than 31% for scenario II. Figure 4(b) presents the fraction of 
execution time the processor spends in different low-power periods. 
On average, the processor pipeline is stalled for more than 30% of 
execution time due to L2 cache misses, it spends 8% of execution 
time during L2 miss pre-stall period. For benchmarks such as ammp, 
applu, lucas, mcf, mesa, and swim there is a large fraction of stall 
time - more than 60%. For more than 7% of program execution time 
there are at least 3 pending L1 misses in the pipeline. The processor 
spends 53% of execution time in normal period.   

5. LEAKAGE CONTROL MECHANISM 
Based on the results presented in Figure 4, one can use the L2 and L1 
cache miss information to decide when to put SRAM peripherals into 
different low power modes.The following general state machine is 
proposed to control the power transitions: 

 
Figure 5. General state machine to control power mode 
transitions. 
On an L2 cache miss the SRAM peripheral circuits are transitioned 
from basic to a deep low power mode, aggr-lp. The pipeline 
continues issuing and executing instructions (pre-stall period) until 
one of the ROB, instruction queue, or load/store queue fills up. Once 
the pipeline stalls, the SRAM peripherals transition to the ultra-lp 
mode until the miss is serviced.  A transition from basic-lp to lp 

mode occurs when at least three DL1 misses are pending (a L1 cache 
miss period). Occurrences of multiple DL1 misses increase the 
probability of pipeline stalls due to data dependencies. It thus makes 
sense to put the on-chip SRAM peripherals into a sleep mode with 
higher leakage savings (lp). A processor stall is detected by 
monitoring the issue width of the processor after L2/multiple DL1 
cache miss/es occur. The processor is transitioned into ultra-lp once 
it doesn’t issue any instructions for at least five consecutive cycles. 
The processor returns from any of these low power states back to the 
basic-lp mode once one of the two following conditions is met: 
• Stall condition removed, i.e. instruction issue resumes 
• All pending DL1 misses are serviced 
The proposed general algorithm may not deliver optimal results for 
all units. Therefore, the algorithm is modified for individual on-chip 
SRAM-based units to maximize the leakage reduction at NO 
performance cost, as described next. 

5.1 Branch Predictor 
On average, one out of every 9 fetched instructions in integer 
benchmarks and out of 63 fetched instructions in floating point 
benchmarks accesses the branch predictor (see in Table 4). Such 
infrequent access would seem to make the branch predictor a good 
candidate for always staying in deep low power modes (lp, ultra-lp or 
aggr-lp) and waking up on access. However, this approach results in 
noticeable performance degradation for some benchmarks (results 
not presented here).  

Table 4. Instruction per branch count 
 IPB  IPB  IPB  IPB 
ammp 4.5 equake 4.21 mcf 3.9 twolf 7.6
applu 324.1 facerec 20.0 mesa 11.0 vortex 5.7
apsi 28.9 galgel 14.3 mgrid 310.4 vpr 9.0
art 8.1 gap 14.2 parser 6.0 wupwise 8.7
bzip2 6.7 gcc 6.3 perlbmk 7.2 average 37.8
crafty 8.5 gzip 9.5 sixtrack 11.9 
eon 8.2 lucas 25.6 swim 77.1 

One reason is that in some benchmarks the branch predictor is 
accessed very frequently, such as ammp, equake and mcf. Another is 
that within a benchmark there is significant variation in Instructions 
Per Branch (IPB). Figure 6 shows IPB measured every 512 cycles 
for two benchmarks with different average IPB: swim with a very 
high average IPB and equake with a very low average IPB. The 
highlighted circles for swim identify regions in which the number of 
branch in a 512-instruction interval is significantly lower than its 
average IPB of 77. A similar situation is true for equake. Also note 
the duration of a period where the IPB stays low (or high): once the 
IPB drops (increases) significantly it may remain low (high) for a 
long period of time. Based on these observations one can identify the 
high IPB period, once the first low IPB period is detected. The 
following algorithm is proposed for this prediction:  
The number of fetched branches is counted every 512 cycles, once 
the number of branches is found to be less than a certain threshold 
(24 in this work) a high IPB period identified. The IPB is then 
predicted to remain high for the next twenty 512 cycles intervals 
(10K cycles). 
Using this algorithm branch predictor peripherals transition from 
basic-lp mode to lp mode when a high IPB period is identified. 
During pre-stall and stall periods the branch predictor peripherals 
transition to aggr-lp and ultra-lp mode, respectively.  
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Figure 6. Distribution of the number of branches per 512-
instruction interval (over 1M cycles) 

5.2 L1 Data Cache  
DL1 cache read ports are accessed more frequently than its write 
ports. Results in  
 show that on average a DL1 write port is accessed once every 30 
cycles, while a read port is accessed every 8 cycles. Such different 
access pattern, require different control mechanism for reducing 
leakage. Our evaluation showed that making a write port one cycle 
slower has almost no impact on performance. But a one extra cycle 
of delay on every DL1 read (port) leads to noticeable performance 
degradation in some of the benchmarks (e.g. gzip, twolf and vpr).  
Therefore, the DL1 write port is always kept in lp mode and is 
awaken only when it is accessed. The read port is put into lp mode 
only during L1 cache miss period where processor performance 
drops noticeably and slowing load instructions execution by one 
cycle does not appreciably degrade performance. During pre-stall 
period the L1 peripherals are put into aggr-lp mode. Both read and 
write ports are put into ultra-lp mode once processor is stalled. 
Table 5. Average latency (number of cycles) between two 
successive accesses to DL1 read and write ports 

 DL1 read DL1 write  DL1 read DL1 write 
ammp 15.8 73.8 lucas 22.7 58.1 
applu 10.5 23.6 mcf 28.9 203.8 
apsi 5.4 11.1 mesa 3.7 9.8 
art 6.3 29.5 mgrid 7.0 52.9 

bzip2 4.2 14.3 parser 6.4 18.2 
crafty 3.2 17.8 perlbmk 5.9 11.5 
eon 3.9 6.02 sixtrack 3.7 10.3 

equake 5.7 14.1 swim 18.1 44.8 
facerec 6.1 10.8 twolf 6.6 22.2 
galgel 3.5 33.6 vortex 4.0 7.6 
gap 7.8 15.5 vpr 6.6 20.8 
gcc 5.8 8.9 wupwise 8.9 18.2 
gzip 5.3 19.7 average 8.2 30.4 

5.3 L1 Instruction Cache  
IL1 is accessed very frequently. As explained in Sec. 3, due to its 
large size, the overall wakeup delay of its peripherals from basic-lp 
mode (sleep transistor wakeup delay plus sleep signal wakeup delay) 
takes more than 1 cycle for any bias voltage. Therefore, because of 

frequent accesses, putting IL1 cache peripherals into basic-lp mode 
would result in significant performance degradation.  Therefore, the 
IL1 cache peripherals transition to the ultra-lp mode only when an 
L2 cache miss is detected. Our results indicate that this approach 
doesn’t degrade performance. By putting IL1 peripherals into ultra-lp 
mode every access to it will take 5 cycles (2 cycles access time + 3 
cycles wakeup time). Since during L2 miss period processor execute 
few independent instructions and finally ends up being stalled, 
slowing down the execution of independent instructions by slowing 
down the IL1 cache access, does not degrade the performance as 
long as independent instructions execution can be completed before 
the L2 cache miss serviced.  

5.4 L2 Cache 
L2 cache is accessed infrequently (on average 1 out of 500 
instruction access L2). It thus makes a lot of sense to always keep it 
in deep low power mode (aggr-lp) and only wake it up before 
accessing it. The wakeup delay of aggr-lp mode is 2 cycles which is 
much less than the L2 cache latency (20 cycles). As a result the 
performance impact of always keeping the L2 in aggr-lp mode is 
minimal. Once an L2 miss occurs, we put L2 into ultra-lp mode. 

5.5 Register File 
Register file is a multi-ported SRAM structure. For a 4-wide issue 
processor it has 4 write and 8 read ports. Evaluation results in Figure 
7 (a) show that, on average, in more than 50% of all cycles there are 
no read and write port accesses to integer register file. The fraction is 
even higher for FRF: more than 80%. Given such low port 
utilizations, all register files read and write ports are kept in basic-lp 
mode. Note that as shown in Sec. 3 the register files can still be 
accessed in one cycle while waking up its peripherals from basic-lp 
mode. While such low port utilization makes it feasible to put 
register file peripherals into deeper low power mode and potentially 
save more leakage, it is not done to avoid significant modifications to 
the processor pipeline.  Register file peripherals transition to the 
ultra-lp mode once the processor stalls completely. 

5.6 DTLB/ITLB and Rename Unit 
ITLB, DTLB and register rename unit are accessed very frequently 
(almost once every 2 cycles for DTLB and renamer and at least once 
every cycle for ITLB) as can be seen in Figure 7(b) (ammp, mcf, 
lucas and swim spend a large fraction of their execution time stalled, 
and thus behave differently). Therefore, these units are always in 
basic-lp mode and only woken up when accessed. They transition to 
the ultra-lp mode once the processor stalls. Other low power modes 
are not utilized to minimize the complexity overhead. 

6. EXPERIMENTAL EVALUATION 
This section describes the power and timing assumptions used and 
presents results for power and temperature reduction. We used the 
relative leakage power reduction of various power modes for 
different SRAM units reported in Table 2. These numbers were 
obtained using Hspice with extracted netlist at a supply voltage of 
1.0V in a 45nm technology. The energy and power consumption for 
each unit were computed by multiplying its access counts by its per-
access SRAM energy consumption. The energy per access and 
leakage power dissipation for individual SRAM units were obtained 
using CACTI-5.1 assuming 45nm technology, an operating 
frequency of 2.2GHz, and 1.0V supply voltage. For temperature 
calculations the floor plan shown in Figure 8 was used. The units 
marked as “X” are the SRAM units to which we applied the new 
leakage reduction techniques. Thermal model is described in Table 6. 
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Figure 7. (a) % execution time when register file ports are not 
accessed.  (b) DTLB, ITLB and Renamer relative accesses per 
cycle. 
HotSpot [28] was used to estimate both power density and thermal 
profiles for different processor blocks. As explained earlier, both 
steady state temperatures and temperature traces were obtained every 
10K cycles. From these temperature traces the peak temperatures 
reached by individual processor blocks during execution was 
determined. We also evaluated the power/area overhead of the 
controlling circuitry; a simple 2-bit state machine, a 2-bit saturating 
counter for keeping the number of pending DL1 misses and a 1-bit 
registers for keeping the L2 miss. 

FPMAP
FMD
FRF

FALU

BPRED

FPQ

INTMAP INTQ
LDSTQ

ITLB
DTLB

IRF

INTEXEC

IL1 DCACHE

L2

 
Figure 8. Processor floorplan 

Table 6. Thermal Model  
Die 
thickness 
(μm) 

150 
Convection 
resistance 0.1 

K/W 

Ambient 
temperature 30°C Heat sink 

side 
0.076 
m 

Convection 
capacitance 140 

J/K 

Heat 
spreader 
side 

0.035 
m 

Heat sink 
temperature 70°C   

Using Synopsys dc_compiler [50] we synthesized the state machine 
with a 45nm standard-cells which estimated the area overhead to be 
less than 150 gates (NAND2-gate). For branch predictor a 5-bit 
saturating counter is required which is counting for only 512-cycles 
in an every 10K-cycles intervals. The synthesized results estimate the 
gate count to be less than 80. The overall power overhead estimated 
to be less than 0.9 mw (the power is almost 3nW/gate/MHz). Note 
that the exact area/energy measurements require the detailed 
floorplaning and post placement and routing information. 

6.1 Leakage reduction 
Figure 9 shows leakage reduction from applying our techniques to 
different on-chip SRAM units. These results consider the 
interdependence of leakage and temperature. The maximum leakage 
power reduction of 75% was achieved for L2 cache. This result is not 
unexpected since during execution the L2 cache is always kept in 
one of the deep low power modes except when it is accessed. On the 
other hand, the instruction cache (IL1) has the lowest leakage 
reduction, 25% on average.  
However, this reduction is very significant given the fact that the IL1 
is almost continuously accessed providing fewer opportunities to 
change its power mode. Another interesting observation is that the 
reduction due to ultra-lp mode is very significant and is the highest 
of all low-leakage modes in many cases. This is because all on-chip 
SRAM units transition to this mode when the processor stalls. Large 
number of stalls, reported in Figure 4, combined with large leakage 
savings associated with the ultra-lp mode make this mode the major 
source of leakage reduction for all SRAM units. This is most 
noticeable in benchmarks with a large L2 miss period, such as 
ammp, applu, lucas, mcf and swim. The basic-lp mode makes a 
relatively small contribution to total leakage power reduction varying 
from 10 to 20%. While the basic-lp mode occurs more frequently 
than the ultra-lp mode, its contribution to total leakage reduction is 
less than the ultra-lp mode. The reason is that the peripheral leakage 
reduction of ultra-lp mode is 2 to 3 times that of basic-lp mode. The 
only SRAM units benefiting from the lp mode are the branch 
predictor and DL1 cache. In fact, these are the only units which are 
occasionally put into the lp mode. Overall, the average leakage 
reduction is very significant across all SRAM units; 75% (2.66 watt 
reduction) for L2, 57% (1.17 watt) for DL1, 25% (0.34 watt) for IL1, 
57% (0.07 watt) for Branch Predictor, 38% (0.122 watt) for IRF, 
38% (0.151 watt) for FRF, 49% (0.2 watt) for INT/FP Rename, and 
45% (0.2 watt) for DTLB, 45% (0.31 watt) for ITLB. The total 
power reduction is 5.15 watt which translate to 10.86% of processor 
power dissipation ( The studied processor dissipates 47 watt). 
These results show the effectiveness of the proposed leakage 
reduction techniques. Our simulation results also show that applying 
our techniques does not degrade performance noticably. The 
maximum performance loss observed while applying the proposed 
techniques in all of the benchmarks was 0.063% in mcf.  The reason 
is that the architectural algorithm hides the wake-up latency of de-
activated SRAM peripherals. For instance all SRAM units transition 
to ultra-lp mode, which has a large wakeup delay, only once the 
processor stalls. During the stall period there is no access to the de-
activated units and as a result there is no performance loss. 

Table 7. Average Peak temperature for different blocks 
before (B) and after (A) applying the leakage reduction 
techniques 

L2 IL1 DL1 Branch 
PRED 

DTLB FALU FRF FMD 

B A B A B A B A B A B A B A B A 

68 62 81 76 73 68 71 67 70 65 68 64 70 66 68 65
FP 
Map

Int 
Map

IntQ IRF Int 
ExecU 

FPQ LdStQ ITLB 

B A B A B A B A B A B A B A B A 

66 63 67 64 75 70 80 76 79 74 71 67 88 82 91 85
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Figure 9. Leakage reduction with thermal consideration for 
various on-chip SRAM units. 

6.2 Temperature Impact of Leakage 
Reduction   

 shows the average peak temperature for different blocks before and 
after applying the leakage reduction techniques (per benchmark 
results are not presented due to space limitation).  
For all units a large average temperature reduction is observed. We 
observe that the peak temperature across different blocks can be 
reduced by as much as 10.2oC (for mcf). Reduction in the peak 
temperature of a processor is desirable because it eases the 
constraints on package design parameters and dynamic thermal 
management techniques, and may allow higher operating 
frequency. We also observed a large peak temperature reduction in 
LdStQ and ITLB. Temperature reduction of LdStQ is of particular 
interest because we did not apply our leakage reduction technique to 
this block. The temperature reduction can be explained by thermal 
diffusion. The floor plan in Figure 8 shows that the LdStQ is placed 
next to the  ITLB which has high leakage power and temperature 
reductions. The average reduction in peak temperature is the highest 
for the L2 cache (6.3oC) corresponding to 75% reduction in L2 
leakage power.  Table 8 shows the reduction in the steady state 
temperature of different blocks of the processor (per benchmark 
results are not presented due to space limitation). An average 
reduction is higher for the steady state temperature compared to the 
peak temperature. 
Table 8. Reduction in Steady-State Temperature in Different 
Units 

 
L2 IL1 DL1 B-

PRED 
D-
TLB 

F-
ALU 

FRF FMD 

Ave. 7.3 5.2 6.2 4.8 5.9 4.1 4.3 3.8 
 FP 

Map 
Int 
Map 

IntQ IRF Int 
ExecU 

FPQ LdQ/StQ ITLB 

Ave. 3.5 3.6 6.2 5.5 5.4 4.7 7.2 7.2  
Due to a positive feedback loop between temperature and leakage 
power reduction in temperature, shown in Table 6, is accompanied 
by a further reduction in leakage power (leakage results reported 
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earlier account for this). Thermal consideration has further enhanced 
the significance of leakage reduction as a result of our proposed 
techniques. 

7. RELATED WORK 
A number of techniques were proposed for reducing leakage power 
at technology, circuit, architecture and compiler/OS levels. 

7.1 Circuit-level leakage control 
Several circuit techniques proposed to reduce the leakage power in 
SRAM memories. These techniques were mainly targeting the 
SRAM memory cell leakage. The primary technique is voltage 
scaling which due to short-channel effects in deep submicron 
processes reduces the leakage current significantly [21]. Another 
technique is Gated-Vdd which turns off the supply voltage of memory 
cells by using a sleep transistor and eliminating the leakage virtually 
completely [53]. The third technique, ABB-MTCMOS, increases 
threshold voltage of a SRAM cell dynamically through controlling 
its body voltage [16]. Device scaling leads to threshold voltage 
fluctuation, which makes the cell bias control difficult to achieve. In 
response, [8] proposed a Replica Cell Biasing scheme in which the 
cell bias is not affected by Vdd and Vth of peripheral transistors. [4, 
14] proposed a forward body biasing scheme (FBB) in which the 
leakage power is suppressed in the unselected memory cells of cache 
by utilizing super Vt devices. In addition to these four major 
techniques applied to SRAM memories, there are also some leakage 
reduction techniques in literature which concentrated on generic 
logic circuits. Examples are sleepy stack [10] and sleepy keeper [45].  

7.2 Architectural techniques 
A number of architecturally driven techniques have been proposed in 
literature to reduce leakage in different on-chip SRAM memories. 
Powell et al. proposed applying gated-Vdd approach to gate the power 
supply for cache lines that are not likely to be accessed [13]. Kaxiras 
et al. proposed a cache decay technique which reduces cache leakage 
by turning off cache lines not likely to be reused [19]. Flautner et al. 
proposed a drowsy cache which reduces the supply voltage of the L1 
cache line instead of gating it off completely [21]. The advantage of 
this technique is that it preserves the cache line information but 
introduces a delay in accessing drowsy lines. Zhang et al. proposed a 
compiler approach to turn off the cache lines for the region of the 
code that would not be accessed for a long period of time [6]. Meng 
et al presented a perfecting scheme which combines the drowsy 
caches and the Gated-Vdd techniques to optimize cache leakage 
reduction [30]. In addition to caches, there has been several works on 
reducing leakage in other on-chip SRAM memories. Hu et al. 
applied decay techniques to branch predictor, exploring strategies for 
spatial and temporal locality to make decay effective [25]. Many 
leakage optimized design techniques use low leakage, slow 
transistors, (with high-Vt) on non-critical paths [32]. However, these 
methods cannot be applied to critical path, such as register read path 
as shown to impact processor performance significantly [31, 36, 51]. 
Jin et al. proposed a low-leakage register file cell design exploiting 
the observation that physical registers have short life cycles [33]. 
Heo et. al. proposed segmenting register file read bitline [26]. Once 
an entire register file subbank is dead, the subbank read bitline is 
turned off, saving the leakage on the bitline. Kondo and Nakamura 
proposed bit-partitioned register file to reduce leakage based on the 
observation that many operands do not need the full-bit width of a 
register entry. [34]  
All research mentioned above primarily targeted the leakage in the 
SRAM cells. Given the results in Figure 1, peripheral circuits are 

equally if not more important to address in SRAM memories. In 
addition there is a significant body of work on reducing temperature 
in processor [1, 2, 5, 23]. Our work considers the effect of 
temperature on leakage power and we report temperature reduction 
as well.  

8. CONCLUSION 
This paper addressed the issue of leakage power dissipation in 
peripheral circuits of on-chip SRAMs. It showed how to 
simultaneously reduce leakage and temperature in the L2, DL1 and 
IL1 caches, Branch Predictor, Floating Point and Integer Register 
Files, Floating Point and Integer Rename units, and Instruction and 
Data TLBs using a novel zig-zag share circuit, with minimal area and 
delay overheads. It proposed multiple low-power modes which differ 
in the bias voltage of sleep transistors used, allowing a tradeoff 
between leakage reduction and wakeup delay in peripheral circuits. 
At the architectural level a new control mechanism was proposed for 
switching between different low-power modes in each SRAM unit, 
achieving leakage and temperature reduction with minimal impact on 
performance. We observed a very significant average leakage 
reduction varying from 75% for L2 cache to 25% for IL1cache. This 
resulted in a reduction of up to 10.8 degree Celsius in the steady state 
temperature based on the interdependency of leakage and 
temperature. 
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