
Solving Non-binary CSPs Using the Hidden
Variable Encoding

Nikos Mamoulis1 and Kostas Stergiou2

1 CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
nikos@cwi.nl,

2 University of Glasgow, Department of Computer Science, Scotland
kostas@dcs.gla.ac.uk

Abstract. Non-binary constraint satisfaction problems (CSPs) can be
solved in two different ways. We can either translate the problem into
an equivalent binary one and solve it using well-established binary CSP
techniques or use extended versions of binary techniques directly on the
non-binary problem. Recently, it has been shown that the hidden vari-
able encoding is a promising method of translating non-binary CSPs into
binary ones. In this paper we make a theoretical and empirical investi-
gation of arc consistency and search algorithms for the hidden variable
encoding. We analyze the potential benefits of applying arc consistency
on the hidden encoding compared to generalized arc consistency on the
non-binary representation. We also show that search algorithms for non-
binary constraints can be emulated by corresponding binary algorithms
that operate on the hidden variable encoding and only instantiate orig-
inal variables. Empirical results on various implementations of such al-
gorithms reveal that the hidden variable is competitive and in many
cases better than the non-binary representation for certain classes of
non-binary constraints.

1 Introduction

The majority of the research on constraint satisfaction problems (CSPs) has
focused on algorithms and heuristics that are applied on binary problems. The
main reason for this is that any problem that contains constraints of an ar-
bitrary arity can be transformed to an equivalent binary problem [11]. In the
past, research on non-binary CSPs has mainly dealt with filtering algorithms.
Recently, it is being recognized that more research on other non-binary issues
is also required. As a result, search algorithms for binary CSPs have been ex-
tended for non-binary ones ([3]) and the efficiency of binary encodings has been
investigated ([1,12,7]).

The most popular binary translations are the dual graph encoding and the
hidden variable encoding. It is not clear which of the two is the best. However,
the hidden variable encoding has some nice theoretical properties which make it
a promising technique in many cases [12,13]. First, arc consistency (AC) on this

T. Walsh (Ed.): CP 2001, LNCS 2239, pp. 168–182, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Solving Non-binary CSPs Using the Hidden Variable Encoding 169

binary representation achieves the same consistency level as generalized arc con-
sistency (GAC) on the non-binary problem. This means that MAC (i.e., main-
taining arc consistency) applied on the hidden variable encoding of a non-binary
CSP visits the same search tree nodes as MGAC (i.e., maintaining generalized
arc consistency) on the non-binary representation. Second, enforcing AC on an
arbitrary encoded non-binary constraint takes the same number of consistency
checks in the worst-case as GAC on its non-binary representation. These the-
oretical results, indicate that the hidden variable encoding is a promising way
of solving non-binary CSPs with MAC. In practice, we can only use the hidden
variable encoding on CSPs that have tight constraints. For CSPs with a large
number of loose constraints it is reasonable to assume that the hidden variable
encoding will be inefficient due to the large space requirements. It has also been
shown experimentally that solving the binary encoding of a non-binary CSP can
be less efficient than applying a non-binary version of some search algorithm,
and vice versa, depending on the tightness of the constraints [1,12].

In this paper we take a closer look on arc consistency and search algorithms
for the hidden variable encoding. The difference between an arc consistency
algorithm on the encoding and a generalized arc consistency algorithm is the
fact that the former has to update the domains of the hidden variables as well as
the original ones. We show that this can lead to an arc consistency algorithm that
runs on the encoding and, for any arc consistent graph, performs exactly the same
number of consistency checks as the corresponding generalized arc consistency
algorithm. For arc inconsistent graphs we show that the AC on the encoding can
detect the inconsistency earlier and thus perform fewer checks than GAC. In a
special case, the algorithms are equivalent not only in consistency checks but also
in all the primitive operations they perform (e.g. domain lookups and deletions).
In general, there is a trade-off between the binary and non-binary algorithms in
the amount of primitive operations they perform. We also show that, like MGAC,
the generalizations of forward checking to non-binary CSPs can be simulated
by a corresponding binary forward checking algorithm on the hidden variable
encoding that only instantiates original variables, resulting in the same node
visits. We make an empirical comparison of different implementations of binary
and generalized algorithms which reveals that the hidden variable encoding can
be competitive and often better than the non-binary representation in certain
classes of tight non-binary CSPs.

2 Background

A constraint satisfaction problem (CSP) P is defined by a triple (X ,D, C). X is
a set of n variables. Each variable xi ∈ X takes values from a domain Di ∈ D.
C is a set of e constraints. Each k-ary constraint is defined over an ordered set
of variables {x1, . . . , xk} by a subset of the Cartesian product D1 × . . . × Dk

that specifies the set of allowed value combinations (tuples). A constraint can
be defined either extensionally by the set of allowed tuples or intensionally by a
predicate or arithmetic function. In the following we will assume that all non-

170 N. Mamoulis and K. Stergiou

binary constraints are defined extensionally by nature, or can be represented
extensionally without excessive space requirements. We also assume that there
is at most one constraint per variable combination.1

A value a in the domain D of variable x is consistent with a constraint c
if x is not included in the variables of the constraint, or if it is included and
there exists a valid tuple τ in c where x = a. In the latter case we say that τ is a
support for a in c. Checking whether a tuple is a support for a variable value pair
(x, a) is called a consistency check. A variable x is consistent with a constraint c
if D 	= ∅ and all its values are consistent with c. A constraint c is arc consistent
(AC) if ∀xi ∈ X , xi is consistent with c. A binary CSP is arc consistent if all its
constraints are arc consistent. A CSP is singleton arc consistent (SAC) iff it has
non-empty domains and for any instantiation of a variable, the problem can be
made arc consistent. We call the generalizations of AC and SAC to non-binary
CSPs GAC and SGAC respectively. Finally, a solution to a CSP is an assignment
of values to variables which are consistent with all constraints.

Following [8], we call a local consistency property A stronger than B iff for
any problem A deletes at least the same values as B, and strictly stronger iff it
is stronger and for at least one problem A deletes more values than B. We call
A equivalent to B iff they delete the same values for all problems. Similarly, we
call a search algorithm A stronger than an algorithm B iff for every problem
A visits at most the same search tree nodes as B, and strictly stronger iff it is
stronger and for at least one problem A visits less nodes than B. A is equivalent
to B iff they visit the same nodes for all problems.

2.1 Hidden Variable Encoding

The hidden variable encoding [11] is a well-known method for transforming a
non-binary CSP to a binary one. It encodes the non-binary constraints to vari-
ables (called “hidden” variables) that have as domain the valid tuples of the
constraint. For each tuple in the domain of the hidden variable vc, the encoding
introduces compatibility constraints between vc and each original variable xi in
the constraint c. Each constraint specifies that the tuple assigned to vc is con-
sistent with the value assigned to xi. Consider the following example with six
variables with 0,1 domains, and four constraints: x1+x2+x6 = 1, x1−x3+x4 = 1,
x4 + x5 − x6 ≥ 1, and x2 + x5 − x6 = 0. In the hidden variable encoding (Fig-
ure 1) there are, in addition to the original six variables, four hidden variables.
The domains of these hidden variables are the tuples that satisfy the respective
constraint. For example, the hidden variable associated with the third constraint
v3 has the domain {(0, 1, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1)}, as these are the tuples of
values for (x4, x5, x6) which satisfy x4+x5−x6 ≥ 1. There are now compatibility
constraints between v3 and x2, between v3 and x5 and between v3 and x6, as
these are the variables mentioned in the third constraint.

1 Multiple constraints on the same set of variables can be reduced to a single constraint
in the extensional representation.

Solving Non-binary CSPs Using the Hidden Variable Encoding 171

v1 v4

v2 v3

(0,0,1) (0,1,0)

(1,0,0)

(0,0,1) (1,0,0)

(1,1,1)

(0,1,0) (1,0,0)

(1,1,0) (1,1,1)

(0,0,0) (0,1,1)

(1,0,1)

0 1 0 1 0 1 0 10 10 1
x2 x3 x4 x5 x6

r1
r2 r3

r1 r2 r3

r3

r1 r2 r3

r2r1

x1

Fig. 1. Hidden variable encoding of a non-binary CSP. The binary constraint ri applies
to a tuple and a value and is true iff the ith element of the tuple equals the value.

3 Arc Consistency

In this section we study the relationship between AC on the hidden variable en-
coding and GAC in more detail by examining the benefits of revising the domains
of hidden variables. We will show that these revisions can help an AC algorithm
on the encoding to identify inconsistencies earlier than the corresponding GAC
algorithm.

3.1 GAC Algorithms

GAC-4 [10] is designed for constraints represented in extension by their allowed
tuples. Each time a value a is deleted from a variable x, the tuples that include
this variable-value pair are also deleted from the lists of allowed tuples. The
deletion of these tuples may trigger the deletion of further values that lose their
support, and so on. We can view this algorithm as a binary algorithm that runs
on the hidden variable encoding. The only modification we need to make is to
consider a constraint c as a hidden variable hc and the set of allowed tuples of
c as the domain of hc. The propagation of deletions can then be done in exactly
the same way resulting in the same primitive operations as in the non-binary
case.2 By primitive operation we mean a domain lookup (i.e, check if a value is
in the domain of a variable), a deletion of a value (or a tuple), a consistency
check, and any other check in a list or other data structure.

GAC-3 is an extension of the well-known AC-3 algorithm to non-binary CSPs.
When a value is deleted from a variable, GAC-3 adds to a stack all constraints
that involve that variable. Then, constraints are removed from the stack and are
“revised”. Revising a constraint means searching for a new supporting tuple for
the values of all variables in the constraint. Checking whether an variable-value
assignment is consistent with respect to a constraint c = (x1, . . . , xk) involves
2 This equivalence has been pointed out by Christian Bessière at CP’99.

172 N. Mamoulis and K. Stergiou

finding all tuples < a1, . . . , ak > in c that contain this assignment and checking
if values a1, . . . , ak are still in the domains of variables x1, . . . , xk. The reason
for this is that GAC-3 like algorithms, in their standard implementation, do
not make updates in the lists of allowed tuples like GAC-4 does when a value
is deleted. So, they cannot check directly if tuple < a1, . . . ak > is still valid.
This results in extra operations compared to GAC-4, but on the other hand
GAC-3 like algorithms avoid updating the usually large sets of allowed tuples
(i.e., hidden variable domains) and require less space. Like GAC-4, a GAC-3
algorithm that updates the lists of allowed tuples can be viewed as a binary
algorithm that operates on the hidden variable encoding. GAC-schema [5] is
another GAC algorithm that does not update the allowed tuples but instead
looks for supports in a similar, but more sophisticated, way as GAC-3.

Recently, the binary AC-3 algorithm has been modified to yield an algorithm
with optimal worst-case time complexity [6,14]. What makes the new AC-3 al-
gorithms optimal is the use of a pointer currentSupportx,a,cxy for each value a
of a variable x involved in a constraint c between x and y. This pointer records
the current value in the domain of y that was found to be a support of a. After
a value deletion, if we look for a new support for a in y, we first check if the
value where currentSupportx,a,cxy

points is still in the domain of y. If not, we
search for a new support starting from the value immediately after the current
support. Assuming that the domains are ordered, [6,14] prove that the new al-
gorithm is optimal. This algorithm can be extended to non-binary constraints
in a straightforward way. Again, we can use a pointer currentSupportx,a,c that
points to the last tuple (assuming an ordering of the tuples) in constraint c that
supported value a of variable x, where x is a variable involved in c. A sketch of
the main functions of the algorithm, omitting the initialization phase, is shown
in Figure 2. We now briefly discuss the complexity of this algorithm.

Like GAC-3, when a variable-value pair (x, a) is deleted, each constraint
involving x is pushed on the stack. Then, constraints are popped from the stack
and revised. Each k−ary constraint can be revised at most kd times, one for
every deletion of a value from the domain of one of the k variables. Since we use
the pointers currentSupportx,a,c, for each variable-value pair (x, a) we can check
at most dk−1 subtuples to find a support.3 This results in O(kddk−1) checks for
one constraint in the worst-case. For e constraints the worst-case complexity,
measured in consistency checks, becomes O(ekdk). To check if a tuple is valid,
in lines 3 and 4, we have to check if the values in the tuple are present in the
domains of the corresponding variables. If one of these values has been deleted
then the tuple is not valid.

3.2 AC on the Hidden Variable Encoding

As discussed, the worst-case cost of AC on the hidden variable encoding, mea-
sured in consistency checks, is the same as GAC on the non-binary representa-
3 In fact, min{dk−1, |T |} subtuples, where |T | is the number of allowed tuples in the
constraint. See [6,14] for details.

Solving Non-binary CSPs Using the Hidden Variable Encoding 173

function Propagation
While Q is not empty

pick c from Q
for each uninstantiated xi ∈ c

if Revise(xi, c) = TRUE then
if domain of xi is empty then return INCONSISTENCY

1 put in Q all constraints that involve xi

Return CONSISTENCY
function Revise(xi, c)

DELETION ← FALSE
for each value a in the domain of xi

2 if currentSupportxi,a,c is not valid then
3 if ∃ τ(∈ c) > currentSupportxi,a,c, τ includes (xi, a) and τ is valid

then currentSupportxi,a,c ← τ
4 else remove a from the domain of xi

DELETION ← TRUE
Return DELETION

Fig. 2. The algorithm of [6,14] for non-binary CSPs.

tion. When GAC-4 and its equivalent in the encoding are used, we can also get
exactly the same number of primitive operations. We now analyze the difference
between the extended GAC-3 algorithm and its equivalent on the encoding. To
get the hidden variable equivalent of the GAC-3 algorithm shown in Figure 2 we
need to make 3 changes. First, any references to constraints are substituted by
references to hidden variables. For example, line 1 in Figure 2 will read: “put in
Q all hidden variables that involve xi”. Second, after a value is removed from
the domain of an original variable (line 4), all tuples that include that value are
removed from the domains of the corresponding hidden variables. Third, check-
ing if a tuple is valid is done in a different way than in the non-binary case. If
a tuple is not valid then one of its values has been removed from the domain of
the corresponding variable. This means that the tuple has also be removed from
the domain of the hidden variable. Therefore, to check the validity of a tuple we
only need to look in the domain of the hidden variable and check if the tuple is
present.

We will now show that the GAC algorithm of Figure 2 and its corresponding
AC algorithm on the encoding will perform the same number of consistency
checks when applied on a problem that is GAC. Consider that if no domain
wipeout in any variable (original or hidden) occurs then the two algorithms will
add constraints (hidden variables) to the stack and remove them for revision
in exactly the same order. The difference is that the binary version will revise
domains of hidden variables as an extra step. However, this does not involve any
consistency checks. Therefore, we only need to show that if a value is deleted
from a variable during the revision of a constraint or finds a new support in the
constraint then these operations will require the same number of checks in both
representations. Assume that in the non-binary version of the algorithm value a

174 N. Mamoulis and K. Stergiou

is deleted from variable x because it has no support in constraint c. If |T | is the
number of allowed tuples in c then this will require |T | − currentSupportx,a,c

checks, one for each of the tuples in c that have not been checked yet. If the
value is not deleted but finds a new support τ , with τ > currentSupportx,a,c,
then τ − currentSupportx,a,c checks will be performed. In the hidden variable
encoding, x will be processed in the same order as in the non-binary version and
we will require |T | − currentSupportx,a,hc or τ − currentSupportx,a,hc checks
depending on the case. hc represents the hidden variable corresponding to c.
Obviously, both supports are the same, since a tuple in c corresponds to a value
in hc, and the same number of checks will be performed in both representations.

On the other hand, on a problem that is not GAC, the AC algorithm on the
encoding can perform less checks than the GAC algorithm. Consider a problem
that includes variables x1, x2, x3, x4 with domains {0, 1}, {0, 1}, {0, . . . , 9}, and
{0, 1}, respectively. There are two constraints, c and c′, over variables (x1, x2, x3)
and (x1, x2, x4) respectively. Value 0 of x2 is supported in c by tuples that include
the variable-value pair (x1, 1). Value 0 of x1 is supported in c′ by tuples that
include the variable-value pair (x2, 0). Values 0, . . . , 9 of x3 are supported in c
by tuples that include (x2, 0) and by tuples that include (x2, 1). Assume that
variable x1 is instantiated to 0, which means that the deletion of 1 from x1
must be propagated. In the encoding, we will first delete all tuples that include
the value (x1, 1) from hidden variables hc and hc′ . Then, we revise all original
variables connected to hidden variables hc and hc′ . Assuming that hc is processed
first, value 0 of x2 will have no support in hc so it will be deleted. As a result, we
will delete all tuples from hidden variable hc′ that include the pair (x2, 0). This
means that the domain of hc′ will be wiped out. In the non-binary representation,
after the deletion of 0 from x2, we will find that value 1 of x2 and all values of
x3 have supports in c. This will involve checks that are avoided in the encoding.
The inconsistency will be discovered when we process constraint c′ and find out
that value 1 of x2 has no support in c′ resulting in the domain wipeout of x2.

We have demonstrated that AC in the hidden variable encoding can detect
an inconsistency with fewer checks than GAC in the non-binary representation,
while on graphs that are AC both algorithms will perform the same checks. This
does not mean that algorithms on the encoding will always be more efficient in
run times because the run time of an algorithm depends on the total number
of primitive operations it will perform. There is a trade-off in the operations
that the GAC algorithm performs in the non-binary version compared to the
binary one. Assuming there are kp past (instantiated) and kf future variables
in a constraint with |T | allowed tuples then the binary GAC-3 algorithm will,
in the worst case, perform O(kfd

kf) checks + O(|T |) updates in the domain
of the hidden variable, when applied on the encoding. That is, the worst-case
complexity in the number of primitive operations is O(kfd

kf + |T |). The non-
binary GAC-3 will perform O(kkfd

kf) operations in the worst case. That is, for
every check, the algorithm will have to make O(k) domain checks to make sure
that the checked tuple is valid.

Solving Non-binary CSPs Using the Hidden Variable Encoding 175

4 Search Algorithms

Like GAC algorithms, non-binary search algorithms can be simulated by equiv-
alent algorithms that run on the hidden variable encoding. For example, it has
been shown that the MGAC algorithm on a non-binary CSP is equivalent to
MAC on the hidden variable encoding of the CSP when only original variables
are instantiated and similar branching heuristics are used [12]. We now show
that similar results hold for generalized versions of forward checking (FC).

According to the simplest generalization of FC, forward checking is performed
only after k-1 variables of an k-ary constraint have been instantiated. This algo-
rithms is called nFC0 in [3]. More, and stronger, generalizations of FC to non-
binary constraints were introduced in [3]. These generalizations differ between
them in the extent of look-ahead they perform after each variable instantiation.
For example, algorithm nFC5, which is the strongest version, tries to make the
set of constraints involving at least one past variable and at least one future vari-
able GAC. All the generalizations reduce to simple FC when applied to binary
constraints.

Here we will show that the various versions of nFC are equivalent, in terms
of visited nodes, to binary versions of FC that run on the hidden variable en-
coding of the problem. As mentioned, this holds under the assumption that the
binary algorithms only instantiate original variables and they use similar branch-
ing heuristics as their non-binary counterparts. We call these binary algorithms
hFC0–hFC5. Each binary algorithm performs the same amount of propagation
as the corresponding non-binary algorithm. For example, hFC5 will enforce AC
on the set of hidden variables, and original variables connected to them, such
that each hidden variable is connected to at least one past original variable
and at least one future original variable. The equivalence between nFC1 and an
algorithm called FC+ in [1] has already been proven in [3].

Proposition 1. In any non-binary CSP, algorithms nFC0–nFC5 are equivalent
to binary forward checking algorithms hFC0–hFC5 that operate on the hidden
variable encoding of the problem resulting in the same node visits.

Proof. We prove this for nFC5, the strongest among the generalized FC algo-
rithms. Proofs for the other versions are similar. We only need to prove that at
each node of the search tree algorithms nFC5 and hFC5 will delete exactly the
same values from original variables. Assume that at some node, after instantiat-
ing the current variable, nFC5 deletes value a from a future variable x because
it found no support in a constraint c that has at least one instantiated variable.
hFC5 will also delete this value from x because it will find no consistent tuple
in the corresponding hidden variable hc. This is due to the fact that the current
domain of hc will contain only valid tuples with respect to the current variable
domains of the original variables, since inconsistent ones will have been deleted
either in a previous run of AC, or after the instantiation of the current variable
(recall that hc contains at least one instantiated variable). Now in the opposite
case, if hFC5 deletes value a from an original variable x it means that all tuples
including that assignment are not present in the domains of a hidden variable

176 N. Mamoulis and K. Stergiou

hc that include x and at least one past variable. In other words, there is no
consistent tuple in c, with respect to the current variable domains, that contains
the assignment x = a. As a result, nFC5 will remove a from the domain of x.

��
Therefore, if we never instantiate hidden variables in the binary representation
and apply algorithms hFC0–hFC5 we will end up with the same node visits as the
respective nFC0–nFC5 algorithms in the non-binary representation. Note that
in [1] experimental results show differences between FC on the hidden variable
encoding and non-binary FC. However, the algorithms compared there were
FC+ and nFC0 which are not equivalent. We have also experimented with a
stronger version of hFC5, which we call hFC5b, that visits fewer nodes than
nFC5 and hFC5 but may perform more operations at each node. hFC5b is a FC
algorithm that operates exactly like hFC5 in that no original variable involved
in constraints that contain only future variables is revised. If however a value
is deleted from some future variable x because of a constraint between x and
past variables then all hidden variables connected to x are revised, including
hidden variables that are only connected to future originals. Observe that there
is no equivalent to hFC5b that applies on the non-binary representation. In
general, the hidden variable encoding is a flexible representation that allows
for the definition of algorithms that maintain more refined consistency levels
depending on which hidden variables are updated.

5 Instantiating Hidden Variables

So far we have shown that solving an extensionally defined CSP by using the
non-binary representation is in many ways equivalent to solving it using the
hidden variable encoding, assuming that only original variables are instantiated.
A natural question is whether search techniques which are inapplicable in the
non-binary case can be applied on the encoding. The answer is the ability of a
search algorithm that operates on the encoding to select and instantiate hidden
variables. In the equivalent non-binary representation this would imply instan-
tiating values of variables simultaneously. To implement such an algorithm we
would have to modify standard search algorithms and heuristics or devise new
ones. On the other hand, in the hidden variable encoding an algorithm that in-
stantiates hidden variables can be easily implemented using a standard search
algorithm and branching heuristic. Note, that if we only instantiate original vari-
ables then the hidden variables will be instantiated implicitly. That is, when all
the original variables connected to a hidden are instantiated then the domain
of the hidden variable is reduced to a singleton (i.e., it is instantiated). As the
next section shows, by instantiating hidden variables in the encoding we can also
achieve higher levels of consistency than in the non-binary representation.

5.1 Singleton Consistencies

We know that enforcing AC in the hidden variable encoding is equivalent to
enforcing GAC in the original problem. Here we prove that when we move up to

Solving Non-binary CSPs Using the Hidden Variable Encoding 177

the consistency level of SAC then enforcing it on the hidden variable encoding is
strictly stronger than enforcing SGAC on the original problem. This is derived
from the ability of SAC to istantiate hidden variables and check their consistency.
We denote by PDi={a} the CSP obtained by restricting the domain of variable
xi to {a} in a CSP P .

Proposition 2. Achieving singleton arc consistency on the hidden variable en-
coding of a non-binary problem is strictly stronger than achieving singleton gen-
eralized arc consistency on the variables in the original problem.
Proof. We have to prove that if a value a of a variable xi in a CSP P is not
SGAC then SAC on the encoding of P will prune that value. From [12] we know
that if a value b of variable xj is not GAC in P |Di={a} then it is also arc in-
consistent in the encoding of P |Di={a}. For SGAC to remove value a, all values
in a variable xj must be deleted when a is assigned to xi. According to the
above, all such values will also be deleted from the domain of xi in the hidden
variable encoding of P |Di={a}. Therefore, value a will be singleton arc incon-
sistent in the hidden variable encoding. To show strictness, consider a problem
with five variables {x1, x2, x3, x4, x5}, all of them with domain {0, 1}, and the
following ternary constraints: A constraint over {x1, x2, x3} with allowed tuples
{< 0, 0, 1 >,< 0, 1, 0 >,< 1, 0, 0 >,< 1, 1, 1 >}, a constraint over {x1, x2, x4}
with allowed tuples {< 0, 0, 1 >,< 0, 1, 0 >,< 1, 0, 0 >,< 1, 1, 1 >}, and a con-
straint over {x1, x2, x5} with allowed tuples {< 0, 1, 0 >,< 1, 0, 1 >}, Enforcing
SGAC on this problem will make no deletions. However, enforcing SAC on the
encoding will show that the problem is insoluble. If we take the hidden vari-
able h1 corresponding to the constraint over {x1, x2, x3}, for example, enforcing
SAC will delete all the tuples from its domain because they are all singleton arc
inconsistent.

��
In [12] it is proved that all consistency levels between SAC and AC (e.g.

path inverse consistency and restricted path consistency) collapse onto AC, in
the hidden variable encoding. Also, neighborhood inverse consistency, which is
incomparable to SAC collapses onto AC. Therefore, the weakest consistency level
where we notice a gap between the amount of pruning achieved in the hidden
encoding and the non-binary representation is SAC. In fact, to get the pruning
achieved by SAC in the encoding we only need to consider the hidden variables.
For example, if all tuples in a hidden variable that include the variable-value
pair (x, a) are removed by SAC then so will the value a from x. However, the
extra pruning achieved in the encoding incurs extra cost because of the (usually)
large domain sizes of the hidden variables. If we restrict SAC on encoding to the
original variables only then we get the same level of consistency as SGAC in the
original problem. The proof is easy and is omitted due to space restrictions.

6 Experimental Results

In this section we study empirically the efficiency of algorithms that run on
the hidden variable encoding compared to their non-binary counterparts. For

178 N. Mamoulis and K. Stergiou

the empirical investigation we use randomly generated problems and benchmark
crossword puzzle generation problems. Both of these classes are naturally defined
by an extensional representation of the constraints. In the case of crossword
puzzles the constraints are by nature very tight. In the case of random problems
we also focus our attention on tight instances. The reason being that the binary
encoding can only be practical if the constraints are tight enough so that the
domains of the hidden variables are not prohibitively large.

6.1 Random Problems

Random problems were generated using the extended model B as in [3]. Under
this model, a random CSP is defined by five parameters < n, d, k, p, q >, where
n is the number of variables, d the domain size, k the arity of the constraints,
p the density of the generated graph, and q the looseness of the constraints. p
and q are given as a % percentage of the constrained variable combinations and
allowed tuples in these constraints, respectively. In this empirical comparison we
included the following algorithms: MGAC, MHAC, which stands for MAC in
the encoding that only instantiates original variables, nFC5, hFC5, and hFC5b.
hFC5 and hFC5b also instantiate only original variables. All algorithms use the
dom/deg heuristic for variable ordering [4] and lexicographic value ordering. The
GAC and AC algorithms used are the ones described in Sections 3.1 and 3.2. We
chose to use these algorithms because they have a good asymptotic complexity
and they are easy to implement. We do not include results on algorithms that can
instantiate hidden variables as well as original ones because experiments showed
that such algorithms have very similar behavior to the corresponding algorithms
that instantiate only original variables. The reason is that, because of the nature
of the constraints, the dom/deg heuristic almost always selects original variables.
In the rare cases where the heuristic selected hidden variables, this resulted in
an increase in node visits. Table 1 shows the performance of the algorithms on
four classes of randomly generated ternary CSPs. All classes are from the hard
phase transition region. Classes 1 and 2 are sparse, 3 is very sparse, and 4 is
again relatively sparse but denser than the others. We report node visits, CPU
times, and consistency checks. A consistency check consists of two operations.
1) Checking if a tuple τ includes the value for which we search for support, and
2) checking if τ is valid.

From Table 1 we can see that algorithms that operate on the encoding and
instantiate only original variables perform fewer checks in all classes than the
corresponding non-binary algorithms. This is due to their ability of early do-
main wipeout detection at dead ends. CPU times are influenced not only by the
number of checks but by the total number of primitive operations performed.
We can see that MHAC performs better than MGAC on the sparser problems.
However, the differences in classes 1 and 2 are marginal. In general, for all the
3-ary classes we tried with density less than 3% − 4% the relative performance
of MHAC and MGAC (in run times) ranged from being equal to a 40% advan-
tage for MHAC. The differences are more notable on the very sparse class 3.
This is due to the fact that for sparse problems the hard region is located at

Solving Non-binary CSPs Using the Hidden Variable Encoding 179

Table 1. Comparison of algorithms on sparse random classes. Classes 1 and 2 taken
from [3]. CPU times are in seconds. For nodes and checks we give mean numbers for
50 instances at each class. “K” implies ×103 and “M” implies ×106

nFC5 hFC5 hFC5b MGAC MHAC
class 1: n = 30, d = 6, k = 3, p = 1.847, q = 50
nodes 4645 4645 4150 3430 3430

sec 1.47 1.65 1.90 2.08 1.90
checks 13M 11M 10M 20M 14M
class 2: n = 75, d = 5, k = 3, p = 0.177, q = 41
nodes 21976 21976 16723 7501 7501

sec 5.67 6.90 5.63 4.09 3.41
checks 17M 16M 12M 24M 15M
class 3: n = 50, d = 10, k = 5, p = 0.001, q = 0.5
nodes 21283 21283 20260 16496 16496

sec 58.56 22.25 27.73 74.72 22.53
checks 783M 643M 631M 847M 628M
class 4: n = 20, d = 10, k = 3, p = 5, q = 40

nodes 5400 5400 5124 4834 4834
sec 4.19 5.19 7.78 5.75 8.15

checks 119M 99M 95M 151M 119M

low constraint tightnesses (i.e., small domains for hidden variables) where only
a few operations are required for the revision of hidden variables. Another factor
contributing to the dominance of the binary algorithms in class 5 is the arity of
the constraints. The non-binary algorithms require more operations to check the
validity of tuples when the tuples are of large arity, as explained in Section 3.1.

When the density of the graph increases (class 4), the overhead of revising the
large domains of hidden variables and restoring them after failed instantiations
slows down the binary algorithms, and as a result they are outperformed by the
non-binary ones. For denser classes than the ones reported, the phase transition
region is at a point where more than half of the tuples are allowed, and in such
cases the non-binary algorithms perform even better.

6.2 Crossword Puzzles

Crossword puzzle generation problems have been used for the evaluation of
search heuristics for CSPs [9,2] and binary encodings of non-binary problems
[1,12]. Tables 2 and 3 show the performance of the tested algorithms for var-
ious crossword puzzles in running time and number of visited nodes. We used
selected hard puzzles from [9] and 20 15×15 and 19×19 puzzles from [2]. Apart
from algorithms that instantiate only original variable we tested versions of hFC5
and MAC which may also instantiate hidden variables. We call these algorithms
hidFC5, hidFC5b, and hidMAC. Again, all algorithms use the dom/deg heuris-
tic for variable ordering. An em-dash (—) is placed wherever some method did
not manage to find a solution within 5 hours of cpu-time. n is the number of

180 N. Mamoulis and K. Stergiou

words and m is the number of blanks in each puzzle. Problems marked by (*)
are insoluble.

We used the Unix dictionary for the allowed words in the puzzles. Four puz-
zles (15.06, 15.10, 19.03, 19.04) could not be solved by any of the algorithms
within 5 hours of cpu time. Also two puzzles (19.05 and 19.10) were arc in-
consistent. GAC discovered the inconsistency slower than HAC in both cases
(around 3:1 time difference in 19.05 and 10:1 in 19.10) because the latter method
discovered early the domain wipe-out of a hidden variable.

At the rest of the puzzles we can observe that MHAC usually performs better
than MGAC on the hard instances. For the hard insoluble puzzles the difference
is considerable, and so is the difference between hFC5 and nFC5. This is mainly
due to the uniformly large arity of the constraints in these classes.4 Another
interesting observation is that there can be large differences between the perfor-
mance of methods that instantiate hidden variables and those which instantiate
only original ones. In many cases hidMAC managed to find a (different) solu-
tion than MHAC and MGAC earlier. This shows that we can benefit from a
method that instantiates hidden variables. In puzzle 19.08 hidMAC managed to
find a solution fast, while the other MAC algorithms thrashed. Note, that the
FC algorithms also found a solution quickly, which means that in this case the
propagation of MGAC and MHAC misguided the variable ordering heuristic.
On the other hand, the hid* methods were also subject to thrashing in instances
where other methods terminate. The fact that in all insoluble puzzles hidMAC
did not do better than MHAC shows that its performance is largely due to the
variable ordering scheme. When comparing MAC methods with equivalent FC5
ones, we see that in most cases maintaining full consistency is better for this class
of problems. Also, the hFC5b and hidFC5b algorithms do not always pay-off.

Regarding node visits, observe that in many cases hidden variable instantia-
tion methods visit less nodes than their original variable counterparts, but this
does not reflect to the same time performance difference because when a hid-
den variable is instantiated hidMAC does more work than when an original one
is. It has to instantiate automatically all original variables involved in the hid-
den and propagate these changes to all other hidden variables containing them.
Note, that constraints in crosswords are much tighter than the constraints in
random problems. For example, the tightness of a 6-ary constraint in a puzzle is
99,999988%. This is why the hid* methods can perform well on such problems.
Consistent problems with such high tightnesses cannot be generated randomly.

In general, we believe that if we exploit better the potential of instantiating
hidden variables (i.e., by a suitable variable ordering heuristic), methods that
instantiate hidden variables can go down the search tree faster than ones that
consider only original variables, because they can benefit from small hidden
variable domains. Notice that hidMAC reduces to MHAC if it instantiates only
original variables. Therefore, if employed with the optimal variable ordering it
can never be worse than MHAC. We are currently working towards devising such
ordering heuristics.

4 Puzzles 6×6–10×10 correspond to square grids with no blank squares.

Solving Non-binary CSPs Using the Hidden Variable Encoding 181

Table 2. Comparison (in cpu time) of algorithms on crossword puzzles. All times are
in seconds except those followed by “m” (minutes).

puzzle n m MGAC MHAC hidMAC nFC5 hFC5 hidFC5 hFC5b hidFC5b
15.01 78 189 8.5 7.9 4.4 11.5 15.4 5.3 10.1 4.2
15.02 80 191 24.5 26.9 — 77.8 138.7 — 61.1 —
15.03 78 189 4.2 4.6 2.3 21.2 30.6 2.3 30.9 2.81

15.04* 76 193 290 295 218 24.5 29.8 979 243 791
15.05 78 181 3 3.1 2.2 3.7 3.8 3.3 4.8 2.5
15.07 74 193 670 335 376m 48.3 39.4 482m 465m 367m
15.08 84 186 2.32 2.27 2.89 3.22 3.37 3.52 3.27 3.1
15.09 82 187 2.24 2.3 2.45 1.92 1.81 — 2.43 —
19.01 128 301 7.6 7.3 6.9 — — 4.56 — 4.8
19.02 118 296 198 204 — — — — 495 —
19.06 128 287 5.9 4.7 5.8 4.1 4.9 4.6 5 —
19.07 134 291 3.4 3.4 4.4 4.1 4.1 5.2 3.8 5.2
19.08 130 295 — — 5.45 4 3.3 4.7 3.6 4.7
19.09 130 295 3.64 5 4.2 6.2 6.7 4.6 4.8 4.8

puzzleC 78 189 77.5 107 — 153 209 — 115 —
6×6 12 36 84 55 64 109 75 104 73 79

7×7* 14 49 120m 75m 96m 176m 107m 159m 120m 148m
8×8* 16 64 45m 29m 42m 58m 32m 57m 35m 59
9×9* 18 81 488 337 454 868 470 737 614 797

10×10* 20 100 117.7 77 93 534 331 363 192 217

Table 3. Comparison (in node visits) of algorithms on crossword puzzles. MGAC and
MHAC visit the same number of nodes and this holds also for nFC5 and hFC5.

puzzle n m MGAC,MHAC hidMAC nFC5,hFC5 hidFC5 hFC5b hidFC5b
15.01 78 189 574 200 1607 398 1067 295
15.02 80 191 1312 — 15559 — 6029 —
15.03 78 189 338 126 4105 159 3364 183

15.04* 76 193 19667 18479 2869 75450 25202 63985
15.05 78 181 286 145 528 248 459 189
15.07 74 193 12733 568768 4180 1504450 2700150 744180
15.08 84 186 247 165 362 277 294 187
15.09 82 187 251 155 247 — 287 —
19.01 128 301 469 309 — 224 — 202
19.02 118 296 15764 — — — 33079 —
19.06 128 287 375 158 357 200 346 —
19.07 134 291 305 206 344 240 306 222
19.08 130 295 — 191 332 249 322 218
19.09 130 295 308 167 458 199 347 171

puzzleC 78 189 9827 — 26315 — 11820 —
6×6 12 36 2263 2097 7332 5735 5028 4259

7×7* 14 49 116082 138199 634858 455716 396791 303330
8×8* 16 64 31386 40037 231950 163527 108338 78076
9×9* 18 81 4972 5715 71020 35736 23279 14344

10×10* 20 100 1027 1120 35492 18922 13105 10438

7 Conclusion

In this paper, we performed a theoretical and empirical investigation of arc con-
sistency and search algorithms for the hidden variable encoding of non-binary
CSPs. We analyzed the potential benefits of using AC algorithms on the hidden
encoding compared to GAC algorithms on the non-binary representation. We
showed that FC algorithms for non-binary constraints can be emulated by cor-

182 N. Mamoulis and K. Stergiou

responding binary algorithms that operate on the hidden variable encoding and
only instantiate original variables. Empirical results on various implementations
of search algorithms showed that the hidden variable is competitive and in many
cases better than the non-binary representation for tight classes of non-binary
constraints. A general conclusion from this study is that there is an interest-
ing mapping between algorithms for non-binary constraints and corresponding
algorithms for binary encodings, even in refined levels of implementation. For
future work we plan to develop variable ordering heuristics more suitable to the
hidden encoding. Also, we intend to investigate how lessons learned from this
study apply to other GAC algorithms, like GAC-schema.

Acknowledgements. The second author is a member of the APES research
group and would like to thank all other members. Especially, Peter van Beek, Ian
Gent, Patrick Prosser and Toby Walsh. We would also like to thank Christian
Bessière.

References

1. F. Bacchus and P. van Beek. On the Conversion between Non-Binary and Binary
Constraint Satisfaction Problems. In Proceedings of AAAI’98, pages 310–318, 1998.

2. A. Beacham, X. Chen, J. Sillito and P. van Beek. Constraint programming lessons
learned from crossword puzzles. In Proceedings of the 14th Canadian AI Conf.,
2001.

3. C. Bessière, P. Meseguer, E.C. Freuder, and J. Larrosa. On Forward Checking for
Non-binary Constraint Satisfaction. In Proceedings of CP’99, pages 88–102, 1999.

4. C. Bessière and J.C. Régin. MAC and Combined Heuristics: Two Reasons to For-
sake FC (and CBJ?) on Hard Problems. In Proceedings of CP’96, pages 61–75,
1996.

5. C. Bessière and J.C. Régin. Arc Consistency for General Constraint Networks:
Preliminary Results. In Proceedings of IJCAI’97, pages 398–404, 1997.

6. C. Bessière and J.C. Régin. Refining the basic constraint propagation algorithm.
In Proceedings of IJCAI’2001.

7. X. Chen. A Theoretical Comparison of Selected CSP Solving and Modeling Tech-
niques. PhD thesis, University of Alberta, Canada, 2000.

8. R. Debruyne and C. Bessière. Some practicable filtering techniques for the con-
straint satisfaction problem. In Proceedings of IJCAI’97, pages 412–417, 1997.

9. M. Ginsberg, M. Frank, M. Halpin, and M. Torrance. Search lessons learned from
crossword puzzles. In Proceedings of AAAI-90, pages 210–215, 1990.

10. R. Mohr and G. Masini. Good old discrete relaxation. In Proceedings of ECAI’88,
pages 651–656, 1988.

11. F. Rossi, C. Petrie, and V. Dhar. On the equivalence of constraint satisfaction
problems. In Proceedings of ECAI’90, pages 550–556, 1990.

12. K. Stergiou and T. Walsh. Encodings of Non-Binary Constraint Satisfaction Prob-
lems. In Proceedings of AAAI’99, pages 163–168, 1999.

13. K. Stergiou and T. Walsh. On the complexity of arc consistency in the hidden
variable encoding of non-binary CSPs. Submitted for publication.

14. Y. Zhang and R. Yap. Making AC-3 an optimal algorithm. In Proceedings of IJ-
CAI’2001.

	Introduction
	Background
	Hidden Variable Encoding

	Arc Consistency
	GAC Algorithms
	AC on the Hidden Variable Encoding

	Search Algorithms
	Instantiating Hidden Variables
	Singleton Consistencies

	Experimental Results
	Random Problems
	Crossword Puzzles

	Conclusion

