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Abstract

Traditional caches employ the LRU management policy to drive replacement decisions.
However, previous studies have shown LRU can perform significantly worse than the theo-
retical optimum, OPT [1]. To better match OPT, it is necessary to aggressively anticipate
the future memory references performed in the cache. Recently, several researchers have
tried to approximate OPT management by predicting last touch references [2, 3, 4, 5].
Existing last touch predictors (LTPs) either correlate last touch references with execution
signatures, like instruction traces [3, 4] or last touch history [5], or they predict cache block
life times based on reference [2] or cycle [6] counts. On a predicted last touch, the refer-
enced cache block is marked for early eviction. This permits cache blocks lower in the LRU
stack–but with shorter reuse distances–to remain in cache longer, resulting in additional
cache hits.

This paper investigates three mechanisms to improve LTP-driven cache management.
First, we propose exploiting reuse distance information to increase LTP accuracy. Specif-
ically, we correlate a memory reference’s last touch outcome with its global reuse distance
history. Second, for LTPs, we also advocate selecting the most-recently-used LRU last
touch block for eviction. We find an MRU victim selection policy evicts fewer LNO last
touches [5] and mispredicted LRU last touches. Our results show that for an 8-way 1 MB
L2 cache, a 54 KB RD-LTP which combines both mechanisms reduces the cache miss rate
by 12.6% and 15.8% compared to LvP and AIP [2], two state-of-the-art last touch predic-
tors, and by 9.3% compared to DIP [7], a recent insertion policy. Finally, we also propose
predicting actual reuse distance values using reuse distance predictors (RDPs). An RDP
is very similar to an RD-LTP except its predictor table stores exact reuse distance values
instead of last touch outcomes. Because RDPs predict reuse distances, we can distinguish
between LNO and OPT last touches more accurately. Our results show an 64 KB RDP
can improve the miss rate compared to an RD-LTP by an additional 2.7%.

1. Introduction

The performance of the cache memory hierarchy is critical to the overall performance of
modern computer systems. In particular, the policies used to manage the contents of
caches can have a major impact on hit rates, and hence, memory hierarchy effectiveness.
Traditional caches employ the LRU policy to drive replacement decisions. However, previous
studies have shown LRU can perform significantly worse than the theoretical optimum,
OPT [1], especially for large and highly associative caches commonly found at the L2
level [5, 8]. These studies suggest an opportunity exists for more sophisticated replacement
algorithms to provide higher performance.
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To improve upon LRU and better match OPT, it is necessary to aggressively anticipate
the future memory references performed in the cache. In the case of OPT, perfect knowledge
about the reuse distance of memory references is available to the replacement algorithm, al-
lowing it to always evict the block used furthest in the future. Recently, several researchers
have tried to approximate such omniscient OPT management by predicting last touch ref-
erences [2, 3, 4, 5]. On a predicted last touch, the referenced cache block is marked for
early eviction since it is unlikely to be re-referenced prior to becoming the LRU block. This
permits cache blocks lower in the LRU stack–but with shorter reuse distances–to remain in
cache longer, resulting in additional cache hits.

At the heart of such sophisticated replacement algorithms are the last touch predictors
(LTPs) used to predict last touch references and drive replacement decisions. To date, two
major approaches have been considered for LTPs. The first approach correlates last touch
references with execution signatures. Signature types that have shown the greatest promise
include instruction traces [3, 4] and last touch history [5]. The second approach identifies
last touches by predicting cache block life times based on either reference [2] or cycle [6]
counts. In this approach, a last touch is assumed whenever the predicted life time of a block
in the cache expires.

This paper investigates several novel mechanisms for improving LTP-driven cache man-
agement. First, we propose exploiting reuse distance information to increase LTP accuracy.
Like last touches, reuse distances associated with individual memory references also exhibit
repeating patterns which can be captured by a hardware predictor. Specifically, we corre-
late a memory reference’s last touch outcome with its global reuse distance history and the
memory instruction’s PC, and store the correlation in a hardware table. We call a hardware
structure with both these mechanisms a reuse distance last touch predictor (RD-LTP). To
determine reuse distances, RD-LTPs observe a cache block’s position in the LRU stack at
reference time. Consequently, RD-LTPs can track reuse distances for blocks that remain
in the cache. By augmenting the cache with shadow tags [9], RD-LTPs can also monitor
the reuse distances of recently evicted cache blocks. This enables RD-LTPs to track LRU
last touches even when cache management deviates from a true LRU policy due to early
evictions. For RD-LTPs, we also advocate selecting the most-recently-used LRU last touch
block for eviction. We find an MRU victim selection policy often picks the best block to
evict.

Our results show that for an 8-way 1 MB L2 cache, a 54 KB RD-LTP can reduce the
cache miss rate by 12.6% and 15.8% compared to LvP and AIP [2], two state-of-the-art
last touch predictors, and by 9.3% compared to DIP [7], a recent insertion policy. These
performance gains are achieved for two reasons. First, RD-LTPs exhibit a much higher
prediction rate, predicting 71.2% of the LRU last touches compared to only about 19% for
LvP and AIP. Second, we find the MRU victim selection policy avoids evicting LNO last
touches [5] (i.e. the evictions that are last touches under LRU but not under OPT) as well
as mispredicted LRU last touches, thus increasing the proportion of OPT last touches that
are evicted.

Finally, we also investigate techniques to further improve how we distinguish between
LNO and OPT last touches, thus enabling even higher quality early eviction decisions.
Specifically, we propose predicting actual reuse distance values using reuse distance predic-
tors (RDPs). An RDP is identical to an RD-LTP except its predictor table stores exact
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Figure 1: A memory address trace, and various information associated with the trace used
to predict last touch and/or reuse distance. Information includes memory ad-
dresses, memory reference program counters, last touch history, and reuse dis-
tance. Access and live times are indicated for a sequence of references to the
memory address A.

reuse distance values instead of last touch outcomes. To be effective, RDPs must track reuse
distances larger than the cache’s natural LRU stack depth. We rely on the same shadow
tags in RD-LTPs to provide the deeper reuse distance information. Because RDPs predict
reuse distances, we can more exactly determine which cache blocks are used the farthest in
the future, thus identifying OPT last touches more accurately. Our results show an 64 KB
RDP can improve the miss rate compared to an RD-LTP by an additional 2.7%.

The remainder of this paper is organized as follows. After discussing related work in
Section 2, Section 3 introduces our predictors. Then, Section 4 presents our experimental
methodology. Next, Section 5 evaluates cache management policies that use RD-LTPs, and
Section 6 evaluates cache management policies that use RDPs. Finally, Section 7 concludes
the paper.

2. Related Work

This paper is closely related to previous work on last touch prediction. Several proposals
for predicting a cache block’s last touch have been explored. To illustrate the different
approaches, Figure 1 shows a timeline of memory references performed on the memory
location A (indicated by the boxes), beginning with a cache-missing reference that allocates
A’s block in cache, and ending with a last touch reference. Memory references performed on
other locations in between references to A are also shown, and various runtime information
associated with all the memory references is indicated below the timeline.

Existing LTPs predict last touches based on either signatures, life times, or access times.
Signature-based LTPs associate each last touch reference with an execution signature that
captures the runtime context for the last touch. In particular, Lai’s LTP [3, 4] forms a
signature from instruction traces. Truncated addition is performed on the sequence of
program counter values for each memory reference to a cache block, thus encoding the trace
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of memory instructions leading up to the block’s last touch. For example, in Figure 1, the
sum PC1 + PC3 + PC1 truncated to the desired length is an instruction trace signature
for the last touch reference performed by PC7. While effective for L1 caches, Lin and
Reinhardt [5] show instruction trace signatures are far less accurate for large and highly-
associative caches commonly found at the L2 level. Instead, they find L2 last touches are
better correlated to last touch history. For each memory reference, the last touch history
specifies a single bit–”0” for not a last touch and “1” for last touch–as indicated in Figure 1.
A memory reference’s last touch signature is formed by concatenating the history bits from
the N preceding memory references to the same cache block. For high prediction accuracy,
N = 16 to 32 is required [5].

The Inter-Reference Gap (IRG) model [10] is another signature-based predictor similar
to our approach. IRGs correlate predicted future reuse length values with histories of
previous reuse length values. In that regard, it’s similar to our RDP. The main difference
is our signatures and predicted values are reuse distances, not reuse lengths. Also, IRGs
only accumulate history locally to a single memory block whereas our approach uses global
history.

In contrast to signatures, Kharbutli and Solihin [2] predict last touches by observing
either cache block life times or access times. When the life time of a block in the cache
expires, the memory reference at the time of expiration is predicted as a last touch. Al-
ternatively, if no reference to a cache block occurs after the access time elapses, then the
most recent reference is predicted as a last touch. To quantify life and access times, Khar-
butli and Solihin count memory references. In particular, the number of references to a
cache block from the first access to the last touch quantifies life time, while the number of
interceding references between two touches to the same cache block quantifies access time.
For example, in Figure 1, the cache block containing location A has a life time of 4 and an
access time of 2 (the worst-case time value is chosen). The counters for predicting life and
access times are stored in hardware predictors, called LvP and AIP, respectively.

In addition to using memory reference counts, cache block life times (and hence last
touches) can also be predicted based on cycle counts. Cache Decay [6] and Adaptive Mode
Control [11] observe the number of cycles that have elapsed since a block’s most recent
reference, and marks the block as dead when the elapsed time exceeds a certain threshold.
Another approach ties cache block liveness to program or runtime system execution [12]. For
example, after a method referencing a block’s data terminates or the block’s data has been
garbage collected, the cache block is assumed to have received its last touch. Such cycle-
based and program-based approaches have been used to save energy (e.g., predicted dead
blocks are powered down to eliminate leakage). Lastly, while all the techniques mentioned
thus far are hardware techniques, Wang et al propose identifying last touch references in
the compiler, and providing hints to the architecture through special memory operations.

The predictors studied in this paper are signature-based predictors, but they differ from
existing techniques in two major ways. First, instead of using instruction traces, last touch
history, or reuse lengths, we form signatures from sequences of reuse distance values. More-
over, our signatures are global in that they aggregate information from different memory
locations; previous signatures contain information from a single memory location only. And
second, compared to previous LTPs, we also predict more detailed reuse information. LTPs
essentially predict a binary reuse outcome: the distance to the next use of a cache block
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is either greater than or less than the cache associativity, implying the current memory
reference is a last touch or not a last touch, respectively, assuming LRU. For LRU last
touches, we also predict how far into the future the next reference will be. This more exact
information can be used to help distinguish between LNO and OPT last touches.

Finally, while our approach (along with all other LTPs) identify dead blocks for early
eviction, some techniques identify soon-to-be-referenced blocks for late retention. In partic-
ular, Puzak [9] uses shadow tags to identify LNO blocks and retains them in cache longer.
Similar to Puzak, we too use shadow tags–not for late retention but rather for keeping
accurate reuse information to form signatures. More recently, Qureshi et al [7] propose the
Dynamic Insertion Policy (DIP) which places certain incoming cache blocks in the MRU
stack position so as to retain already resident cache blocks. Compared to LTP techniques,
DIP requires less hardware support, but only targets a specific reuse pattern.

3. Predicting Last Touch References

This section presents our predictors. We begin by discussing reuse distance prediction
using reuse distance history (Section 3.1.), and motivate intuitively why it can work well
(Section 3.2.). Then, we describe how predictions are performed in RD-LTPs (Section 3.3.).
Finally, we discuss LNO last touches, and introduce RDPs (Section 3.4.).

3.1. Global Reuse Distance History

All our predictors correlate predicted outcomes with sequences of reuse distance values,
called reuse distance history. Moreover, these sequences are global because they are formed
from back-to-back memory references, not just references to the same memory location. The
bottom of Figure 1 shows the sequence of reuse distance values for our example memory
reference timeline. The sequence labels each memory reference with its reuse distance,
i.e. the number of unique memory locations referenced before the next reference to the
same location. For example, the first reference to B has a reuse distance of 3 because A,
C, and D are referenced before B is referenced again. Let us define the previous reuse
distance (PRD) of a memory reference as the reuse distance of the most recent reference
to the same location. For example, the second reference to C has a previous reuse distance
of 2 because its previous reference to C (performed by PC4) has a reuse distance of 2.
Given these definitions, a memory reference’s global reuse distance history contains the N

previous reuse distance values immediately preceding the reference, where N is the history
length. For example, the global reuse distance history of the last reference to A, assuming
N = 2, is {2, 3} because the two preceding memory references to C and B have previous
reuse distances of 2 and 3, respectively.

To enable the use of global reuse distance history in hardware predictors, we make two
simplifications. First, we consider reuses at cache block granularity rather than individual
memory words–i.e., A–D in Figure 1 represent cache block addresses. This makes sense
since cache management decisions are made at the cache block level anyways. And second,
we compute each reuse distance value across references to the same cache set rather than
across all memory references–i.e., A–D in Figure 1 map to the same set.

With these simplifications, we can easily compute the previous reuse distance for certain
memory references in hardware, and hence form global reuse distance histories, as long as
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Iteration n Iteration n+1 

Forward RD Backward RD 

for (tj=0; tj<N2; tj++) {        

Y[tj].y = 0; temp = 0;       R1 (PC1, Atj) 

if ( !Y[tj].reset ) {         R2 (PC2, Atj) 

for (ti=0; ti < N1; ti++) {       

       temp0 = f1_layer[ti].P;      R3 (PC3, Bti) 

   temp += temp0 * bus[ti][tj];     R4 (PC4, Cti,tj) 

} 

  Y[tj].y = temp;        R5 (PC5, Atj) 

 } 

}  

Figure 2: Memory reference pattern from the ART benchmark.

the cache maintains LRU ordering between cache blocks. In particular, on a cache hitting
memory reference, the per-set reuse distance of the previous memory reference to the same
cache block is simply the block’s position in the cache set’s LRU stack. This permits us to
track memory references’ reuse distances so long as the associated cache blocks remain in
cache. (Equivalently, we can observe any reuse distance between 0 and CA − 1, where CA

is the cache associativity). Unfortunately, we cannot track the reuse distance for memory
references whose blocks leave the cache since their associated LRU stack information is lost.
When a cache block leaves the cache, we assign a reuse distance of CA to the last memory
reference performed on the block (i.e., its last touch), signifying the true reuse distance is
unknown but is at least CA. For example, in Figure 1, the global reuse distance history for
the last reference to D, assuming N = 2, CA = 8, and the reference to E (which is a cache
miss) is {2, 8}.

3.2. Motivating Example

Having defined global reuse distance history, we now show why it can be effective for reuse
distance prediction. As a motivating example, we use a frequently executed loop nest
from art, a memory-intensive SPEC2000 benchmark. Figure 2 shows the loop nest code.
Within the outer loop of the code, there are five memory references, R1 to R5, performed
by five different instructions, PC1 to PC5. The memory reference trace for two consecutive
iterations of the outer loop is shown under the code, along with each reference’s future reuse
distance (FRD) and PRD. The FRD and PRD values are computed assuming each element
of the Y array is smaller than a cache block so that R1 can access the same cache block as
R2 in the same iteration of the outer loop, as well as R5 if Y [tj].reset is false.
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From the sequence of PRD values in Figure 2, we can identify a few reuse distance
history patterns. In particular, assuming a history length of 3, possible patterns include
[∞, 0, > 2 ∗ N1] for R4, [0, > 2 ∗ N1, > N1 ∗ N2] for R3, [> 2 ∗ N1, > N1 ∗ N2,
> 2 ∗ N1] for R4, and [> N1 ∗ N2, 2 ∗ N1, ∞] for R2. As described in Section 3.1., these
pattern histories–along with the associated referencing PCs–can be used to predict memory
references’ FRD values. Take R2 for example. The FRD of the first R2 instance is 2*N1
because the if condition is met for iteration n. This information can be captured by a
predictor and used to predict the following iteration, where the reuse distance history is the
same for the second R2 instance. Notice, however, reuse distance history alone is not enough
to distinguish certain cases. For example, the reuse distance history for the last instance
of R3 is identical to the reuse distance history for R5. In such cases, we must augment
the ambiguous reuse distance histories with memory references’ PCs to distinguish between
them. At the same time, PC alone (without reuse distance history) clearly cannot provide
good predictability either. For example, the FRD of R2 depends on the outcome of the if
statement. Predicting solely on the PC value, PC2, cannot disambiguate between the two
possible if statement outcomes, whereas the reuse distance history can provide the context
for performing such disambiguation. This is why we combine reuse distance history with
instruction PCs.

Not only does Figure 2 show how an RD-based predictor works, it also illustrates why
it can be effective. Despite executing a large number of iterations (N1 is typically very
big), there are a relatively small number of reuse distance history patterns that arise in the
art code. This is because the code contains only a few memory references, and exhibits
fairly simple control flow. Hence, a small predictor table can capture all of the important
patterns. In contrast, signatures that track individual cache blocks, like those used in LvP
and AIP, can generate significantly more patterns due to the enormous number of cache
blocks referenced by the code. For per-block signatures, much larger predictor tables are
required to store the prediction state. The compact prediction state associated with RD-
based predictors also facilitate very fast training. For example, after only a single outer-loop
iteration, the reuse distance history for R2 can be captured and used to make predictions
for the second instance of R2 in the following iteration. However, for per-block predictors,
enough accesses to each cache block must occur to generate sufficient history to train a
predictor. For example, in the art code, it is difficult to predict for cache block An since
there are only 3 references (at most) to the block each outer-loop iteration.

Although our analysis of reuse distance prediction does not take cache organization into
consideration (essentially, we assume a fully associative cache), we find the same behavior
for reuse distance history patterns occurs in individual sets of set-associative caches as well.
Hence, our motivating example also illustrates why global reuse distance history can be
effective for reuse distance prediction in a set-associative cache.

3.3. Predictor Hardware

Now, we present our predictors in detail. We begin by describing how we predict last
touches using RD-LTPs. Our other predictor, the RDP, employs very similar hardware,
and will be discussed in Section 3.4..
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a prediction. Steps 8–10 update the predictor.

Figure 3 shows the hardware organization of an RD-LTP, and illustrates the different
steps involved in performing predictions and updating predictor state. An RD-LTP requires
four additions to a conventional cache. First, a global reuse distance history array (GRDH
array) is needed to store the per-set global (previous) reuse distance histories. Second, each
cache tag is augmented with a last touch (LT) bit as well as a signature field containing
the signature observed during the block’s most recent reference. (In Figure 3, we assume
an 8-way set associative cache, so there are 8 tag, LT, and signature fields in the main tag
array). Third, a shadow tag array [9] is included to extend the LRU stack depth of the
cache. Like normal tags, each shadow tag also includes a signature field as well (but no LT
bit). Finally, a central predictor table is needed to store the prediction outcomes.

Labels “1” – “7” in Figure 3 illustrate the different steps for a last touch prediction
on a cache hit. First, we read the GRDH array entry corresponding to the referenced
cache set (label “1”). This entry contains the concatenated previous reuse distances for the
N memory references prior to the current reference that map to the referenced set. We
construct the N -lengthed global reuse distance history for the current memory reference
by observing the LRU stack position of the referenced cache block (label “2”), and append
it to the GRDH entry (label “3”). (In Figure 3, we assume N = 2). Next, we XOR
the global reuse distance history with the memory reference’s PC (label “4”) to form the
signature for the current reference. This signature is used to index the predictor table (label
“5”), producing a saturating counter whose value is compared against a threshold (label
“6”). If the counter value is greater than the threshold, a last touch outcome is predicted;
otherwise, a not lost touch outcome is predicted. The predicted outcome is written into the
cache block’s LT field (label “7”). In addition to cache hits, RD-LTPs also make predictions
on cache misses. The same 7 steps in Figure 3 are performed, except CA is appended to
the GRDH entry instead of the cache block’s LRU stack position (see Section 3.1.).

Labels “8” – “10” illustrate the different steps for updating the predictor. In particular,
the hit/miss outcome of the current memory reference validates the correctness of the last
touch prediction for the previous reference to the same cache block. To permit updating the
predictor with this actual outcome information, the signature associated with the previous
prediction is stored along with the tag of the referenced cache block. This signature is used
to index into the predictor table (label “8”) so that the previous prediction’s saturating
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counter can be updated (label “9”). If the current reference is a cache hit, the update can
occur at reference time; in this case, the counter is decremented to reflect the cache hit. If
the current reference is a cache miss, then the cache block (and hence its signature) is no
longer in cache, and thus the update must occur at eviction time before the signature is
lost. In this case, the counter is incremented to reflect the impending cache miss. Lastly,
the current memory reference’s signature is stored with the cache tag (label “10”) to enable
a predictor update on the next reference to the same cache block.

As Figure 3 shows, the ability to monitor the position of cache blocks in LRU stacks is
critical to RD-LTPs. Unfortunately, once cache blocks leave the cache, RD-LTPs cannot
track their reuse distances. This can become problematic when the cache acts on predictions
to evict blocks early. In particular, if an incorrect last touch prediction leads to an early
eviction, it is impossible to detect the misprediction and update the predictor accordingly
since the cache block is no longer in cache when the next reference to the block (which
would have been a cache hit) occurs. The cache not only suffers an additional miss, but the
predictor will likely make the same misprediction in the future. Worse yet, the additional
cache misses that such incorrect last touch predictions trigger also corrupt the global reuse
distance history, inserting CA values into the history instead of the actual reuse distances.
This can cause additional mispredictions and cache misses down the road.

To address this problem, we augment the cache with shadow tags, as shown in Figure 3.
In particular, we implement a shadow tag array containing SA shadow tags. When a cache
block is evicted, we remove its data from the cache, but retain its tag in a shadow tag
entry. We maintain LRU ordering between all tags (normal and shadow), thus extending
the cache’s LRU stack depth by SA. It requires at least CA − 1 shadow tags to track the
true reuse distances of recently evicted cache blocks, including those evicted early due to
last touch predictions, for as long as they remain in the shadow tag array (i.e., until they
become the least recently used among both normal and shadow blocks). The extended reuse
distance visibility provided by the shadow tags allows us to identify premature evictions
caused by last touch mispredictions, and hence, avoid corruption of global reuse distance
history and improve cache performance.

3.4. LNO vs OPT Last Touches

Like all previous LTPs, RD-LTPs predict the last touches observed under an LRU policy, a
natural consequence of the fact that the underlying cache management policy is itself LRU.
However, many LRU last touches are not last touches under OPT. These references are
referred to as LRU non-OPT, or LNO, last touches [5]. LNO last touches typically have
a reuse distance that is only slightly larger than CA, so they can be converted into cache
hits if the referenced blocks are kept in cache a bit longer. In particular, when multiple
cache blocks are marked as LRU last touches simultaneously, evicting those blocks with
larger reuse distances in favor of those with shorter reuse distances can keep the soon-to-
be-referenced blocks in cache longer than an LRU policy would, perhaps long enough to
convert what would be cache misses under LRU into cache hits.

In this paper, we propose two methods for distinguishing LNO and OPT last touches.
The first method works with our RD-LTP, and employs a very simple heuristic: when
multiple cache blocks are marked by the RD-LTP as LRU last touches, pick the most-
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recently-used block that has been marked. We find the MRU marked block is often a good
choice. In Section 5, we will present results that validate this claim, and provide more
intuition behind why it works. The second method takes a more direct approach: predict
the actual reuse distance for each marked LRU last touch block. Then, we can simply pick
the block with the largest predicted reuse distance. One challenge of the second method is
the reuse distances we need are necessarily larger than CA since the cache blocks of interest
are guaranteed to be LRU last touches. Observing such long reuse distances requires LRU
stacks larger than CA. Recall from Section 3.3. that RD-LTPs already extend the LRU
stack using shadow tags to improve prediction accuracy. Such shadow tags can also track
reuse distances beyond CA for distinguishing LNO and OPT last touches.

To enable the second method, we propose reuse distance predictors, or RDPs. Our
RDPs predict the exact reuse distance up to depth CA + SA. They are very similar to
RD-LTPs. In particular, they use signatures based on global reuse distance history, so all
the mechanisms in Figure 3 for creating signatures and indexing into the predictor table
remain the same. The main difference is RDPs store actual reuse distance values in the
predictor table instead of saturating counters. Notice, on a cache hit, we actually know the
exact reuse distance value by observing the position of the referenced cache block in the
LRU stack. An RD-LTP uses this information to form signatures (label “3” in Figure 3),
but ignores it when updating the predictor (label “9”). An RDP updates its predictor
with this exact reuse distance value. Specifically, the predictor entry is set to the observed
LRU stack position of a cache block on a hit to the cache tags (including both normal and
shadow tags); otherwise, it is set to CA + SA, signifying a miss in all the tags. Another
(more minor) difference is the LT field must be replaced with a reuse distance value field to
store predicted reuse distances. It is important to emphasize that RDPs can only provide
limited reuse distance information (between 0 and CA + SA). However, as we will see in
Sections 5 and 6, this is an important range.

4. Experimental Methodology

The remainder of this paper conducts an in-depth evaluation of our predictors from Sec-
tion 3, applying them for cache management and quantifying the resulting cache perfor-
mance. Our evaluation focuses on managing the L2 cache since this is an especially critical
part of the memory hierarchy for modern high-performance CPUs. As part of our evalua-
tion, we also compare our approach against existing LTP and insertion policy techniques.

4.1. Benchmarks

We considered the 24 SPEC CPU2000 benchmarks shown in Table 1 for driving our simu-
lations. For all the benchmarks, we use the pre-compiled Alpha binaries provided with the
SimpleScalar tools [13] which have been built using the highest level of compiler optimization.1

All of our benchmarks use the reference input set. To acquire our memory traces on M5, we
first fast-forward each benchmark to its representative region (the columns labeled “Skip
Ins” in Table 1 report the number of fast forwarded instructions). Then, we turn on tracing

1. The binaries we used are available at http://www.simplescalar.com/benchmarks.html.
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High Potential Low Potential
App Skip Ins MPKI Type App Skip Ins MPKI Type

ammp 4.75B 3.27 FP perlbmk 1.7B 0.01 Int
art 2.0B 100.70 FP eon 7.8B 0.00 Int

bzip2 1.8B 1.07 Int gzip 4.2B 0.15 Int
facerec 69.3B 3.00 FP gap 8.3B 0.98 Int
galgel 14B 1.41 FP apsi 2.3B 2.15 FP
gcc 2.1B 3.73 Int fma3d 2.6B 0.00 FP
mcf 14.75B 70.04 Int equake 4.8B 13.58 FP
mesa 2.1B 0.08 FP lucas 1.5B 9.84 FP
parser 13.1B 1.26 Int swim 5.7B 17.56 FP

sixtrack 3.8B 0.12 FP applu 1.5B 14.30 FP
twolf 2.0B 3.01 Int
vortex 2.5B 0.49 Int
vpr 7.6B 4.77 Int

wupwise 3.4B 2.05 FP
AVG 13.93 AVG 5.33

Table 1: SPEC CPU2000 benchmarks used to drive our cache simulations (B = Billion).

of L2 references, and simulate for 2 billion instructions. The amount of fast-forwarding for
each benchmark was selected using SimPoint [14] by consulting the SimPoint website.2

Out of the 24 benchmarks we considered, we found several benchmarks exhibit a very
small difference between the LRU and OPT policies for a baseline 1MB L2 cache. Since OPT
is theoretically optimal, a small LRU-OPT difference implies there isn’t much opportunity
for improvement. We divide our benchmarks into two categories based on this observation.
Benchmarks with an LRU-OPT difference less than 10% are placed in the “Low Potential”
category, while benchmarks with an LRU-OPT difference of 10% or greater are placed in
the “High Potential” category. Table 1 shows our suite contains 11 low potential and 14
high potential benchmarks. We verified that our techniques provide very little gain for the
low potential benchmarks (less than 1% improvement or degradation over the LRU policy).
Since there’s no room for improvement for the “Low Potential” category, we will focus on
the “High Potential” category in the remainder of this paper.

In addition to simulating our own techniques, we also compared against the AIP [2],
LvP [2], and DIP [7] techniques described in Section 2. AIP and LvP represent the state-of-
the-art for LTP-driven cache management, both in terms of performance and hardware cost.
They have been shown to outperform several other existing LTPs [2]. DIP also represents
the state-of-the-art, but for cache insertion policies. We are the first to compare DIP against
LTP techniques. To enable our comparison, we implemented the AIP and LvP last touch
predictors, and integrated them into our cache simulator. For DIP, we used the simulator
provided on the authors’ web site.3

2. Simulation regions for the Alpha binaries we use are published at
http://www-cse.ucsd.edu/˜calder/simpoint/multiple-standard-simpoints.htm.

3. The DIP simulator is available at http://users.ece.utexas.edu/˜qk/dip/.
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Cache Parameters
L1 I-cache 16 Kbyte, 2-way set associative, 64 byte blocks
L1 D-cache 16 Kbyte, 2-way set associative, 64 byte blocks
L2 U-cache 1 Mbyte, 8-way set associative, 64 byte blocks

Predictor Parameters
History Length 2 RD-LTP Shadow Tags 7 per cache set, 7 bits each
Reuse Distance Values 3 bits RDP Shadow Tags 8 per cache set, 7 bits each
Predictor Table 1024 entries RD-LTP Table Entries 2 bits
Signature Size 10 bits RDP Table Entries 4 bits

Table 2: Cache and predictor parameter settings.

4.2. Baseline Configuration

Our evaluation employs trace-driven simulation. We use the in-order processor model from
the M5 simulator [15] configured with baseline L1 and L2 cache to simulate several unipro-
cessor benchmarks. The M5 simulator was instrumented to record the post-L1 memory
address trace, along with the PC of each referencing instruction, seen at the input to the L2
cache during execution-driven simulation. After running the M5 simulations, we replayed
the L2 memory traces on a trace-driven cache simulator. The top portion of Table 2 reports
the parameters for the L1 and L2 caches in the M5 simulations.

The cache simulator includes architectural models for an RD-LTP and an RDP. In
the bottom portion of Table 2, we report the baseline configuration parameters for the
predictors. We use a global reuse distance history of length 2. Since the simulated cache is
8-way set associative, each reuse distance value in the history is between 0–8 (0–7 encode
the 8 positions in the LRU stack, while 8 encodes references not found in the LRU stack).
We encode reuse distances of 0 and 1 using the same value, thus enabling a compact 3-
bit encoding. (We did not notice any performance degradation due to this simplification).
This results in a 6-bit global reuse distance history. For the predictor table, we assume 1024
entries. To form the 10-bit signature needed to index the table, we pad the 6-bit history with
4 leading 0s, and XOR the result with the 10 least significant bits of the memory reference’s
PC.4 For each set in the cache, we augment the normal tags with 7 shadow tags in RD-LTP,
and 8 in RDP. Puzak’s thesis [9] shows many references have reuse distances slightly beyond
the cache associativity. Using SA = CA enables RDP to track these important short reuses,
while SA = CA − 1 is enough for RD-LTP to track true LRU reuse distance. Finally, the
predictor table entries differ in size depending on the type of predictor. RD-LTP table
entries contain a 2-bit saturating counter while RDP entries contain a 4-bit reuse distance
value. (The 4-bit RDP table entry encodes reuse distance values between 0–16 using the
same compact encoding trick described earlier; 0–15 encode the 16 positions in the LRU
stack including shadow tags, and 16 encodes references not found in the LRU stack).
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GRDH array (2 * 3-bit/set * 2048 sets) 1.5 kB
data blocks signature (10-bit/block * 8-block/set * 2048 sets) 20 kB
RD-LTP LT prediction bit (1-bit/block * 8-block/set * 2048 sets) 2 kB
RD-LTP predictor table (1024 * 2-bit) 0.25 kB
RD-LTP shadow tags ((10 + 7) bit * 7 entry/set * 2048 sets) 29.75 kB
RDP RD prediction (4-bit/block * 8-block/set * 2048 sets) 8 kB
RDP predictor table (1024 * 4-bit) 0.5 kB
RDP shadow tags ((10 + 7) bit * 8 entry/set * 2048 sets) 34 kB

RD-LTP total cost 53.5 kB
RDP total cost 64 kB

Table 3: Storage Cost of RD-LTP and RDP for 1MB cache.

4.3. Implementation Cost

We analyze the cost of our technique in terms of area, power, and cycle time. Given the
baseline configuration parameters in Table 2, our RD-LTP and RDP incur 53.5 and 64
Kbyte of additional storage, respectively. The breakdown of where this additional storage
is incurred is shown in Table 3. This extra hardware is needed to implement the per-block
prediction and signature fields, shadow tags, GRDH array, and predictor tables illustrated
in Figure 3. Compared to the 1 Mbyte L2 cache these predictors are used to manage, this
represents at most a 6% area overhead for both predictors. In terms of power consumption,
we anticipate the additional storage will increase the L2 power in proportion to its area
overhead. Given that the L2’s activity factor is normally low, the overall CPU power impact,
however, should be much less than 6%. And in terms of cycle time, the two predictor table
accesses (predict and update) are the most expensive because they occur in series with each
L2 access. However, the latency (which we estimate to be at most 3 or 4 cycles per table
access) is off the CPU’s critical path as the predictor operations can be performed after the
cache data is returned to the CPU. Given the low frequency of L2 references, there should
be ample time to completely hide the predictor’s latency before the next L2 reference.

In comparison, Kharbutli and Solihin report 61 and 57 Kbyte of additional storage for
AIP and LvP, respectively, assuming a 512 Kbyte L2 cache [2]. For a 1 Mbyte L2 cache,
this overhead increases to 82 and 73 Kbytes. So, our hardware overhead is very similar
to AIP and LvP. Unfortunately, the predictor table evaluated in Kharbutli and Solihin’s
previous study achieved poor performance for several of our benchmarks. Hence, in our
study, we use infinite predictor tables for LvP and AIP. (With infinite tables, our LvP
and AIP performance is similar to what is reported in [2]). In contrast, there is negligible
hardware overhead associated with DIP [7].

4. Since M5 instructions are 4 bytes wide, we divide the PC by 4 prior to truncating to 10 bits. This
removes the two least significant 0 bits in all instruction PCs.
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Figure 4: Cache miss rates for the high potential benchmarks achieved by OPT, RD-LTP,
DIP, LvP, AIP, and RD-LTP-Rand. All of the miss rates are normalized to the
LRU miss rate.

5. Last Touch Prediction Results

We begin our evaluation by studying the performance achieved when driving cache man-
agement decisions using our RD-LTP predictor. Later, in Section 6, we will evaluate the
RDP predictor.

5.1. LTP and Insertion Policy Evaluation

Figure 4 presents the cache miss rates achieved by RD-LTP, and compares them against
LvP, AIP, DIP, and OPT for high potential benchmarks. (The bars labeled “RD-LTP-
Rand” will be explained later in Section 5.4.). All of the miss rates in Figure 4 have been
normalized to the miss rate achieved by an LRU policy for the same benchmark, and the
bars labeled “AVGg” report the geometric mean across all the benchmarks.

In Figure 4, we see there is a significant opportunity for performance gains in these high
potential benchmarks as the LRU-OPT difference is nearly 50% on average. As the AVGg
bars show, RD-LTP capitalizes on this opportunity, reducing the miss rate over LRU by
25.8%. In addition, compared to existing LTPs, RD-LTP achieves a miss rate that is 12.6%
and 15.8% lower than LvP and AIP, respectively. In particular, RD-LTP outperforms both
LvP and AIP in 11 out of the 14 benchmarks, outperforms AIP alone in 1 benchmark, and
matches the performance of LvP and AIP in 1 benchmark. These improvements reduce by
30% the performance gap separating LvP/AIP from OPT. Compared to existing insertion
policies, RD-LTP achieves a miss rate that is 9.3% lower than DIP. In particular, RD-LTP
outperforms DIP in 9 out of 14 benchmarks, and matches the performance of DIP in 1
benchmark. These improvements reduce by 23.7% the performance gap separating DIP
from OPT.

RD-LTP outperforms LvP and AIP because our predictor achieves a higher prediction
rate and selects victims effectively, two issues that Sections 5.3. and 5.4. will study in greater
depth. RD-LTP outperforms DIP because it more effectively addresses a wide range of
memory use patterns. Insertion policies such as DIP specifically address thrashing due to
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Figure 5: Cache miss rates for the high potential benchmarks achieved by OPT, RD-LTP,
9-way cache, and victim cache. All of the miss rates are normalized to the LRU
miss rate.

working sets that are larger than the cache capacity. They allocate cache blocks at the LRU
position rather than the MRU position to retain a portion of the working set and increase
reuse on that portion. However, for other memory use patterns, LRU insertion can perform
poorly; hence, DIP reverts back to MRU insertion. In these cases, RD-LTP can outperform
DIP by identifying dead blocks and performing early eviction. Figure 4 shows DIP is quite
competitive, especially considering that it requires almost no additional hardware support.
Nonetheless, RD-LTP still provides higher performance.

5.2. Cache Organization Evaluation

As described in Section 4.3., our hardware costs about 60 Kbyte storage. To justify the
hardware cost invested in implementing an LT predictor rather than other cache organiza-
tion improvements such as higher associativity and victim caches, we evaluate a 9-way set
associative LRU cache that has an additional 128 Kbyte way compared to the baseline 1
MB cache, as well as a 1 Mbyte LRU cache with a 64 Kbyte victim cache [16](1024 cache
blocks, random replacement policy). Figure 5 compares the performance of these techniques
against RD-LTP and OPT assuming the baseline 1 MB cache. Among the 14 benchmarks
evaluated, RD-LTP outperforms the 9-way cache in 8 benchmarks, and outperforms the
victim cache in 7 benchmarks. For the remaining benchmarks, RD-LTP does not perform
as well as the 9-way cache or the victim cache because the increased cache capacity accom-
modates the majority of the benchmarks’ working sets. In fact, the 9-way cache reduces
miss rates in galgel and sixtrack even more than OPT. And for gcc the victim cache reduces
miss rate by 97%, while OPT can only reach an 88% reduction. The victim cache also
performs best in ammp and sixtrack, which helps the victim cache to reach similar cache
performance as OPT on average.

While the 9-way cache and victim cache perform well on average, this is primarily due to
a small number of benchmarks that receive a huge performance boost from the extra cache
capacity because their working sets are just slightly larger than 1 MB. When these special
cases are eliminated, the comparison becomes more favorable for RD-LTP. In particular, we
compute another average, labeled AVGg2 in Figure 5, that excludes gcc and sixtrack. In this
case, RD-LTP outperforms both 9-way and victim cache on average for the smaller group of
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Figure 6: Average cache miss rates for different cache sizes achieved by LRU, 9-way, victim
cache, LvP, AIP, DIP, and RD-LTP. All of the miss rates are normalized to the
LRU miss rate for 1 MB cache.

benchmarks. Based on these results, we conclude that when benchmarks’ working sets are
very close to the cache size, using the extra hardware to increase cache capacity performs
better than implementing an RD-LTP. However, if benchmarks’ working sets are noticeably
larger than the baseline cache capacity, which is the more general case, the investment of
additional hardware in an RD-LTP is more beneficial.

To measure the impact of different baseline cache capacities on various policies and
organizations, we also evaluate LRU, 9-way, victim cache, LvP, AIP, DIP and RD-LTP for
larger cache sizes from 2 MB to 8 MB while keeping the associativity at 8-way(except for
the 9-way cache). Figure 6 shows the average miss rates achieved by the techniques under
evaluation, with their hardware scaled up accordingly. RD-LTP continues to outperform or
match other techniques up to 8MB as more working sets fit into the larger caches.

5.3. Prediction Rate

To provide insight into how RD-LTP achieves its performance gains, Figure 7 shows the
accuracy of the predictions performed by RD-LTP, and compares it against LvP and AIP.
Each bar in Figure 7 breaks down the last touch outcomes for each predictor into 3 cate-
gories. Components labeled “Correct Prediction” report predictions that correctly identify
LRU last touch references; components labeled “Not Predicted” report LRU last touch
references that are not identified by the predictor; and components labeled “Wrong Predic-
tion” report the predictions that incorrectly identify LRU last touch references (i.e. these
references are not LRU last touches). All bars are normalized to the total number of LRU
last touch references in the corresponding benchmark, with the last group of bars reporting
the average across the 12 benchmarks.

As Figure 7 shows, RD-LTP correctly predicts a much larger fraction of the LRU last
touch references than either LvP or AIP. On average, RD-LTP identifies 71.2% of the LRU
last touches compared to only 19.2% and 15.6% for LvP and AIP, respectively. Because RD-
LTP correctly identifies a greater number of LRU last touches, it has the potential to perform
a larger number of beneficial early evictions. (In a moment, we will discuss how RD-LTP
capitalizes on this potential). Unfortunately, the higher prediction rate is also accompanied
by a larger number of mispredictions. As the “Wrong Prediction” components in Figure 7
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Figure 7: Prediction accuracy of RD-LTP, LvP, and AIP.

show, RD-LTP incurs 8.5% mispredictions whereas LvP and AIP incur only 5.2% and 3.8%,
respectively. Such mispredictions can lead to premature evictions, converting some LRU
cache hits into cache misses. However, RD-LTP’s higher prediction rate far outweighs the
negative consequences of its mispredictions.

These prediction accuracy results demonstrate RD-LTP is a more effective predictor
than LvP and AIP. We credit three factors. First, last touch events are highly correlated to
global reuse distance history. Our signatures simply identify more last touches. Second, RD-
LTP’s shadow tags improve predictor training. As discussed in Section 3.3., once the cache
management hardware begins acting on predictions and performing early evictions, the LRU
last touch outcomes of blocks that leave the cache early cannot be observed. Our shadow
tags allow us to continue tracking recently evicted blocks, thus permitting us to observe LRU
last touches even when replacement deviates from a strict LRU order. Finally, because RD-
LTP’s accuracy is inherently higher than LvP and AIP, it can be applied more aggressively.
RD-LTP predicts all memory references; in contrast, LvP and AIP avoid predicting memory
references with low accuracy (both predictors employ confidence mechanisms). The smaller
pool of predicted memory references in LvP and AIP further reduces their total correct
predictions.

5.4. Victim Selection

When an eviction occurs under RD-LTP, there are usually multiple cache blocks marked
as last touches. To illustrate this point, the column labeled “RDMrk” in Table 4 reports
the number of marked blocks encountered on average during an eviction, while the column
labeled “RD≥2” reports the percentage of evictions when 2 or more marked blocks are
encountered under RD-LTP. As Table 4 shows, 4.7 blocks are found marked on average
during each eviction, and 77.9% of the evictions encounter 2 or more marked blocks. So,
most of the time, RD-LTP must choose between multiple LRU last touch blocks for eviction.
This is the victim selection problem, and arises because RD-LTP predicts a large number
of LRU last touches, as discussed in Section 5.3.. Note, victim selection is not an issue for
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RDMrk RD≥2 LPMrk LP≥2 CRD
ammp 4.3 89.8 0.6 12.1 12
art 7.6 100.0 0.07 1.6 12
bzip2 3.3 82.0 0.3 3.8 14
facerec 7.4 99.8 1.5 31.8 20
galgel 4.3 83.4 1.6 45.7 9
gcc 5.0 92.1 0.9 1.6 9
mcf 7.3 100.0 0.5 4.4 30
mesa 6.2 86.5 1.1 28.1 44
parser 5.2 91.5 0.07 0.9 14
sixtrack 0.9 21.8 1.1 19.2 9
twolf 0.3 3.7 0.1 0.7 10
vortex 3.4 72.1 0.2 2.4 20
vpr 2.4 68.5 0.09 0.4 16
wupwise 7.6 100.0 0.03 0.6 44
AVG 4.7 77.9 0.6 11.0 18.8

Table 4: Number of marked blocks and percentage of evictions with at least 2 marked blocks
for RD-LTP and LvP. The last column reports CRD for each benchmark.

LvP/AIP. The columns labeled “LPMrk” and “LP≥2” in Table 4 report the same data, but
for the LvP technique (the results for AIP are similar). As Table 4 shows, only 0.6 blocks
are found marked on average during each eviction, and only 11% of the evictions encounter
2 or more marked blocks under LvP. Most of the time, there are either 0 or 1 marked blocks
because LvP predicts much fewer last touches compared to RD-LTP, so there’s no choice.

While RD-LTP identifies a large number of LRU last touches, unfortunately, not all of
them are profitable to evict, as discussed in Section 3.4.. In particular, LNO last touches can
be converted into cache hits by retaining them in cache a bit longer. Since OPT evictions
are a subset of LRU last touches, predicting a large number of LRU last touches and blindly
evicting them does not guarantee high performance. It is also important to select the best
last touch candidates for eviction.

To provide insight into which LRU last touches are most profitable to evict, let us ex-
amine the evictions made by LRU and OPT. Figure 8 shows a histogram of last touch
references under the LRU and OPT cache management policies for the AMMP benchmark.
For different reuse distances (X-axis), the histogram plots the number of last touch refer-
ences exhibiting that reuse distance (Y-axis). The histograms for LRU and OPT include
actual last touch references (i.e., all of these lead to evictions). The rightmost point in the
histogram reports the cumulative count for all reuse distances beyond the end of the X-axis.

Notice the number of OPT last touches in Figure 8 is always smaller than the number
of LRU last touches. The difference between the LRU and OPT histograms constitutes the
LNO last touches. Most importantly, notice that beyond some reuse distance, practically
all OPT last touches are also LRU last touches, i.e. there are very few LNO last touches.
For example, in AMMP, beyond a critical reuse distance (CRD) of 12, 90% or more of the
LRU last touches are also OPT last touches. This makes sense: LRU last touches with
large reuse distances have no hope of becoming cache hits, so they are also likely to be OPT
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Figure 8: Last touch reference histograms under LRU and OPT cache management for the
AMMP benchmark. CRD = 12.
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Figure 9: Cache misses under the OPT and Oracle-CRD policies.

last touches. This implies that beyond CRD, it doesn’t matter which LRU last touches we
evict–all of them are profitable. However, below CRD, we must be careful which blocks we
evict since there is a mixture of OPT and LNO last touches. We find that all benchmarks
exhibit this property, though the exact CRD value is application dependent. In Table 4,
the column labeled “CRD” reports the CRDs for all our benchmarks. As the last row in
Table 4 shows, on average, there are very few LNO last touches beyond a reuse distance of
18.8.

Figure 9 demonstrates the profitability of evicting LRU last touches beyond CRD. In
Figure 9, we show for each benchmark the miss rate achieved by OPT and an ideal eviction
policy, called Oracle-CRD. Oracle-CRD employs a perfect last touch predictor that marks
all the LRU last touches correctly with no wrong predictions–i.e., it has 100% coverage and
0% wrong predictions (this factors out the effects of a non-ideal predictor, and allows us
to just focus on the victim selection policy). In addition, amongst all LRU last touches,
Oracle-CRD also knows which ones occur beyond CRD (i.e., the long-reuse blocks). On an
eviction, Oracle-CRD always evicts the long-reuse blocks first. If no long-reuse block exists–
i.e., there are only short-reuse blocks–it selects one of the short-reuse blocks randomly. As
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Figure 10: Breakdown of the evictions performed by the RD-LTP and RD-LTP-Rand tech-
niques.

Figure 9 shows, Oracle-CRD comes within 3.1% of OPT. This demonstrates that evicting
the long-reuse blocks practically achieves the optimal performance.

Although RD-LTP cannot identify long-reuse blocks (it only predicts LRU last touches),
we find the likelihood of evicting long-reuse blocks increases when selecting the MRU marked
block for eviction. To illustrate this point, Figure 10 shows a breakdown of the evictions
performed by RD-LTP. The components labeled “Long” and “Short” indicate the fraction
of evictions that involve a long-reuse and short-reuse block, respectively. In addition, the
components labeled “Misprediction” indicate the fraction of evictions that involve a block
that was incorrectly marked as an LRU last touch. Breakdowns are given for RD-LTP which
always evicts the MRU marked block, and an alternate version, called RD-LTP-Rand, which
evicts a randomly selected marked block. As the AVGa bars in Figure 10 show, the MRU
policy finds a long-reuse block 52% of the time, while a random policy finds a long-reuse
block only 48% of the time.

Not only does the MRU policy select long-reuse blocks more frequently, it also more
effectively avoids evicting mispredicted blocks. In Figure 10, we see that the random policy
evicts roughly twice as many mispredicted LRU last touches compared to the MRU policy
(12.8% versus 6%). Since RD-LTP makes very few mispredictions (see Figure 7), the inter-
misprediction time is fairly large. Hence, when a cache miss occurs, it is unlikely for a
mispredicted block to be the MRU marked block as several other (correctly) predicted LRU
last touches have likely occurred since the last misprediction. Hence, selecting the MRU
block often avoids mispredictions.

The advantages of the MRU policy illustrated in Figure 10 translate into performance
benefits. The bars labeled “RD-LTP-Rand” in Figure 4 report the miss rate achieved by
RD-LTP-Rand. Comparing the RD-LTP and RD-LTP-Rand bars in Figure 4, we see the
MRU policy outperforms a random policy by 14.5%. Based on these results, we conclude
that MRU victim selection is a good policy for our RD-LTP technique.
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Figure 11: Cache miss rates achieved by OPT, Oracle-RDP, RDP, Oracle-MRU, and RD-
LTP for the high potential benchmarks.

6. Reuse Distance Prediction Results

Figure 11 presents our RDP results. In Figure 11, the bars labeled “RDP” report the
miss rates achieved when driving cache management decisions using an RDP across our
high potential benchmarks. For comparison, the miss rates achieved by RD-LTP and OPT
have been included from Figure 4. All bars are normalized to the LRU miss rate for each
benchmark, and the group of bars labeled “AVGg” report the geometric mean across all the
benchmarks. Comparing the RDP and RD-LTP bars, we see RDP provides an additional
2.7% miss rate reduction over RD-LTP on average. And comparing RDP to the LvP
and AIP results from Figure 4, we see RDP improves the miss rate by 14.9% and 17.8%,
respectively, over existing LTP techniques.

The additional benefit achieved by RDPs is due to the detailed reuse distance informa-
tion provided by the predictor. As discussed in Section 5.4., while some predictions identify
LRU last touches beyond CRD which are likely to be OPT last touches, many predictions
identify LRU last touches below CRD that may possibly be LNO last touches. In the latter
case, RDPs help by providing the exact reuse distance for marked blocks. Hence, when
multiple blocks are marked, the block referenced farthest in the future can be identified
directly, instead of using the MRU heuristic discussed in Sections 3.4. and 5.4..

To further understand our RDP result, Figure 11 also reports two ideal cache manage-
ment algorithms, Oracle-MRU and Oracle-RDP. Oracle-MRU is RD-LTP with perfect last
touch information. In Oracle-MRU, LRU last touch blocks are always marked perfectly
(like Oracle-CRD in Figure 9). But like RD-LTPs, Oracle-MRU still uses the MRU policy
to select a marked block for eviction.5 Oracle-RDP is RDP with perfect reuse distance in-
formation. In Oracle-RDP, LRU last touch blocks are always labeled with their actual reuse
distances perfectly. As Figure 11 shows, Oracle-MRU improves upon RD-LTP by 12.5%.
This represents the performance lost by RD-LTP due to predictor inaccuracy (i.e., the “Not
Predicted” and “Wrong Prediction” components in Figure 7). In addition, Figure 11 also

5. Although Oracle-MRU has perfect last touch information, the MRU policy may still mistakenly evict
LNO last touches over OPT last touches. In fact, Oracle-MRU may perform worse than RD-LTP if the
additional correct last touch predictions expose more LNO last touches for eviction.
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shows Oracle-RDP improves upon Oracle-MRU by 13.8%. This performance difference rep-
resents the actual potential benefit of exact reuse distance information. Unfortunately, RDP
does not fully achieve this potential, as demonstrated by its 2.7% performance gain over
RD-LTP. RDP’s inability to achieve its full potential is due to inaccuracies in predicting
the exact reuse distance.

7. Conclusion

This paper advances the state-of-the-art in LTP-driven cache management by investigating
three novel mechanisms. First, we propose a new signature-based LTP that correlates last
touch outcomes with global reuse distance history and the memory instruction’s PC. To
determine reuse distances, we observe a cache block’s position in the LRU stack at reference
time. By augmenting the cache with shadow tags, we can also monitor the reuse distances
of recently evicted cache blocks. Second, for LTPs, we also advocate selecting the most-
recently-used LRU last touch block for eviction. We find an MRU victim selection policy
evicts fewer LNO last touches and mispredicted LRU last touches. Our RD-LTP technique
employs both of these mechanisms. Our results show that for an 8-way 1 MB L2 cache, a
70 KB RD-LTP can reduce the cache miss rate by 12.6% and 15.8% compared to LvP and
AIP, respectively, and by 2.7% compared to DIP. We find RD-LTPs exhibit a much higher
prediction rate, predicting 71.2% of the LRU last touches compared to only about 19% for
LvP and AIP. We also find RD-LTP’s MRU victim selection policy selects a good choice
for early eviction.

Finally, we also propose RDPs, a new technique that predicts actual reuse distance
values. An RDP is very similar to an RD-LTP except its predictor table stores exact reuse
distance values instead of last touch outcomes. Because RDPs predict reuse distances, we
can better determine which cache blocks are used farthest in the future, thus distinguishing
LNO and OPT last touches more precisely. Our results show an 64 KB RDP can improve
the miss rate compared to an RD-LTP by an additional 2.7%.
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