
Virtual Routers on the Move: Live Router Migration
as a Network-Management Primitive

Yi Wang∗ Eric Keller∗ Brian Biskeborn∗ Jacobus van der Merwe† Jennifer Rexford∗
∗ Princeton University, Princeton, NJ, USA † AT&T Labs - Research, Florham Park, NJ, USA

{yiwang,jrex}@cs.princeton.edu {ekeller,bbiskebo}@princeton.edu kobus@research.att.com

ABSTRACT
The complexity of network management is widely recognized
as one of the biggest challenges facing the Internet today.
Point solutions for individual problems further increase sys-
tem complexity while not addressing the underlying causes.
In this paper, we argue that many network-management
problems stem from the same root cause—the need to main-
tain consistency between the physical and logical configura-
tion of the routers. Hence, we propose VROOM (Virtual
ROuters On the Move), a new network-management primi-
tive that avoids unnecessary changes to the logical topology
by allowing (virtual) routers to freely move from one phys-
ical node to another. In addition to simplifying existing
network-management tasks like planned maintenance and
service deployment, VROOM can also help tackle emerging
challenges such as reducing energy consumption. We present
the design, implementation, and evaluation of novel migra-
tion techniques for virtual routers with either hardware or
software data planes. Our evaluation shows that VROOM
is transparent to routing protocols and results in no perfor-
mance impact on the data traffic when a hardware-based
data plane is used.

Categories and Subject Descriptors
C.2.6 [Computer Communication Networks]: Internet-
working; C.2.1 [Computer Communication Networks]:
Network Architecture and Design

General Terms
Design, Experimentation, Management, Measurement

Keywords
Internet, architecture, routing, virtual router, migration

1. INTRODUCTION
Network management is widely recognized as one of the

most important challenges facing the Internet. The cost of
the people and systems that manage a network typically

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’08, August 17–22, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-175-0/08/08 ...$5.00.

exceeds the cost of the underlying nodes and links; in ad-
dition, most network outages are caused by operator errors,
rather than equipment failures [21]. From routine tasks such
as planned maintenance to the less-frequent deployment of
new protocols, network operators struggle to provide seam-
less service in the face of changes to the underlying network.
Handling change is difficult because each change to the phys-
ical infrastructure requires a corresponding modification to
the logical configuration of the routers—such as reconfigur-
ing the tunable parameters in the routing protocols.

Logical refers to IP packet-forwarding functions, while phys-
ical refers to the physical router equipment (such as line
cards and the CPU) that enables these functions. Any in-
consistency between the logical and physical configurations
can lead to unexpected reachability or performance prob-
lems. Furthermore, because of today’s tight coupling be-
tween the physical and logical topologies, sometimes logical-
layer changes are used purely as a tool to handle physical
changes more gracefully. A classic example is increasing the
link weights in Interior Gateway Protocols to “cost out” a
router in advance of planned maintenance [30]. In this case,
a change in the logical topology is not the goal, rather it is
the indirect tool available to achieve the task at hand, and
it does so with potential negative side effects.

In this paper, we argue that breaking the tight coupling
between physical and logical configurations can provide a
single, general abstraction that simplifies network manage-
ment. Specifically, we propose VROOM (Virtual ROuters
On the Move), a new network-management primitive where
virtual routers can move freely from one physical router to
another. In VROOM, physical routers merely serve as the
carrier substrate on which the actual virtual routers operate.
VROOM can migrate a virtual router to a different physi-
cal router without disrupting the flow of traffic or changing
the logical topology, obviating the need to reconfigure the
virtual routers while also avoiding routing-protocol conver-
gence delays. For example, if a physical router must un-
dergo planned maintenance, the virtual routers could move
(in advance) to another physical router in the same Point-
of-Presence (PoP). In addition, edge routers can move from
one location to another by virtually re-homing the links that
connect to neighboring domains.

Realizing these objectives presents several challenges: (i)
migratable routers: to make a (virtual) router migratable, its
“router” functionality must be separable from the physical
equipment on which it runs; (ii) minimal outages: to avoid
disrupting user traffic or triggering routing protocol recon-
vergence, the migration should cause no or minimal packet
loss; (iii) migratable links: to keep the IP-layer topology in-

tact, the links attached to a migrating router must “follow”
it to its new location. Fortunately, the third challenge is
addressed by recent advances in transport-layer technolo-
gies, as discussed in Section 2. Our goal, then, is to migrate
router functionality from one piece of equipment to another
without disrupting the IP-layer topology or the data traffic
it carries, and without requiring router reconfiguration.

On the surface, virtual router migration might seem like
a straight-forward extention to existing virtual machine mi-
gration techniques. This would involve copying the virtual
router image (including routing-protocol binaries, configu-
ration files and data-plane state) to the new physical router
and freezing the running processes before copying them as
well. The processes and data-plane state would then be re-
stored on the new physical router and associated with the
migrated links. However, the delays in completing all of
these steps would cause unacceptable disruptions for both
the data traffic and the routing protocols. For virtual router
migration to be viable in practice, packet forwarding should
not be interrupted, not even temporarily. In contrast, the
control plane can tolerate brief disruptions, since routing
protocols have their own retransmission mechansisms. Still,
the control plane must restart quickly at the new location to
avoid losing protocol adjacencies with other routers and to
minimize delay in responding to unplanned network events.

In VROOM, we minimize disruption by leveraging the
separation of the control and data planes in modern routers.
We introduce a data-plane hypervisor—a migration-aware
interface between the control and data planes. This unified
interface allows us to support migration between physical
routers with different data-plane technologies. VROOM mi-
grates only the control plane, while continuing to forward
traffic through the old data plane. The control plane can
start running at the new location, and populate the new data
plane while updating the old data plane in parallel. Dur-
ing the transition period, the old router redirects routing-
protocol traffic to the new location. Once the data plane
is fully populated at the new location, link migration can
begin. The two data planes operate simultaneously for a
period of time to facilitate asynchronous migration of the
links.

To demonstrate the generality of our data-plane hypervi-
sor, we present two prototype VROOM routers—one with
a software data plane (in the Linux kernel) and the other
with a hardware data plane (using a NetFPGA card [23]).
Each virtual router runs the Quagga routing suite [26] in an
OpenVZ container [24]. Our software extensions consist of
three main modules that (i) separate the forwarding tables
from the container contexts, (ii) push the forwarding-table
entries generated by Quagga into the separate data plane,
and (iii) dynamically bind the virtual interfaces and forward-
ing tables. Our system supports seamless live migration of
virtual routers between the two data-plane platforms. Our
experiments show that virtual router migration causes no
packet loss or delay when the hardware data plane is used,
and at most a few seconds of delay in processing control-
plane messages.

The remainder of the paper is structured as follows. Sec-
tion 2 presents background on flexible transport networks
and an overview of related work. Next, Section 3 discusses
how router migration would simplify existing network man-
agement tasks, such as planned maintenance and service
deployment, while also addressing emerging challenges like

Router A Programmable
Transport Network

Router B

Router C

Optical transport switch

(a) Programmable transport network

Router A Packet-aware
Transport Network

Router B

Router C

IP router

(b) Packet-aware transport network

Figure 1: Link migration in the transport networks

power management. We present the VROOM architecture
in Section 4, followed by the implementation and evalua-
tion in Sections 5 and 6, respectively. We briefly discuss
our on-going work on migration scheduling in Section 7 and
conclude in Section 8.

2. BACKGROUND
One of the fundamental requirements of VROOM is “link

migration”, i.e., the links of a virtual router should “fol-
low” its migration from one physical node to another. This
is made possible by emerging transport network technolo-
gies. We briefly describe these technologies before giving an
overview of related work.

2.1 Flexible Link Migration
In its most basic form, a link at the IP layer corresponds

to a direct physical link (e.g., a cable), making link migra-
tion hard as it involves physically moving link end point(s).
However, in practice, what appears as a direct link at the
IP layer often corresponds to a series of connections through
different network elements at the transport layer. For ex-
ample, in today’s ISP backbones, “direct” physical links are
typically realized by optical transport networks, where an
IP link corresponds to a circuit traversing multiple optical
switches [9, 34]. Recent advances in programmable transport
networks [9, 3] allow physical links between routers to be
dynamically set up and torn down. For example, as shown
in Figure 1(a), the link between physical routers A and B
is switched through a programmable transport network. By
signaling the transport network, the same physical port on
router A can be connected to router C after an optical path
switch-over. Such path switch-over at the transport layer
can be done efficiently, e.g., sub-nanosecond optical switch-
ing time has been reported [27]. Furthermore, such switch-
ing can be performed across a wide-area network of trans-
port switches, which enables inter-POP link migration.

In addition to core links within an ISP, we also want to
migrate access links connecting customer edge (CE) routers
and provider edge (PE) routers, where only the PE end of
the links are under the ISP’s control. Historically, access
links correspond to a path in the underlying access network,
such as a T1 circuit in a time-division multiplexing (TDM)
access network. In such cases, the migration of an access link
can be accomplished in similar fashion to the mechanism
shown in Figure 1(a), by switching to a new circuit at the
switch directly connected to the CE router. However, in tra-
ditional circuit-switched access networks, a dedicated phys-
ical port on a PE router is required to terminate each TDM
circuit. Therefore, if all ports on a physical PE router are in
use, it will not be able to accommodate more virtual routers.
Fortunately, as Ethernet emerges as an economical and flex-
ible alternative to legacy TDM services, access networks are
evolving to packet-aware transport networks [2]. This trend
offers important benefits for VROOM by eliminating the
need for per-customer physical ports on PE routers. In a
packet-aware access network (e.g., a virtual private LAN
service access network), each customer access port is associ-
ated with a label, or a “pseudo wire” [6], which allows a PE
router to support multiple logical access links on the same
physical port. The migration of a pseudo-wire access link
involves establishing a new pseudo wire and switching to it
at the multi-service switch [2] adjacent to the CE.

Unlike conventional ISP networks, some networks are re-
alized as overlays on top of other ISPs’ networks. Examples
include commercial “Carrier Supporting Carrier (CSC)”net-
works [10], and VINI, a research virtual network infrastruc-
ture overlaid on top of National Lambda Rail and Inter-
net2 [32]. In such cases, a single-hop link in the overlay
network is actually a multi-hop path in the underlying net-
work, which can be an MPLS VPN (e.g., CSC) or an IP
network (e.g., VINI). Link migration in an MPLS transport
network involves switching over to a newly established label
switched path (LSP). Link migration in an IP network can
be done by changing the IP address of the tunnel end point.

2.2 Related Work
VROOM’s motivation is similar, in part, to that of the

RouterFarm work [3], namely, to reduce the impact of planned
maintenance by migrating router functionality from one place
in the network to another. However, RouterFarm essen-
tially performs a “cold restart”, compared to VROOM’s live
(“hot”) migration. Specifically, in RouterFarm router migra-
tion is realized by re-instantiating a router instance at the
new location, which not only requires router reconfiguration,
but also introduces inevitable downtime in both the control
and data planes. In VROOM, on the other hand, we perform
live router migration without reconfiguration or discernible
disruption. In our earlier prototype of VROOM [33], router
migration was realized by directly using the standard virtual
machine migration capability provided by Xen [4], which
lacked the control and data plane separation presented in
this paper. As a result, it involved data-plane downtime
during the migration process.

Recent advances in virtual machine technologies and their
live migration capabilities [12, 24] have been leveraged in
server-management tools, primarily in data centers. For ex-
ample, Sandpiper [35] automatically migrates virtual servers
across a pool of physical servers to alleviate hotspots. Usher [22]
allows administrators to express a variety of policies for

managing clusters of virtual servers. Remus [13] uses asyn-
chronous virtual machine replication to provide high avail-
ability to server in the face of hardware failures. In contrast,
VROOM focuses on leveraging live migration techniques to
simplify management in the networking domain.

Network virtualization has been proposed in various con-
texts. Early work includes the“switchlets” concept, in which
ATM switches are partitioned to enable dynamic creation
of virtual networks [31]. More recently, the CABO archi-
tecture proposes to use virtualization as a means to enable
multiple service providers to share the same physical infras-
tructure [16]. Outside the research community, router vir-
tualization has already become available in several forms in
commercial routers [11, 20]. In VROOM, we take an ad-
ditional step not only to virtualize the router functionality,
but also to decouple the virtualized router from its physical
host and enable it to migrate.

VROOM also relates to recent work on minimizing tran-
sient routing disruptions during planned maintenance. A
measurement study of a large ISP showed that more than
half of routing changes were planned in advance [19]. Net-
work operators can limit the disruption by reconfiguring the
routing protocols to direct traffic away from the equipment
undergoing maintenance [30, 17]. In addition, extensions
to the routing protocols can allow a router to continue for-
warding packets in the data plane while reinstalling or re-
booting the control-plane software [29, 8]. However, these
techniques require changes to the logical configuration or the
routing software, respectively. In contrast, VROOM hides
the effects of physical topology changes in the first place,
obviating the need for point solutions that increase system
complexity while enabling new network-management capa-
bilities, as discussed in the next section.

3. NETWORK MANAGEMENT TASKS
In this section, we present three case studies of the ap-

plications of VROOM. We show that the separation be-
tween physical and logical, and the router migration ca-
pability enabled by VROOM, can greatly simplify existing
network-management tasks. It can also provide network-
management solutions to other emerging challenges. We ex-
plain why the existing solutions (in the first two examples)
are not satisfactory and outline the VROOM approach to
addressing the same problems.

3.1 Planned Maintenance
Planned maintenance is a hidden fact of life in every net-

work. However, the state-of-the-art practices are still unsat-
isfactory. For example, software upgrades today still require
rebooting the router and re-synchronizing routing protocol
states from neighbors (e.g., BGP routes), which can lead
to outages of 10-15 minutes [3]. Different solutions have
been proposed to reduce the impact of planned maintenance
on network traffic, such as “costing out” the equipment in
advance. Another example is the RouterFarm approach of
removing the static binding between customers and access
routers to reduce service disruption time while performing
maintenance on access routers [3]. However, we argue that
neither solution is satisfactory, since maintenance of physical
routers still requires changes to the logical network topology,
and requires (often human interactive) reconfigurations and
routing protocol reconvergence. This usually implies more
configuration errors [21] and increased network instability.

We performed an analysis of planned-maintenance events
conducted in a Tier-1 ISP backbone over a one-week period.
Due to space limitations, we only mention the high-level
results that are pertinent to VROOM here. Our analysis
indicates that, among all the planned-maintenance events
that have undesirable network impact today (e.g., routing
protocol reconvergence or data-plane disruption), 70% could
be conducted without any network impact if VROOM were
used. (This number assumes migration between routers
with control planes of like kind. With more sophisticated
migration strategies, e.g., where a “control-plane hypervi-
sor” allows migration between routers with different con-
trol plane implementations, the number increases to 90%.)
These promising numbers result from the fact that most
planned-maintenance events were hardware related and, as
such, did not intend to make any longer-term changes to the
logical-layer configurations.

To perform planned maintenance tasks in a VROOM-
enabled network, network administrators can simply migrate
all the virtual routers running on a physical router to other
physical routers before doing maintenance and migrate them
back afterwards as needed, without ever needing to reconfig-
ure any routing protocols or worry about traffic disruption
or protocol reconvergence.

3.2 Service Deployment and Evolution
Deploying new services, like IPv6 or IPTV, is the life-

blood of any ISP. Yet, ISPs must exercise caution when de-
ploying these new services. First, they must ensure that
the new services do not adversely impact existing services.
Second, the necessary support systems need to be in place
before services can be properly supported. (Support sys-
tems include configuration management, service monitoring,
provisioning, and billing.) Hence, ISPs usually start with a
small trial running in a controlled environment on dedicated
equipment, supporting a few early-adopter customers. How-
ever, this leads to a “success disaster” when the service war-
rants wider deployment. The ISP wants to offer seamless
service to its existing customers, and yet also restructure
their test network, or move the service onto a larger net-
work to serve a larger set of customers. This “trial system
success” dilemma is hard to resolve if the logical notion of a
“network node” remains bound to a specific physical router.

VROOM provides a simple solution by enabling network
operators to freely migrate virtual routers from the trial
system to the operational backbone. Rather than shutting
down the trial service, the ISP can continue supporting the
early-adopter customers while continuously growing the trial
system, attracting new customers, and eventually seamlessly
migrating the entire service to the operational network.

ISPs usually deploy such service-oriented routers as close
to their customers as possible, in order to avoid backhaul
traffic. However, as the services grow, the geographical dis-
tribution of customers may change over time. With VROOM,
ISPs can easily reallocate the routers to adapt to new cus-
tomer demands.

3.3 Power Savings
VROOM not only provides simple solutions to conven-

tional network-management tasks, but also enables new so-
lutions to emerging challenges such as power management.
It was reported that in 2000 the total power consumption of
the estimated 3.26 million routers in the U.S. was about 1.1

TWh (Tera-Watt hours) [28]. This number was expected to
grow to 1.9 to 2.4TWh in the year 2005 [28], which translates
into an annual cost of about 178-225 million dollars [25].
These numbers do not include the power consumption of
the required cooling systems.

Although designing energy-efficient equipment is clearly
an important part of the solution [18], we believe that net-
work operators can also manage a network in a more power-
efficient manner. Previous studies have reported that Inter-
net traffic has a consistent diurnal pattern caused by human
interactive network activities. However, today’s routers are
surprisingly power-insensitive to the traffic loads they are
handling—an idle router consumes over 90% of the power
it requires when working at maximum capacity [7]. We ar-
gue that, with VROOM, the variations in daily traffic vol-
ume can be exploited to reduce power consumption. Specif-
ically, the size of the physical network can be expanded and
shrunk according to traffic demand, by hibernating or pow-
ering down the routers that are not needed. The best way
to do this today would be to use the “cost-out/cost-in” ap-
proach, which inevitably introduces configuration overhead
and performance disruptions due to protocol reconvergence.

VROOM provides a cleaner solution: as the network traf-
fic volume decreases at night, virtual routers can be mi-
grated to a smaller set of physical routers and the unneeded
physical routers can be shut down or put into hibernation
to save power. When the traffic starts to increase, phys-
ical routers can be brought up again and virtual routers
can be migrated back accordingly. With VROOM, the IP-
layer topology stays intact during the migrations, so that
power savings do not come at the price of user traffic dis-
ruption, reconfiguration overhead or protocol reconvergence.
Our analysis of data traffic volumes in a Tier-1 ISP back-
bone suggests that, even if only migrating virtual routers
within the same POP while keeping the same link utiliza-
tion rate, applying the above VROOM power management
approach could save 18%-25% of the power required to run
the routers in the network. As discussed in Section 7, al-
lowing migration across different POPs could result in more
substantial power savings.

4. VROOM ARCHITECTURE
In this section, we present the VROOM architecture. We

first describe the three building-blocks that make virtual
router migration possible—router virtualization, control and
data plane separation, and dynamic interface binding. We
then present the VROOM router migration process. Un-
like regular servers, modern routers typically have physically
separate control and data planes. Leveraging this unique
property, we introduce a data-plane hypervisor between the
control and data planes that enables virtual routers to mi-
grate across different data-plane platforms. We describe in
detail the three migration techniques that minimize control-
plane downtime and eliminate data-plane disruption—data-
plane cloning, remote control plane, and double data planes.

4.1 Making Virtual Routers Migratable
Figure 2 shows the architecture of a VROOM router that

supports virtual router migration. It has three important
features that make migration possible: router virtualization,
control and data plane separation, and dynamic interface
binding, all of which already exist in some form in today’s
high-end commercial routers.

VR1

Physical Router A

Physical Router B

VR1

Physical Router A Physical Router A

data traffic (flow 1)

Physical Router A

routing messages

(a) Tunnel setup for
redirecting routing messages

(t0 - t1)

(b) Remote control plane with
redirection of routing messages

(t4 - t5)

(c) Double data planes during
asynchronous link migration

(t5 - t6)

(d) Remove old data plane
and redirection tunnels

(t6)

data traffic (flow 2)

Physical Router B

VR1

Physical Router B

VR1

Physical Router B

redirection of routing messages

Figure 3: VROOM’s novel router migration mechanisms (the times at the bottom of the subfigures correspond
to those in Figure 4)

Physical Router

Substrate

Dynamic interface binding

Physical interface

(2)

(2)

Data
Plane

Control
Plane

Virtual Router

Control
Plane

Virtual Router

Control
Plane

Virtual Router

Data
Plane

Data
Plane

(1)

Data-plane hypervisor(1)

Tunnel interface

Figure 2: The architecture of a VROOM router

Router Virtualization: A VROOM router partitions the
resources of a physical router to support multiple virtual
router instances. Each virtual router runs independently
with its own control plane (e.g., applications, configura-
tions, routing protocol instances and routing information
base (RIB)) and data plane (e.g., interfaces and forwarding
information base (FIB)). Such router virtualization support
is already available in some commercial routers [11, 20]. The
isolation between virtual routers makes it possible to migrate
one virtual router without affecting the others.
Control and Data Plane Separation: In a VROOM
router, the control and data planes run in separate environ-
ments. As shown in Figure 2, the control planes of virtual
routers are hosted in separate “containers” (or “virtual envi-
ronments”), while their data planes reside in the substrate,
where each data plane is kept in separate data structures
with its own state information, such as FIB entries and ac-
cess control lists (ACLs). Similar separation of control and
data planes already exists in today’s commercial routers,
with control plane running on the CPU(s) and main memory,
while the data plane runs on line cards that have their own
computing power (for packet forwarding) and memory (to
hold the FIBs). This separation allows VROOM to migrate
the control and data planes of a virtual router separately (as
discussed in Section 4.2.1 and 4.2.2).
Dynamic Interface Binding: To enable router migration
and link migration, a VROOM router should be able to dy-

router-image copy

memory copy

asynchronous link migration

data-plane cloning

stall-and-copy (control plane downtime)

t2 timet0 t1 t3 t5 t6

old nodecontrol
plane

data
plane

new node

old node

new node

remote control plane

double
data

planes2

1 2 3 4 5

1 tunnel setup

3

4

5
pre-copy

3-1 3-2

3-1:
3-2:

t4

steps

Figure 4: VROOM’s router migration process

namically set up and change the binding between a virtual
router’s FIB and its substrate interfaces (which can be phys-
ical or tunnel interfaces), as shown in Figure 2. Given the
existing interface binding mechanism in today’s routers that
maps interfaces with virtual routers, VROOM only requires
two simple extensions. First, after a virtual router is mi-
grated, this binding needs to be re-established dynamically
on the new physical router. This is essentially the same as
if this virtual router were just instantiated on the physical
router. Second, link migration in a packet-aware transport
network involves changing tunnel interfaces in the router, as
shown in Figure 1. In this case, the router substrate needs
to switch the binding from the old tunnel interface to the
new one on-the-fly1.

4.2 Virtual Router Migration Process
Figures 3 and 4 illustrate the VROOM virtual router mi-

gration process. The first step in the process involves es-
tablishing tunnels between the source physical router A and
destination physical router B of the migration (Figure 3(a)).
These tunnels allow the control plane to send and receive
routing messages after it is migrated (steps 2 and 3) but be-
fore link migration (step 5) completes. They also allow the
migrated control plane to keep its data plane on A up-to-
date (Figure 3(b)). Although the control plane will experi-

1In the case of a programmable transport network, link mi-
gration happens inside the transport network and is trans-
parent to the routers.

ence a short period of downtime at the end of step 3 (memory
copy), the data plane continues working during the entire
migration process. In fact, after step 4 (data-plane cloning),
the data planes on both A and B can forward traffic si-
multaneously (Figure 3(c)). With these double data planes,
links can be migrated from A to B in an asynchronous fash-
ion (Figure 3(c) and (d)), after which the data plane on A
can be disabled (Figure 4). We now describe the migration
mechanisms in greater detail.

4.2.1 Control-Plane Migration
Two things need to be taken care of when migrating the

control plane: the router image, such as routing-protocol
binaries and network configuration files, and the memory,
which includes the states of all the running processes. When
copying the router image and memory, it is desirable to min-
imize the total migration time, and more importantly, to
minimize the control-plane downtime (i.e., the time between
when the control plane is check-pointed on the source node
and when it is restored on the destination node). This is be-
cause, although routing protocols can usually tolerate a brief
network glitch using retransmission (e.g., BGP uses TCP
retransmission, while OSPF uses its own reliable retrans-
mission mechanism), a long control-plane outage can break
protocol adjacencies and cause protocols to reconverge.

We now describe how VROOM leverages virtual machine
(VM) migration techniques to migrate the control plane in
steps 2 (router-image copy) and 3 (memory copy) of its mi-
gration process, as shown in Figure 4.

Unlike general-purpose VMs that can potentially be run-
ning completely different programs, virtual routers from the
same vendor run the same (usually small) set of programs
(e.g., routing protocol suites). VROOM assumes that the
same set of binaries are already available on every physi-
cal router. Before a virtual router is migrated, the bina-
ries are locally copied to its file system on the destination
node. Therefore, only the router configuration files need to
be copied over the network, reducing the total migration
time (as local-copy is usually faster than network-copy).

The simplest way to migrate the memory of a virtual
router is to check-point the router, copy the memory pages
to the destination, and restore the router, a.k.a. stall-and-
copy [24]. This approach leads to downtime that is propor-
tional to the memory size of the router. A better approach
is to add an iterative pre-copy phase before the final stall-
and-copy [12], as shown in Figure 4. All pages are trans-
ferred in the first round of the pre-copy phase, and in the
following rounds, only pages that were modified during the
previous round are transferred. This pre-copy technique re-
duces the number of pages that need to be transfered in the
stall-and-copy phase, reducing the control plane downtime
of the virtual router (i.e., the control plane is only “frozen”
between t3 and t4 in Figure 4).

4.2.2 Data-Plane Cloning
The control-plane migration described above could be ex-

tended to migrate the data plane, i.e., copy all data-plane
states over to the new physical node. However, this approach
has two drawbacks. First, copying the data-plane states
(e.g., FIB and ACLs) is unnecessary and wasteful, because
the information that is used to generate these states (e.g.,
RIB and configuration files) is already available in the con-
trol plane. Second, copying the data-plane state directly can

be difficult if the source and destination routers use different
data-plane technologies. For example, some routers may use
TCAM (ternary content-addressable memory) in their data
planes, while others may use regular SRAM. As a result, the
data structures that hold the state may be different.

VROOM formalizes the interface between the control and
data planes by introducing a data-plane hypervisor, which
allows a migrated control plane to re-instantiate the data
plane on the new platform, a process we call data-plane
cloning. That is, only the control plane of the router is
actually migrated. Once the control plane is migrated to
the new physical router, it clones its original data plane by
repopulating the FIB using its RIB and reinstalling ACLs
and other data-plane states2 through the data-plane hyper-
visor (as shown in Figure 2). The data-plane hypervisor
provides a unified interface to the control plane that hides
the heterogeneity of the underlying data-plane implementa-
tions, enabling virtual routers to migrate between different
types of data planes.

4.2.3 Remote Control Plane
As shown in Figure 3(b), after VR1’s control plane is mi-

grated from A to B, the natural next steps are to repopu-
late (clone) the data plane on B and then migrate the links
from A to B. Unfortunately, the creation of the new data
plane can not be done instantaneously, primarily due to the
time it takes to install FIB entries. Installing one FIB en-
try typically takes between one hundred and a few hundred
microseconds [5]; therefore, installing the full Internet BGP
routing table (about 250k routes) could take over 20 sec-
onds. During this period of time, although data traffic can
still be forwarded by the old data plane on A, all the rout-
ing instances in VR1’s control plane can no longer send or
receive routing messages. The longer the control plane re-
mains unreachable, the more likely it will lose its protocol
adjacencies with its neighbors.

To overcome this dilemma, A’s substrate starts redirect-
ing all the routing messages destined to VR1 to B at the
end of the control-plane migration (time t4 in Figure 4).
This is done by establishing a tunnel between A and B for
each of VR1’s substrate interfaces. To avoid introducing any
additional downtime in the control plane, these tunnels are
established before the control-plane migration, as shown in
Figure 3(a). With this redirection mechanism, VR1’s con-
trol plane not only can exchange routing messages with its
neighbors, it can also act as the remote control plane for
its old data plane on A and continue to update the old FIB
when routing changes happen.

4.2.4 Double Data Planes
In theory, at the end of the data-plane cloning step, VR1

can switch from the old data plane on A to the new one
on B by migrating all its links from A to B simultaneously.
However, performing accurate synchronous link migration
across all the links is challenging, and could significantly
increase the complexity of the system (because of the need
to implement a synchronization mechanism).

Fortunately, because VR1 has two data planes ready to

2Data dynamically collected in the old data plane (such
as NetFlow) can be copied and merged with the new one.
Other path-specific statistics (such as queue length) will be
reset as the previous results are no longer meaningful once
the physical path changes.

zebra

Quagga

kernel routing table

iproute2

bgpd ospfd shadowd

VE1

shadowd

VE2

shadowd

VE3

virtd

Control plane

Data plane

table1 table2 table3

VE0
(the root context)

bindd

Linux
or

NetFPGA

Figure 5: The design of the VROOM prototype
routers (with two types of data planes)

forward traffic at the end of the data-plane cloning step (Fig-
ure 4), the migration of its links does not need to happen
all at once. Instead, each link can be migrated independent
of the others, in an asynchronous fashion, as shown in Fig-
ure 3(c) and (d). First, router B creates a new outgoing link
to each of VR1’s neighbors, while all data traffic continues
to flow through router A. Then, the incoming links can be
safely migrated asynchronously, with some traffic starting to
flow through router B while the remaining traffic still flows
through router A. Finally, once all of VR1’s links are mi-
grated to router B, the old data plane and outgoing links on
A, as well as the temporary tunnels, can be safely removed.

5. PROTOTYPE IMPLEMENTATION
In this section, we present the implementation of two

VROOM prototype routers. The first is built on commod-
ity PC hardware and the Linux-based virtualization solution
OpenVZ [24]. The second is built using the same software
but utilizing the NetFPGA platform [23] as the hardware
data plane. We believe the design presented here is readily
applicable to commercial routers, which typically have the
same clean separation between the control and data planes.

Our prototype implementation consists of three new pro-
grams, as shown in Figure 5. These include virtd, to enable
packet forwarding outside of the virtual environment (con-
trol and data plane separation); shadowd, to enable each
VE to install routes into the FIB; and bindd (data plane
cloning), to provide the bindings between the physical inter-
faces and the virtual interfaces and FIB of each VE (data-
plane hypervisor). We first discuss the mechanisms that
enable virtual router migration in our prototypes and then
present the additional mechanisms we implemented that re-
alize the migration.

5.1 Enabling Virtual Router Migration
We chose to use OpenVZ [24], a Linux-based OS-level vir-

tualization solution, as the virtualization environment for
our prototypes. As running multiple operating systems for
different virtual routers is unnecessary, the lighter-weight
OS-level virtualization is better suited to our need than
other virtualization techniques, such as full virtualization
and para-virtualization. In OpenVZ, multiple virtual envi-
ronments (VEs) running on the same host share the same

kernel, but have separate virtualized resources such as name
spaces, process trees, devices, and network stacks. OpenVZ
also provides live migration capability for running VEs3.

In the rest of this subsection, we describe in a top-down
order the three components of our two prototypes that en-
able virtual router migration. We first present the mecha-
nism that separates the control and data planes, and then
describe the data-plane hypervisor that allows the control
planes to update the FIBs in the shared data plane. Finally,
we describe the mechanisms that dynamically bind the in-
terfaces with the FIBs and set up the data path.

5.1.1 Control and Data Plane Separation
To mimic the control and data plane separation provided

in commercial routers, we move the FIBs out of the VEs and
place them in a shared but virtualized data plane, as shown
in Figure 5. This means that packet forwarding no longer
happens within the context of each VE, so it is unaffected
when the VE is migrated.

As previously mentioned, we have implemented two proto-
types with different types of data planes—a software-based
data plane (SD) and a hardware-based data plane (HD). In
the SD prototype router, the data plane resides in the root
context (or “VE0”) of the system and uses the Linux kernel
for packet forwarding. Since the Linux kernel (2.6.18) sup-
ports 256 separate routing tables, the SD router virtualizes
its data plane by associating each VE with a different kernel
routing table as its FIB.

In the HD router implementation, we use the NetFPGA
platform configured with the reference router provided by
Stanford [23]. The NetFPGA card is a 4-port gigabit eth-
ernet PCI card with a Virtex 2-Pro FPGA on it. With the
NetFPGA as the data plane, packet forwarding in the HD
router does not use the host CPU, thus more closely resem-
bling commercial router architectures. The NetFPGA ref-
erence router does not currently support virtualization. As
a result, our HD router implementation is currently limited
to only one virtual router per physical node.

5.1.2 Data-Plane Hypervisor
As explained in Section 4, VROOM extends the stan-

dard control plane/data plane interface to a migration-aware
data-plane hypervisor. Our prototype presents a rudimen-
tary data-plane hypervisor implementation which only sup-
ports FIB updates. (A full-fledged data-plane hypervisor
would also allow the configuration of other data plane states.)
We implemented the virtd program as the data-plane hy-
pervisor. virtd runs in the VE0 and provides an interface
for virtual routers to install/remove routes in the shared
data plane, as shown in Figure 5. We also implemented the
shadowd program that runs inside each VE and pushes route
updates from the control plane to the FIB through virtd.

We run the Quagga routing software suite [26] as the con-
trol plane inside each VE. Quagga supports many routing
protocols, including BGP and OSPF. In addition to the in-
cluded protocols, Quagga provides an interface in zebra,
its routing manager, to allow the addition of new protocol
daemons. We made use of this interface to implement shad-
owd as a client of zebra. zebra provides clients with both

3The current OpenVZ migration function uses the simple
“stall-and-copy” mechanism for memory migration. Includ-
ing a “pre-copy” stage [12] in the process will reduce the
migration downtime.

the ability to notify zebra of route changes and to be noti-
fied of route changes. As shadowd is not a routing protocol
but simply a shadowing daemon, it uses only the route re-
distribution capability. Through this interface, shadowd is
notified of any changes in the RIB and immediately mirrors
them to virtd using remote procedure calls (RPCs). Each
shadowd instance is configured with a unique ID (e.g., the
ID of the virtual router), which is included in every message
it sends to virtd. Based on this ID, virtd can correctly
install/remove routes in the corresponding FIB upon receiv-
ing updates from a shadowd instance. In the SD prototype,
this involves using the Linux iproute2 utility to set a rout-
ing table entry. In the HD prototype, this involves using the
device driver to write to registers in the NetFPGA.

5.1.3 Dynamic Interface Binding
With the separation of control and data planes, and the

sharing of the same data plane among multiple virtual routers,
the data path of each virtual router must be set up properly
to ensure that (i) data packets can be forwarded according
to the right FIB, and (ii) routing messages can be delivered
to the right control plane.

We implemented the bindd program that meets these re-
quirements by providing two main functions. The first is
to set up the mapping between a virtual router’s substrate
interfaces and its FIB after the virtual router is instantiated
or migrated, to ensure correct packet forwarding. (Note that
a virtual router’s substrate interface could be either a ded-
icated physical interface or a tunnel interface that shares
the same physical interface with other tunnels.) In the SD
prototype, bindd establishes this binding by using the rout-
ing policy management function (i.e., “ip rule”) provided by
the Linux iproute2 utility. As previously mentioned, the
HD prototype is currently limited to a single table. Once
NetFPGA supports virtualization, a mechanism similar to
the “ip rule” function can be used to bind the interfaces with
the FIBs.

The second function of bindd is to bind the substrate in-
terfaces with the virtual interfaces of the control plane. In
both prototypes, this binding is achieved by connecting each
pair of substrate and virtual interfaces to a different bridge
using the Linux brctl utility. In the HD prototype, each
of the four physical ports on the NetFPGA is presented to
Linux as a separate physical interface, so packets destined
to the control plane of a local VE are passed from the NetF-
PGA to Linux through the corresponding interface.

5.2 Realizing Virtual Router Migration
The above mechanisms set the foundation for VROOM

virtual router migration in the OpenVZ environment. We
now describe the implementations of data-plane cloning, re-
mote control plane, and double data planes.

Although migration is transparent to the routing pro-
cesses running in the VE, shadowd needs to be notified at the
end of the control plane migration in order to start the“data
plane cloning”. We implemented a function in shadowd that,
when called, triggers shadowd to request zebra to resend all
the routes and then push them down to virtd to repopu-
late the FIB. Note that virtd runs on a fixed (private) IP
address and a fixed port on each physical node. Therefore,
after a virtual router is migrated to a new physical node, the
route updates sent by its shadowd can be seamlessly routed
to the local virtd instance on the new node.

To enable a migrated control plane to continue updating
the old FIB (i.e., to act as a “remote control plane”), we
implemented in virtd the ability to forward route updates
to another virtd instance using the same RPC mechanism
that is used by shadowd. As soon as virtual router VR1 is
migrated from node A to node B, the migration script no-
tifies the virtd instance on B of A’s IP address and VR1’s
ID. B’s virtd, besides updating the new FIB, starts for-
warding the route updates from VR1’s control plane to A,
whose virtd then updates VR1’s old FIB. After all of VR1’s
links are migrated, the old data plane is no longer used, so
B’s virtd is notified to stop forwarding updates. With B’s
virtd updating both the old and new FIBs of VR1 (i.e.,
the “double data planes”), the two data planes can forward
packets during the asynchronous link migration process.

Note that the data-plane hypervisor implementation makes
the the control planes unaware of the details of a particular
underlying data plane. As as result, migration can occur
between any combination of our HD and SD prototypes (i.e.
SD to SD, HD to HD, SD to HD, and HD to SD).

6. EVALUATION
In this section, we evaluate the performance of VROOM

using our SD and HD prototype routers. We first measure
the performance of the basic functions of the migration pro-
cess individually, and then place a VROOM router in a net-
work and evaluate the effect its migration has on the data
and control planes. Specifically, we answer the following two
questions:

1. What is the impact of virtual router migration on data
forwarding? Our evaluation shows that it is important to
have bandwidth isolation between migration traffic and data
traffic. With separate bandwidth, migration based on an
HD router has no performance impact on data forwarding.
Migration based on a SD router introduces minimal delay
increase and no packet loss to data traffic.

2. What is the impact of virtual router migration on rout-
ing protocols? Our evaluation shows that a virtual router
running only OSPF in an Abilene-topology network can sup-
port 1-second OSPF hello-interval without losing protocol
adjacencies during migration. The same router loaded with
an additional full Internet BGP routing table can support
a minimal OSPF hello-interval of 2 seconds without losing
OSPF or BGP adjacencies.

6.1 Methodology
Our evaluation involved experiments conducted in the Em-

ulab tesbed [15]. We primarily used PC3000 machines as the
physical nodes in our experiments. The PC3000 is an Intel
Xeon 3.0 GHz 64-bit platform with 2GB RAM and five Gi-
gabit Ethernet NICs. For the HD prototype, each physical
node was additionally equipped with a NetFPGA card. All
nodes in our experiments were running an OpenVZ patched
Linux kernel 2.6.18-ovz028stab049.1. For a few experiments
we also used the lower performance PC850 physical nodes,
built on an Intel Pentium III 850MHz platform with 512MB
RAM and five 100Mbps Ethernet NICs.

We used three different testbed topologies in our experi-
ments:
The diamond testbed: We use the 4-node diamond-topology
testbed (Figure 6) to evaluate the performance of individual
migration functions and the impact of migration on the data
plane. The testbed has two different configurations, which

TG TR

n0

n1

n2

n3

VR1

TG TR

n0

n1

n2

n3

VR1

TG TR

n0

n1

n2

n3

VR1

TG TR

n0

n1

n2

n3

VR1

(1) Before the migration of VR1 (2) VR1's control plane migrates to n3 (3) Link n0 n1 is switched to n0 n3 (4) Link n2 n1 is switched to n2 n3

Figure 6: The diamond testbed and the experiment process

Seattle

Sunnyvale

Los Angeles

Kansas CityDenver

Houston

Chicago-1

Indianapolis

Chicago-2

New York

Washington D.C.

Atlanta

VR1

VR2 VR3

VR4

VR5 VR6

VR7

VR8

VR9

VR10

VR11

Figure 7: The Abilene testbed

Table 1: The memory dump file size of virtual router
with different numbers of OSPF routes

Routes 0 10k 100k 200k 300k 400k 500k

Size (MB) 3.2 24.2 46.4 58.4 71.1 97.3 124.1

have the same type of machines as physical node n0 and
n2, but differ in the hardware on node n1 and n3. In the
SD configuration, n1 and n3 are regular PCs on which we
install our SD prototype routers. In the HD configuration,
n1 and n3 are PCs each with a NetFPGA card, on which
we install our HD prototype routers. In the experiments,
virtual router VR1 is migrated from n1 to n3 through link
n1→n3.
The dumbbell testbed: We use a 6-node dumbbell-shaped
testbed to study the bandwidth contention between migra-
tion traffic and data traffic. In the testbed, round-trip UDP
data traffic is sent between a pair of nodes while a virtual
router is being migrated between another pair of nodes. The
migration traffic and data traffic are forced to share the same
physical link.
The Abilene testbed: We use a 12-node testbed (Fig-
ure 7) to evaluate the impact of migration on the control
plane. It has a topology similar to the 11-node Abilene
network backbone [1]. The only difference is that we add
an additional physical node (Chicago-2), to which the vir-
tual router on Chicago-1 (V5) is migrated. Figure 7 shows
the initial topology of the virtual network, where 11 virtual
routers (V1 to V11) run on the 11 physical nodes (except
Chicago-2) respectively.

6.2 Performance of Migration Steps
In this subsection, we evaluate the performance of the two

main migration functions of the prototypes—memory copy
and FIB repopulation.
Memory copy: To evaluate memory copy time relative to
the memory usage of the virtual router, we load the ospfd

in VR1 with different numbers of routes. Table 1 lists the

0

1

2

3

4

5

6

0 10k 100k 200k 300k 400k 500k

Number of routes

T
im

e
 (

s
e
c
o
n
d
s
)

Suspend + dump Copy dump file Undump + resume Bridging setup

Figure 8: Virtual router memory-copy time with
different numbers of routes

respective memory dump file sizes of VR1. Figure 8 shows
the total time it takes to complete the memory-copy step,
including (1) suspend/dump VR1 on n1, (2) copy the dump
file from n1 to n3, (3) resume VR1 on n3, and (4) set up
the bridging (interface binding) for VR1 on n3. We observe
that as the number of routes becomes larger, the time it
takes to copy the dump file becomes the dominating factor
of the total memory copy time. We also note that when the
memory usage becomes large, the bridging setup time also
grows significantly. This is likely due to CPU contention
with the virtual router restoration process, which happens
at the same time.
FIB repopulation: We now measure the time it takes VR1
to repopulate the new FIB on n3 after its migration. In this
experiment, we configure the virtual router with different
numbers of static routes and measure the time it takes to
install all the routes into the FIB in the software or hardware
data plane. Table 2 compares the FIB update time and
total time for FIB repopulation. FIB update time is the
time virtd takes to install route entries into the FIB, while
total time also includes the time for shadowd to send the
routes to virtd. Our results show that installing a FIB entry
into the NetFPGA hardware (7.4 microseconds) is over 250
times faster than installing a FIB entry into the Linux kernel
routing table (1.94 milliseconds). As can be expected the
update time increases linearly with the number of routes.

6.3 Data Plane Impact
In this subsection, we evaluate the influence router mi-

gration has on data traffic. We run our tests in both the
HD and SD cases and compare the results. We also study
the importance of having bandwidth isolation between the
migration and data traffic.

Table 2: The FIB repopulating time of the SD and HD prototypes
Data plane type Software data plane (SD) Hardware data plane (HD)
Number of routes 100 1k 10k 15k 100 1k 10k 15k

FIB update time (sec) 0.1946 1.9318 19.3996 31.2113 0.0008 0.0074 0.0738 0.1106
Total time (sec) 0.2110 2.0880 20.9851 33.8988 0.0102 0.0973 0.9634 1.4399

6.3.1 Zero impact: HD router with separate migra-
tion bandwidth

We first evaluate the data plane performance impact of
migrating a virtual router from our HD prototype router.
We configure the HD testbed such that the migration traffic
from n1 to n3 goes through the direct link n1→n3, eliminat-
ing any potential bandwidth contention between the migra-
tion traffic and data traffic.

We run the D-ITG traffic generator [14] on n0 and n2 to
generate round-trip UDP traffic. Our evaluation shows that,
even with the maximum packet rate the D-ITG traffic gen-
erator on n0 can handle (sending and receiving 64-byte UDP
packets at 91k packets/s), migrating the virtual router VR1
from n1 to n3 (including the control plane migration and
link migration) does not have any performance impact on
the data traffic it is forwarding—there is no delay increase or
packet loss4. These results are not surprising, as the packet
forwarding is handled by the NetFPGA, whereas the migra-
tion is handled by the CPU. This experiment demonstrates
that hardware routers with separate migration bandwidth
can migrate virtual routers with zero impact on data traffic.

6.3.2 Minimal impact: SD router with separate mi-
gration bandwidth

In the SD router case, CPU is the resource that could po-
tentially become scarce during migration, because the con-
trol plane and data plane of a virtual router share the same
CPU. We now study the case in which migration and packet
forwarding together saturate the CPU of the physical node.
As with the HD experiments above, we use link n1→n3 for
the migration traffic to eliminate any bandwidth contention.

In order to create a CPU bottleneck on n1, we use PC3000
machines on n0 and n2 and use lower performance PC850
machines on n1 and n3. We migrate VR1 from n1 to n3
while sending round-trip UDP data traffic between nodes
n0 and n2. We vary the packet rate of the data traffic from
1k to 30k packets/s and observe the performance impact the
data traffic experiences due to the migration. (30k packets/s
is the maximum bi-directional packet rate a PC850 machine
can handle without dropping packets.)

Somewhat surprisingly, the delay increase caused by the
migration is only noticeable when the packet rate is rela-
tively low. When the UDP packet rate is at 5k packets/s,
the control plane migration causes sporadic round-trip de-
lay increases up to 3.7%. However, when the packet rate is
higher (e.g., 25k packets/s), the change in delay during the
migration is negligible (< 0.4%).

This is because the packet forwarding is handled by ker-
nel threads, whereas the OpenVZ migration is handled by
user-level processes (e.g., ssh, rsync, etc.). Although ker-
nel threads have higher priority than user-level processes in
scheduling, Linux has a mechanism that prevents user-level
processes from starving when the packet rate is high. This

4We hard-wire the MAC addresses of adjacent interfaces
on each physical nodes to eliminate the need for ARP re-
quest/response during link migration.

Table 3: Packet loss rate of the data traffic, with
and without migration traffic

Data traffic rate (Mbps) 500 600 700 800 900

Baseline (%) 0 0 0 0 0.09
w/ migration traffic (%) 0 0 0.04 0.14 0.29

explains the delay increase when migration is in progress.
However, the higher the packet rate is, the more frequently
the user-level migration processes are interrupted, and more
frequently the packet handler is called. Therefore, the higher
the packet rate gets, the less additional delay the migration
processes add to the packet forwarding. This explains why
when the packet rate is 25k packets/s, the delay increase
caused by migration becomes negligible. This also explains
why migration does not cause any packet drops in the ex-
periments. Finally, our experiments indicate that the link
migration does not affect forwarding delay.

6.3.3 Reserved migration bandwidth is important

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500 600 700 800 900

D
el

ay
 in

cr
ea

se
 (

%
)

Data traffic rate (Mbps)

Figure 9: Delay increase of the data traffic, due to
bandwidth contention with migration traffic

In 6.3.1 and 6.3.2, migration traffic is given its own link
(i.e., has separate bandwidth). Here we study the impor-
tance of this requirement and the performance implications
for data traffic if it is not met.

We use the dumbbell testbed in this experiment, where
migration traffic and data traffic share the same bottleneck
link. We load the ospfd of a virtual router with 250k routes.
We start the data traffic rate from 500 Mbps, and gradually
increase it to 900 Mbps. Because OpenVZ uses TCP (scp)
for memory copy, the migration traffic only receives the left-
over bandwidth of the UDP data traffic. As the available
bandwidth decreases to below 300 Mbps, the migration time
increases, which translates into a longer control-plane down-
time for the virtual router.

Figure 9 compares the delay increase of the data traffic
at different rates. Both the average delay and the delay
jitter increase dramatically as the bandwidth contention be-
comes severe. Table 3 compares the packet loss rates of the
data traffic at different rates, with and without migration

traffic. Not surprisingly, bandwidth contention (i.e., data
traffic rate ≥ 700 Mbps) causes data packet loss. The above
results indicate that in order to minimize the control-plane
downtime of the virtual router, and to eliminate the per-
formance impact to data traffic, operators should provide
separate bandwidth for the migration traffic.

6.4 Control Plane Impact
In this subsection, we investigate the control plane dynam-

ics introduced by router migration, especially how migration
affects the protocol adjacencies. We assume a backbone net-
work running MPLS, in which its edge routers run OSPF
and BGP, while its core routers run only OSPF. Our results
show that, with default timers, protocol adjacencies of both
OSPF and BGP are kept intact, and at most one OSPF LSA
retransmission is needed in the worst case.

6.4.1 Core Router Migration
We configure virtual routers VR1, VR6, VR8 and VR10

on the Abilene testbed (Figure 7) as edge routers, and the
remaining virtual routers as core routers. By migrating VR5
from physical node Chicago-1 to Chicago-2, we observe the
impact of migrating a core router on OSPF dynamics.
No events during migration: We first look at the case in
which there are no network events during the migration. Our
experiment results show that the control-plane downtime of
VR5 is between 0.924 and 1.008 seconds, with an average of
0.972 seconds over 10 runs.

We start with the default OSPF timers of Cisco routers:
hello-interval of 10 seconds and dead-interval of 40 seconds.
We then reduce the hello-interval to 5, 2, and 1 second in
subsequent runs, while keeping the dead-interval equal to
four times the hello-interval. We find that the OSPF adja-
cencies between the migrating VR5 and its neighbors (VR4
and VR6) stay up in all cases. Even in the most restrictive
1-second hello-interval case, at most one OSPF hello mes-
sage is lost and VR5 comes back up on Chicago-2 before its
neighbors’ dead timers expire.
Events happen during migration: We then investigate
the case in which there are events during the migration and
the migrating router VR5 misses the LSAs triggered by the
events. We trigger new LSAs by flapping the link between
VR2 and VR3. We observe that VR5 misses an LSA when
the LSA is generated during VR5’s 1-second downtime. In
such a case, VR5 gets a retransmission of the missing LSA 5
seconds later, which is the default LSA retransmit-interval.

We then reduce the LSA retransmit-interval from 5 sec-
onds to 1 second, in order to reduce the time that VR5 may
have a stale view of the network. This change brings down
the maximum interval between the occurrence of a link flap
and VR5’s reception of the resulting LSA to 2 seconds (i.e.,
the 1 second control plane downtime plus the 1 second LSA
retransmit-interval).

6.4.2 Edge Router Migration
Here we configure VR5 as the fifth edge router in the

network that runs BGP in addition to OSPF. VR5 receives
a full Internet BGP routing table with 255k routes (obtained
from RouteViewson Dec 12, 2007) from an eBGP peer that
is not included in Figure 7, and it forms an iBGP full mesh
with the other four edge routers.

With the addition of a full BGP table, the memory dump
file size grows from 3.2 MB to 76.0 MB. As a result, it takes

longer to suspend/dump the virtual router, copy over its
dump file, and resume it. The average downtime of the con-
trol plane during migration increases to between 3.484 and
3.594 seconds, with an average of 3.560 seconds over 10 runs.
We observe that all of VR5’s BGP sessions stay intact dur-
ing its migration. The minimal integer hello-interval VR5
can support without breaking its OSPF adjacencies during
migration is 2 seconds (with dead-interval set to 8 seconds).
In practice, ISPs are unlikely to set the timers much lower
than the default values, in order to shield themselves from
faulty links or equipment.

7. MIGRATION SCHEDULING
This paper primarily discusses the question of migration

mechanisms (“how to migrate”) for VROOM. Another im-
portant question is the migration scheduling (“where to mi-
grate”). Here we briefly discuss the constraints that need
to be considered when scheduling migration and several op-
timization problems that are part of our ongoing work on
VROOM migration scheduling.

When deciding where to migrate a virtual router, sev-
eral physical constraints need to be taken into considera-
tion. First of all, an “eligible” destination physical router
for migration must use a software platform compatible with
the original physical router, and have similar (or greater)
capabilities (such as the number of access control lists sup-
ported). In addition, the destination physical router must
have sufficient resources available, including processing power
(whether the physical router is already hosting the max-
imum number of virtual routers it can support) and link
capacity (whether the links connected to the physical router
have enough unused bandwidth to handle the migrating vir-
tual router’s traffic load). Furthermore, the redundancy re-
quirement of the virtual router also needs to be considered—
today a router is usually connected to two different routers
(one as primary and the other as backup) for redundancy.
If the primary and backup are migrated to the same node,
physical redundancy will be lost.

Fortunately, ISPs typically leave enough “head room” in
link capacities to absorb increased traffic volume. Addition-
ally, most ISPs use routers from one or two vendors, with
a small number of models, which leaves a large number of
eligible physical routers to be chosen for the migration.

Given a physical router that requires maintenance, the
question of where to migrate the virtual routers it currently
hosts can be formulated as an optimization problem, subject
to all the above constraints. Depending on the preference
of the operator, different objectives can be used to pick the
best destination router, such as minimizing the overall CPU
load of the physical router, minimizing the maximum load
of physical links in the network, minimizing the stretch (i.e.,
latency increase) of virtual links introduced by the migra-
tion, or maximizing the reliability of the network (e.g., the
ability to survive the failure of any physical node or link).
However, finding optimal solutions to these problems may
be computationally intractable. Fortunately, simple local-
search algorithms should perform reasonably well, since the
number of physical routers to consider is limited (e.g., to
hundreds or small thousands, even for large ISPs) and find-
ing a “good” solution (rather than an optimal one) is accept-
able in practice.

Besides migration scheduling for planned maintenance, we
are also working on the scheduling problems of power sav-

ings and traffic engineering. In the case of power savings,
we take the power prices in different geographic locations
into account and try to minimize power consumption with
a certain migration granularity (e.g., once every hour, ac-
cording to the hourly traffic matrices). In the case of traffic
engineering, we migrate virtual routers to shift load away
from congested physical links.

8. CONCLUSIONS
VROOM is a new network-management primitive that

supports live migration of virtual routers from one physical
router to another. To minimize disruptions, VROOM allows
the migrated control plane to clone the data-plane state at
the new location while continuing to update the state at the
old location. VROOM temporarily forwards packets using
both data planes to support asynchronous migration of the
links. These designs are readily applicable to commercial
router platforms. Experiments with our prototype system
demonstrate that VROOM does not disrupt the data plane
and only briefly freezes the control plane. In the unlikely
scenario that a control-plane event occurs during the freeze,
the effects are largely hidden by existing mechanisms for
retransmitting routing-protocol messages.

Our research on VROOM raises several broader questions
about the design of future routers and the relationship with
the underlying transport network. Recent innovations in
transport networks support rapid set-up and tear-down of
links, enabling the network topology to change underneath
the IP routers. Dynamic topologies coupled with VROOM’s
migration of the control plane and cloning of the data plane
make the router an increasingly ephemeral concept, not tied
to a particular location or piece of hardware. Future work
on router hypervisors could take this idea one step further.
Just as today’s commercial routers have a clear separation
between the control and data planes, future routers could
decouple the control-plane software from the control-plane
state (e.g., routing information bases). Such a“control-plane
hypervisor” would make it easier to upgrade router software
and for virtual routers to migrate between physical routers
that run different code bases.

9. REFERENCES
[1] The Internet2 Network. http://www.internet2.edu/.
[2] T. Afferton, R. Doverspike, C. Kalmanek, and K. K.

Ramakrishnan. Packet-aware transport for metro networks.
IEEE Communication Magazine, March 2004.

[3] M. Agrawal, S. Bailey, A. Greenberg, J. Pastor, P. Sebos,
S. Seshan, J. van der Merwe, and J. Yates. RouterFarm:
Towards a dynamic, manageable network edge. In Proc.
ACM SIGCOMM Workshop on Internet Network
Management (INM), September 2006.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebar, I. Pratt, and A. Warfield. Xen and the
Art of Virtualization. In Proc. SOSP, October 2003.

[5] O. Bonaventure, C. Filsfils, and P. Francois. Achieving
sub-50 milliseconds recovery upon BGP peering link
failures. IEEE/ACM Trans. Networking, October 2007.

[6] S. Bryant and P. Pate. Pseudo wire emulation edge-to-edge
(PWE3) architecture. RFC 3985, March 2005.

[7] J. Chabarek, J. Sommers, P. Barford, C. Estan, D. Tsiang,
and S. Wright. Power awareness in network design and
routing. In Proc. IEEE INFOCOM, 2008.

[8] E. Chen, R. Fernando, J. Scudder, and Y. Rekhter.
Graceful Restart Mechanism for BGP. RFC 4724, January
2007.

[9] Ciena CoreDirector Switch. http://www.ciena.com.

[10] MPLS VPN Carrier Supporting Carrier.
http://www.cisco.com/en/US/docs/ios/12_0st/12_0st14/
feature/guide/csc.html.

[11] Cisco Logical Routers.
http://www.cisco.com/en/US/docs/ios_xr_sw/iosxr_r3.
2/interfaces/command/reference/hr32lr.html.

[12] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live Migration of
Virtual Machines. In Proc. NSDI, May 2005.

[13] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson,
and A. Warfield. Remus: High availability via asynchronous
virtual machine replication. In Proc. NSDI, April 2008.

[14] D-ITG. http://www.grid.unina.it/software/ITG/.
[15] Emulab. http://www.emulab.net.
[16] N. Feamster, L. Gao, and J. Rexford. How to lease the

Internet in your spare time. ACM SIGCOMM Computer
Communications Review, Jan 2007.

[17] P. Francois, M. Shand, and O. Bonaventure.
Disruption-free topology reconfiguration in OSPF networks.
In Proc. IEEE INFOCOM, May 2007.

[18] M. Gupta and S. Singh. Greening of the Internet. In Proc.
ACM SIGCOMM, August 2003.

[19] G. Iannaccone, C.-N. Chuah, S. Bhattacharyya, and
C. Diot. Feasibility of IP restoration in a tier-1 backbone.
IEEE Network Magazine, Mar 2004.

[20] Juniper Logical Routers.
http://www.juniper.net/techpubs/software/junos/
junos85/feature-guide-85/id-11139212.html.

[21] Z. Kerravala. Configuration Management Delivers Business
Resiliency. The Yankee Group, November 2002.

[22] M. McNett, D. Gupta, A. Vahdat, and G. M. Voelker.
Usher: An extensible framework for managing clusters of
virtual machines. In Proc. USENIX LISA Conference,
November 2007.

[23] NetFPGA. http://yuba.stanford.edu/NetFPGA/.
[24] OpenVZ. http://openvz.org.
[25] Average retail price of electricity. http://www.eia.doe.

gov/cneaf/electricity/epm/table5_6_a.html.
[26] Quagga Routing Suite. http://www.quagga.net.
[27] A. Rostami and E. Sargent. An optical integrated system

for implementation of NxM optical cross-connect, beam
splitter, mux/demux and combiner. IJCSNS International
Journal of Computer Science and Network Security, July
2006.

[28] K. Roth, F. Goldstein, and J. Kleinman. Energy
Consumption by Office and Telecommunications
Equipment in commercial buildings Volume I: Energy
Consumption Baseline. National Technical Information
Service (NTIS), U.S. Department of Commerce, Springfield,
VA 22161, NTIS Number: PB2002-101438, 2002.

[29] A. Shaikh, R. Dube, and A. Varma. Avoiding instability
during graceful shutdown of multiple OSPF routers.
IEEE/ACM Trans. Networking, 14(3):532–542, June 2006.

[30] R. Teixeira, A. Shaikh, T. Griffin, and J. Rexford.
Dynamics of hot-potato routing in IP networks. In Proc.
ACM SIGMETRICS, June 2004.

[31] J. van der Merwe and I. Leslie. Switchlets and dynamic
virtual ATM networks. In Proc. IFIP/IEEE International
Symposium on Integrated Network Management, May 1997.

[32] VINI. http://www.vini-veritas.net/.
[33] Y. Wang, J. van der Merwe, and J. Rexford. VROOM:

Virtual ROuters On the Move. In Proc. ACM SIGCOMM
Workshop on Hot Topics in Networking, Nov 2007.

[34] J. Wei, K. Ramakrishnan, R. Doverspike, and J. Pastor.
Convergence through packet-aware transport. Journal of
Optical Networking, 5(4), April 2006.

[35] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif.
Black-box and Gray-box Strategies for Virtual Machine
Migration. In Proc. NSDI, April 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

