
Failure Diagnosis Using Decision Trees

Mike Chen, Alice X. Zheng, Jim Lloyd, Michael I. Jordan, Eric Brewer
University of California at Berkeley and eBay Inc.

{mikechen, alicez, jordan, brewer}@cs.berkeley.edu, jlloyd@ebay.com

Abstract

We present a decision tree learning approach to diagnos-
ing failures in large Internet sites. We record runtime prop-
erties of each request and apply automated machine learn-
ing and data mining techniques to identify the causes of
failures. We train decision trees on the request traces from
time periods in which user-visible failures are present. Paths
through the tree are ranked according to their degree of cor-
relation with failure, and nodes are merged according to the
observed partial order of system components. We evaluate
this approach using actual failures from eBay, and find that,
among hundreds of potential causes, the algorithm success-
fully identifies 13 out of 14 true causes of failure, along with
2 false positives. We discuss some results in applying sim-
plified decision trees on eBay’s production site for several
months. In addition, we give a cost-benefit analysis of man-
ual vs. automated diagnosis systems. Our contributions in-
clude the statistical learning approach, the adaptation of
decision trees to the context of failure diagnosis, and the de-
ployment and evaluation of our tools on a high-volume pro-
duction service.

1. Introduction

Fast recovery remains one of the key challenges to de-
signers and operators of large networked systems. Before
recovery can take place, however, one must first detect and
diagnose the failure. We define failure detection to be the
task of determining when a system is experiencing prob-
lems. Failure diagnosis, then, is the task of locating the
source of a system fault once it is detected. In this paper,
we assume that failures have been detected within the sys-
tem, and concentrate on the subsequent problem of diagno-
sis.

In a large scale Internet system, there are many compo-
nents at work during the lifetime of a request. For exam-
ple, a failed database query could be caused by a miscon-
figured application server, a bug in a new version of the ap-
plication, a network problem, a bad disk on the database

server, or a combination of these errors and more. As net-
worked systems grow in size and complexity, it becomes
increasingly impractical to examine each component man-
ually for sources of error. Manual diagnosis is time con-
suming, error-prone, requires much expertise, and does not
scale. An automated approach is essential if we want to con-
tinue at the current growth rate and improve system avail-
ability.

Many systems today record requests with simple run-
time properties for monitoring and billing purposes. They
typically record properties such as the timestamps, request
types, and the frontend machines servicing the requests.
Our approach uses aggressive logging to trace request paths
through tiered systems, recording the system components
and databases used by each request [5]. Using machine
learning algorithms, we leverage the recorded runtime prop-
erties from a large number of independent requests to simul-
taneously examine many potential causes.

The following observation from systems operation is
crucial in designing our system: the exact root cause of er-
ror, such as the line of code containing a bug, is often not re-
quired for recovery to take place. The operators only need
enough confidence in the diagnosis to apply well-known re-
covery techniques like reboot, failover, and rollback. Hence
these are the goals of our approach:

� High diagnosis rate. We need to be able to localize a
large percentage of the errors in order to garner confi-
dence from the system recovery operator.

� Few false positives. False positives, which are correct
behavior of the system that are mistaken for an error,
are costly in terms of time wasted on recovery and re-
diagnosis.

� Robust to noise. Few systems are free from failures.
It is common to find a small number of failures at any
moment on a large system. An ideal algorithm should
be able to filter out noise and prioritize faults that are
impacting the availability of a system.

� Near real-time turn-around. The algorithm needs to
be fast enough in order to derive benefits over manual
approaches.

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

In this paper, we present a system that analyzes read-
ily available request traces in order to automatically locate
sources of error. We demonstrate our methods at work on
eBay’s web request log system, and analyze how well it
achieves the four goals stated above. Being one of the larger
Internet service sites in existence today, eBay makes for an
ideal case study; successful deployment on the eBay sys-
tem may ultimately assure success on smaller sites as well.

We start off by describing the eBay logging framework
in section 2, followed by a detailed explanation of our deci-
sion tree approach in section 3. Section 4 describes the ex-
perimental setup, and section 5 presents some diagnosis re-
sults. We conclude with a discussion of our approach and
possible improvements in section 6, plus a brief survey of
related work in section 7.

2. The eBay Internet Service System

The Centralized Application Logging (CAL) framework
at eBay is a central repository of application-level logs.
CAL exports an API that enables platform and application
developers to record information associated with each re-
quest. CAL is the foundation for several of the tools used
by the operations team to detect and diagnose failures. CAL
is also used by developers for debugging and performance
tuning, and for business-related purposes such as fraud de-
tection and business intelligence.

At eBay, both the application servers and the applica-
tions they host are instrumented to log to CAL. They asyn-
chronously write information about each request to the Har-
vester cluster over persistent TCP connections. The Har-
vesters are responsible for writing logs to persistent storage.
They also publish the logs in real time onto a message bus to
make the information available to various analysis and vi-
sualization engines. CAL uses load balancing switches to
provide high availability and scalability.

The CAL API requires the application developer to mark
the start and the end of a request, and also supply the name
and the status code of a request (i.e. success or failure). Ad-
ditional information such as version number, host name, and
pool name are automatically recorded by the platform. Be-
cause the application servers are threaded, the intermedi-
ate logs between the start and the end markers can be as-
sociated with the request using the triplet {thread ID,
process ID, host ID}. CAL also supports nested re-
quests. For example, an HTTP request may result in multi-
ple database accesses. All of these child database requests
are automatically associated with the parent request.

A basic request trace includes the request type, request
name, host name, pool name, version, timestamp, and the
status of the requests. Most large Internet services record
similar information for monitoring and billing purposes.
On CAL, this basic trace can be extended to include the

databases accessed by each request, providing additional
visibility into the runtime behavior and resource depen-
dency of each request.

The CAL system currently services more than two thou-
sand application servers at more than one billion URLs/day
and a peak data rate of 200Mbps. It stores 1TB of raw logs
per day, or 150GB gzipped.

3. A Decision Tree Learning Approach

There are many possible machine learning approaches
toward failure diagnosis. In this paper, we treat the prob-
lem as one of finding system components that are corre-
lated with failure. More specifically, we train a decision tree
to classify the failed and successful requests that occurred
during the faulty period. We then post-process the paths that
lead to failure-predicting nodes and extract relevant com-
ponents. While decision trees [3] are not always the most
competitive classifiers in terms of prediction, they enjoy the
crucial advantage of yielding human-interpretable results,
which is important if the method is to be adopted by real
network operators.

3.1. Learning Decision Trees

Here is what a decision tree might look like in our sys-
tem. Suppose there are two sources of error, one associated
with machine x, the other associated with request type y.
Suppose there are �� failed and � successful requests ob-
served on machine x, �� failed and � successful requests of
type y, and �� other successful requests. Figure 1 shows a
possible decision tree learned from this data. Each leaf node
is labeled with the majority vote of the data contained at that
node. For example, the leftmost path of (Machine = x)
results in a leaf node predicting failure, with 15 support-
ing votes (i.e., failures) and 5 dissenting votes from training
data. By examining the paths that lead to failure-predicting
leaf nodes, one may distinguish the possible sources of er-
ror.

Learning a decision tree involves deciding which split to
make at each node, and how deep the tree should be. Let
� denote our feature vector and � the class label. For bi-
nary classification, � � ��� ��, where � denotes a failure
and � success. The vector � may includes features such as
the name of the machine, the name of the software build
running on that machine, etc. The root node of the decision
tree contains all of the data. At each node, the dataset is split
according to the values of one particular feature. Splits are
picked to maximize the ���� in information. This contin-
ues until no further split is possible, or the node contains
only one class. After the tree is fully grown, entire sub-

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

Fail (10/6)

Machine = x Machine != x

Fail (15/5)

RequestType != y

Success(20/0)

RequestType = y

Figure 1. An example decision tree for diag-
nosis.

branches with low overall ���� value are pruned back in
order to avoid overfitting. 1

There are many possible definitions for the ���� of a
split. It is generally observed that the choice of splitting
criterion does not affect the ultimate classification perfor-
mance [3]. Our ultimate goal, however, is not classifica-
tion but path selection. In our experiments, we examine two
different splitting criteria, and the selected paths do indeed
sometimes differ.

The popular decision tree learning algorithm C4.5 [17]
defines the ���� function for feature �� at node � as:

�������� �� � ���������� ���

where ���� denotes the binary entropy at node �, and
����� �� is the sum of entropy of child nodes after mak-
ing the split based on feature ��. Entropy is one of many
possible measures of “pureness” of the distribution amongst
classes. If � is a discrete random variable and 	��� its dis-
tribution, then the entropy of � is defined as ��	���� �
�
�

�
	�
� ��� 	�
�. The entropy function is maximized

when the distribution is uniform, and decreases toward � as
the distribution skews toward certain feature values. Hence
a smaller entropy indicates larger skew in the distribution.

In contrast with C4.5, our implementation at eBay cur-
rently deploys an algorithm that we call MinEntropy. Its
���� function is based on the entropy of a different ran-
dom variable, and, due to time and resource constraints, it
only follows the path that is the most “suspicious.” Instead
of pruning, it uses an early stopping criterion and stop split-
ting when the ���� falls below a certain threshold.

Suppose feature �� has � possible values. In MinEntropy,
we look at the probability that a failed request at a particu-

1 When a model trades off performance on test data for better fit of train-
ing data, it is said to overfit.

lar node � takes on a particular value.

� ��� � � �� �
of failed requests at node � with �� �

of failed requests at node �
and �������� �� � ���� ���� ���

� ��� � � �� represents a multinomial distribution over val-
ues of ��. This method makes the assumption that, for each
request contained in node �, determining its value for fea-
ture �� is like tossing a d-sided die with the right empirical
distribution. Our goal is to find the particular value of the
feature that seems to be correlated with an unusually high
number of failures. Thus at each step, we split the tree based
on the feature with the lowest entropy, and follow the child
node with the highest failure probability (� ��� � � ��).

3.2. Failure Diagnosis from Decision Tree Output

Learning the decision tree is only half the battle. We also
need to select the important features that correlate with the
largest number of failures. We do this using the following
four heuristics:

1. We ignore the leaf nodes corresponding to successful
requests. Most of them do not contain any failed re-
quests, and are thus useless in diagnosing failures.

2. Noise Filtering: We ignore leaves containing less than
�� of the total number of failures. This corresponds to
making the reasonable assumptions that there are only
a few independent sources of error, and each of them
accounts for a large fraction of the total number of fail-
ures.

3. Node Merging: Before reporting the final diagnosis, we
merge nodes on a path by eliminating ancestor nodes
that are logically “subsumed” by successor nodes. For
example, if machine x only runs software version y,
then the path (Version=y and Machine=x) is
equivalent to (Machine=x). This kind of “subsump-
tion” between system components defines a partial or-
der on our features, where feature1 � feature2 iff all
requests containing feature1 also contain feature2.

4. Ranking: We sort the predicted causes by failure counts
to prioritize their importance.

Applying these heuristics to the example decision tree
in Figure 1, the right-most leaf node would be eliminated
in step 1 because it does not contain any failures. In step
2, if we have a noise filtering threshold of 10%, then the
remaining leaf nodes, with 40% and 60% of the total fail-
ures, will both be retained as candidates. In step 3, we pro-
duce two predicted sources of error: (Machine=x) and
(Machine!=x and RequestType=y). If none of the

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

Host DB Host, Host Host, DB Host, SW DB, SW

2 4 1 1 1 1

Table 1. Summary of combinations of types of
faults occurring in our snapshots of the request
logs.

Type Name Pool Machine Version Database Status

10 300 15 260 7 40 8

Table 2. Names of features and the number of
unique values of each feature in the request logs.

failed requests with with request type y is executed on ma-
chine x, then the machine feature is subsumed by the re-
quest type and the two nodes merge into one. The diag-
nosis is now (Machine=x) and (RequestType=y). Fi-
nally, in Step 4, the two predicted causes are ranked by fail-
ure count; (Machine=x) causes 15 failures, which places
it before (RequestType=y) with 10 failures.

4. Experimental Setup

4.1. Data Collection

We have collected 10 most recent one-hour snapshots
of logs that are known to contain system faults. Four of
these snapshots have two independent faults each, so the to-
tal number of faults is 14. Of these 14 faults, 6 are single-
host faults, 6 are database faults, and 2 are software bugs.
The true causes of the problems are identified by examining
post-mortems, operations chat logs, and application logs.
Table 1 contains a summary of different types of faults.

A complete request trace contains a basic trace and a
database path trace. The basic trace contains 6 features: re-
quest type, request name, pool, host, version, and the status
of each request. The extended database trace contains the
list of databases accessed by each request. (See Table 2 for a
summary of the features.) Each hour-long snapshot contains
complete request traces from a fixed set of 15 pools, con-
strained to the minutes during which the faults are known to
be present. Each of these one-minute slices contains about
200,000 requests, 0.001%-2% of which has an outcome sta-
tus of failure.

4.2. Implementation

We have implemented the MinEntropy algorithm in both
C++ and Java. The C++ version currently runs on the eBay

site and performs automated diagnosis on eBay’s produc-
tion site in less than 10 seconds.

We use implementations of C4.5 and association rules
from the machine learning tools package Weka 2 [13], an
open-source machine learning package. The experiments
are run using JDK 1.4.2 on quad-PIII 2GHz Linux 2.4.18
machines with 4GB of RAM. The algorithms first load the
traces into memory, then compute the results.

5. Results

We compare the decision tree approach against a data-
mining technique known as “association rules” [2] that sim-
ply ranks all possible combinations of features according to
their observed probability of request failure.

Each algorithm returns a set of candidates (i.e., combi-
nations of system components) that are deemed to be cor-
related with user-visible failures. To evaluate their perfor-
mance, we make use of the recall and precision metrics. Re-
call measures the percentage of failure causes that are cor-
rectly diagnosed by the algorithm. Precision measures how
concise the candidate set is.

During system recovery, each extra component in the
candidate may incur added cost to the recovery effort.
Hence the definition of precision needs to take into ac-
count not only the number of candidates retained, but also
whether the list of components in each candidate is as suc-
cinct as can be. The number of false positives contained
in a candidate is taken to be the number of extra compo-
nents included which are not actual sources of error. Sup-
pose the candidate is (Machine=x and Version=n
and RequestType=z). If only machine x is at fault,
then the candidate contains two false positives, one for each
extra component. If the fault is in the combination of ma-
chine x and software version n, then the only false positive
is RequestType=z.

Let � denote the number of effective components in the
candidate set. Let � be number of distinct causes of fail-
ures, and � the number of correctly identified failure causes.
We define:

������ �
�

�

�	
 �
� � �

�

�
������ �
�

�
� �� �	

Perfect diagnosis would have both recall and precision
equal to 1.

2 Weka implements a variant of C4.5 called J4.8.

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

C4.5
MinEntropy
Association Rules

Figure 2. Precision-recall curves for C4.5, Mi-
nEntropy, and association rules.

5.1. Results on Basic Request Traces

The basic type of request trace is common to many In-
ternet services for performance monitoring, failure monitor-
ing, and billing. It does not contain any database access in-
formation. In a basic trace, a database fault would manifest
itself in what appears to be many minor failures.

In our dataset, 6 out of 14 faults are database-related.
(See Table 1 for a summary of the types of faults.) The
ground truth cause for each database fault is taken to be
the name of the request that accesses the database and has
the most number of failures. For example, a fault in the
feedback database is translated into a software fault of the
request name ViewFeedback. Prediction of other related
symptoms is counted neither as a correct diagnosis nor as
a false positive, and therefore has no effect on precision and
recall.

Figure 2 shows the precision-recall curves of C4.5, Mi-
nEntropy, and association rules on the basic request traces.
The curves are obtained by varying the cutoff threshold for
the number of retained candidates. At a failure rate cutoff
of ���, C4.5 returns seven candidate components over ten
snapshots.3 This gives us a precision of ���� at a recall of
���. As we lower the cutoff threshold, the candidate set
grows: 17 candidate components are retained at a cutoff of
��, bringing us to ��� recall and ��� precision.

Since MinEntropy always produces one and only one
prediction, it is a fixed point in this graph. Out of the

3 As described in Section 3.2, a �� cutoff threshold for C4.5 means
that that only paths accounting for � �� of all observed request fail-
ures are retained for further processing.

13 components returned by MinEntropy, it correctly iden-
tify 10 actual faults of the system (one for each snapshot).
Hence its precision score is ������ at ���	�� recall. This
precision score is comparable to that of C4.5 at the �� cut-
off threshold, though its recall score suffers from the single-
candidate limitation and is much lower as a result. Thus Mi-
nEntropy proves to be a good alternative to C4.5 when re-
sources are scarce.

Both C4.5 and the simplified MinEntropy approach per-
forms much better than association rules at all levels of re-
call.

5.2. Experiments on Complete Traces

Each request in the eBay system may access one or more
of the 40 databases multiple times. For this experiment, we
include database access information in the request traces.
Because the causes of database-related failures are now in
the trace, we expect the algorithms to correctly diagnose
snapshots involving database faults.

Since each request may access a variable number of
databases, we take each database to be a binary feature with
the values True or False.

To underscore the importance of noise filtering and
node merging, we compare the results obtained us-
ing un-processed C4.5 paths, C4.5 with noise filtering,
and C4.5 with noise filtering and node merging. The cut-
off threshold is set to 10% of all observed failures and
the results are presented in Figure 3. All three varia-
tions of the algorithm correctly identify 13 out of 14
true failures, making the recall rate 93%. In particu-
lar, all three variations correctly identify all the true
causes in the four cases that have two independent fail-
ures.

The importance of post-processing is apparent in the
precision scores. Our result-aggregation heuristic increases
precision from 18% to 76%. This means that the false pos-
itive rate drops from 82% to 24%, which is a dramatic im-
provement. These statistics suggest that more than 58% of
components in the raw decision tree paths are extraneous.
These are paths that contain the correct sources of error, but
also contain other features that are not related to any faults
(cf. the sample decision tree and discussion of node merg-
ing in Section 3). The extraneous features were necessary in
the construction of the decision tree, but are useless as an in-
dicator of error. Hence post-processing of the decision tree
paths is a crucial step.

5.3. How Many Candidates to Keep?

Our post-processing procedure relies on a cutoff thresh-
old in the noise filtering step (c.f. Section 3.2). The cutoff

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
recall
precision

Un−processed Noise−filtered Noise−filtered +
 Node−merged

Figure 3. Recall and precision rates of C4.5 with
different heuristics on traces containing database
accesses.

threshold � is based on the percentage of request failures ac-
counted for by a particular path in the decision tree. Let �
be the total number of failed requests observed during one
snapshot, and �� the number of failed requests grouped un-
der leaf node �. If ��

�
� �, then the path leading to node �

is retained as a candidate. Raising (lowering) � would de-
crease (increase) the number of retained paths.

There are many different ways to select the threshold �.
Here we explore two approaches: (1) selection based on a
metric that combines recall and precision and (2) selection
based on a metric that measures the expected recovery time.

The F-score is defined as the harmonic mean of preci-
sion and recall:

F-score �
�����	�
� ������

� ����	�
�������

Figure 4 plots the F-scores (averaged over the 10 basic trace
snapshots) for C4.5 against various values of �. The 5%
threshold returns the highest F-score with a value of ������.
This puts us at the rightmost end of the recall-precision
curve in Figure 2.

Alternatively, we can pick � to optimize a recovery cost
function. For each component of the system, we know (1)
whether or not it contains a real source of error, and (2)
whether or not our algorithm labels the path as a potential
source of error. Let � denote the ground truth label of the
component, where � � � if and only if it is truly corre-
lated with error. Let �� be the label given by our algorithm.

Let be the amount of time it takes to run the automatic
diagnosis algorithm, � the time it takes to perform the re-

0% 10% 20% 30% 40% 50% 60%
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Cutoff Threshold

F
−

S
co

re

Figure 4. Average F-score vs. cutoff thresh-
old for C4.5 on the basic trace dataset.

0% 10% 20% 30% 40% 50% 60%
−4

−2

0

2

4

6

8

10

12

Cutoff Threshold

E
xp

ec
te

d
S

av
in

gs
 in

 R
ec

ov
er

y
T

im
e

(m
in

)

Figure 5. Savings in recovery time for C4.5.

covery, � the time it takes to verify whether or not the re-
covery action fixed the bug, and � the time for a human op-
erator to manually examine the system and locate the bug.
Each of the four combinations of � and �� has a certain cost
in terms of recovery time:

� � � �� �� � �: requires time �� � � ��;

� � � �� �� � �: requires time �� � ��� ��;

� � � �� �� � �: requires time �� � � ��;

� � � �� �� � �: requires time ��.

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

One may want to pick a cutoff threshold � which would
would minimize the expected system recovery time E �� �
under the distribution ��� �� �� �:

E �� � � ��� �� � ��� � �� � ��� � � ��

���� �� � ��� � �� � ��� � ��� ��

���� �� � ��� � �� � ��� � � ��

���� �� � ��� � �� � ���

The expected amount of time saved by using automatic in-
stead of manual diagnosis is then �� � � E �� �. The prob-
ability distribution ��� �� �� � at various cutoff thresholds �
can be estimated directly from our experiments:

��� �� � ��� � �� � �	��

�

��� �� � ��� � �� � ���	��

�

��� �� � ��� � �� �
of false positives

of non-faulty components

��� �� � ��� � �� �
of true negatives

of non-faulty components

We plot the expected amount of time saved,����E �� �,
using reasonable values for �� �� �, and �. Based on our
conversations with operations teams at several large Inter-
net sites, we set � � �	 minutes, � �
 minute, � � �
minutes, and � � � minute. Figure 5 shows the expected re-
covery time for the faults in our basic trace dataset. On aver-
age, the 5% cutoff threshold saves ���� minutes over man-
ual diagnosis.

6. Discussion

We have demonstrated the applicability of decision trees
to this specific task of failure diagnosis. While there are
other classifiers with perhaps better failure prediction per-
formance, decision trees return easily interpretable lists of
suspicious system components. There has been much re-
lated work in the area of feature selection [1] [12], and
specifically in the context of decision trees [10]. In our con-
text, however, it is not sufficient to just include the set of
features used in all of the paths leading to failed requests.
Rather, we have demonstrated that post-processing of the
candidate paths is necessary to eliminate costly false posi-
tives.

The domain of failure diagnosis from request logs is
characterized by the ready availability of large amounts of
unlabeled data. Labeled data, such as the snapshots used
in our experiments here, are relatively scarce. The related
problem of failure detection concentrates on labeling snap-
shots as either faulty or normal. One could perhaps make
use of unlabeled snapshots within failure diagnosis itself.
For instance, one could enrich the noise filtering step with
a notion of “normal” amount of noise, learned from statis-
tics derived from unlabeled data.

Another problem is in detecting whether or not any cause
is discovered at all. This is necessary when the features con-
tained in the traces do not include the actual sources of er-
ror, such as the database faults presented above. In this case,
we need to be able to distinguish between a decision tree
whose leaf nodes seem to be just noise, versus a decision
tree whose leaf nodes contain useful information regard-
ing the cause of failures. A possible approach is to exam-
ine the distribution of failed cases among the leaf nodes. If
examples of failed requests are concentrated in a small num-
ber of leaf nodes, then we would likely get high quality re-
sults. Otherwise, if failures are evenly spread among a large
number of leaf nodes, then chances are we do not have the
right feature that causes the root failure. We can measure
the “spread” of the failure distribution by looking at the en-
tropy of the leaf nodes corresponding to failures.

7. Related Work

There has been much work in the field of failure diagno-
sis, though most previous work explicitly models causal or
dependence interactions between the various components of
the system. Our approach, in comparison, makes only im-
plicit use of the underlying structure during the node merg-
ing phase. It is also necessary to stress that, though we have
made references to “cause-finding,” we do not attempt to in-
fer any causal relationships between any of the components
and the outcome. There has been much work in causal net-
work modeling [18], and also on inferring causal relation-
ships from observational data [8]. However, that is not the
approach taken in this paper.

There are many commercial management systems that
aid failure diagnosis, such as HP’s OpenView [9] and IBM’s
Tivoli [16]. These systems typically either employ expert
systems with human-generated rules or rely on the use of
dependency models [7, 11]. However, these systems do not
consider how the required dependency models are obtained.
More recent research has focused on automatically gener-
ating dependency models based on dynamic observations.
Brown et al. [4] use active perturbation of the system to
identify dependencies and use statistical modeling of the
system to compute dependency strengths. The dependency
strengths can be used to order the potential root causes.
However, the approach is intrusive and less suitable for di-
agnosing a production site.

The authors of [19] present a fault localization system
that models faults in an end-to-end service system. The de-
pendence graph models different layers within each host
and linkage pattern between hosts. Each layer is associated
with multiple possible failure modes. After observing cer-
tain symptoms in the system, belief propagation algorithms
are run on the graph, and the posterior beliefs are exam-
ined to pick out the most likely causes for the symptoms.

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

In [20], a network management system is built to monitor
exceptional events. A causal model of the system is built by
experts with domain knowledge, containing symptom nodes
and problem nodes. A codebook is then built that optimally
compresses the symptoms given a designated set of prob-
lems one wishes to monitor. Fault correlation then becomes
a decoding problem given a certain set of observed events.

In the approach taken by [15] and [14], the network is
again modeled as a Bayesian network. The authors inves-
tigate the problem of designing and sending the optimum
number of “active probes” so as to achieve a certain level
of accuracy in diagnosis. In addition, efficient local approx-
imation techniques is applied to the inference task on the
Bayes net, and accuracy is shown to degrade gracefully un-
der increasing noise in the network.

Our earlier work, Pinpoint [6] and ObsLogs at Tellme
Networks [5], also dynamically trace request paths through
tiered systems. Pinpoint uses clustering to correlate appli-
cation components with failures.

8. Conclusion

We have presented a new approach to diagnosing fail-
ures in large systems. We record the runtime properties of
each request and apply statistical learning techniques to au-
tomatically identify the causes of failures. The key to this
ability is a large amount of requests and runtime informa-
tion, which enables meaningful statistical analysis.

We validate our approach using actual failure cases from
eBay. The MinEntropy algorithm has been deployed at
eBay for several months. For single-fault cases, it correctly
identifies 100% of faults with a false positive rate of 25%.
The C4.5 decision tree algorithm performs well in both
single- and multi-fault cases. When applied to request paths
that includes databases accessed, it correctly identifies 93%
of faults with a false positive rate of 24%.

We are currently exploring a variety of statistical learn-
ing algorithms to improve the diagnosis performance. We
are also experimenting with streaming versions of these al-
gorithms to be deployed on production systems. Finally, we
plan to extend our approach to diagnose wide-area system
failures.

References

[1] A. Blum and P. Langley. Selection of relevant features and
examples in machine learning. Artificial Intelligence, pages
245–271, 1997.

[2] R. Agrawal, T. Imielinski, and A. N. Swami. Mining Asso-
ciation Rules between Sets of Items in Large Databases. In
Proceedings of the ACM SIGMOD Conference on Manage-
ment of Data, pages 207–216, Washington, D.C., 1993.

[3] L. Breiman, J. H.Friedman, R. A. Olshen, and C. J. Stone.
Classification and Regression Trees. Wadsworth, 1984.

[4] A. Brown, G. Kar, and A. Keller. An Active Approach
to Characterizing Dynamic Dependencies for Problem De-
termination in a Distributed Environment. In Seventh
IFIP/IEEE International Symposium on Integrated Network
Management, Seattle, WA, May 2001.

[5] M. Chen, A. Accardi, E. Kıcıman, J. Lloyd, D. Patterson,
A. Fox, and E. Brewer. Path-based Failure and Evolution
Management. In Proceedings of the First Symposium on
Networked Systems Design and Implementation (NSDI), San
Francisco, CA, 2004.

[6] M. Chen, E. Kıcıman, E. Fratkin, E. Brewer, and A. Fox.
Pinpoint: Problem Determination in Large, Dynamic Inter-
net Services. In International Computer Performance and
Dependability Symposium, 2002.

[7] J. Choi, M. Choi, and S. Lee. An alarm correlation and fault
identification scheme based on OSI managed object classes.
In IEEE International Conference on Communications, Van-
couver, BC, Canada, 1999.

[8] G. F. Cooper. A simple algorithm for efficiently mining
observational databases for causal relationships. Journal
of Data Mining and Knowledge Discovery, 1(1-2):245–271,
1997.

[9] H. P. Corporation. HP Openview. http://www.hp.com/
openview/index.html.

[10] G. H. John, R. Kohavi and K. Pfleger. Irrelevant features and
the subset selection problem. Machine Learning: Proceed-
ings of the Eleventh International Conference, pages 121–
129, 1994.

[11] B. Gruschke. A new approach for event correlation based on
dependency graphs. In 5th Workshop of the OpenView Uni-
versity Association, 1998.

[12] I. Guyon and A. Elisseeff. An introduction to variable and
feature selection. JMLR Special Issue on Variable and Fea-
ture Selection, 3(Mar):1157-1182, 2003.

[13] I. H. Witten and E. Frank. Data Mining: Practical machine
learning tools with Java implementations. Morgan Kauf-
mann.

[14] I. Rish and M. Brodie and N. Odintsova and S. Ma, G.
Grabarnik. Real-time problem determination in distributed
systems using active probing. In Network Operations and
Management Systems, 2004.

[15] I. Rish, M. Brodie, and S. Ma. Accuracy vs. efficiency trade-
offs in probabilistic diagnosis. In AAAI-2002, Edmonton, Al-
berta, Canada, 2002.

[16] IBM. Tivoli Business Systems Manager, 2001. http://
www.tivoli.com.

[17] J. R. Quinlan. C4.5: Programs for Machine Learning. Mor-
gan Kaufmann, 1993.

[18] J. Pearl. Causality: Models, Reasoning, and Inference. Cam-
bridge University Press, 2000.

[19] M. Steinder and A. Sethi. End-to-end service failure diagno-
sis using belief networks. In Network Operations and Man-
agement Symposium, 2002.

[20] A. Yemini and S. Kliger. High speed and robust event corre-
lation. IEEE Communication Magazine, 34(5):82–90, May
1996.

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

