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Abstract—In this paper, we develop an energy-efficient dis-
tributed estimation method that can be used in applications such
as the estimation of a diffusive source and the localization and
tracking of an acoustic target in wireless sensor networks. We first
propose a statistical measurement model in which we separate
the linear and nonlinear parameters. This modeling strategy
reduce the processing complexity. We then study the distributed
implementation of the Gauss-Newton method in the maximum
likelihood estimation. After that we propose a fully distributed
estimation approach based on an incremental realization of the
Gauss-Newton method. We derive three modifications of the basic
algorithm to improve the distributed processing performance
while still considering the energy restriction. We implement the
idea of information-driven collaborative signal processing and pro-
vide a sensor-node scheduling scheme in which the Cramér–Rao
bound (CRB) is used as the performance and information utility
measure to select the next sensor node. Numerical examples are
used to study the performance of the distributed estimation, and
we show that of the methods considered here, the proposed mul-
tiple iteration Kalman filtering method has the most advantages
for wireless sensor networks.

Index Terms—Energy-efficient distributed estimation,
Gauss–Newton method, maximum-likelihood estimation, sensor
node scheduling, wireless sensor networks.

I. INTRODUCTION

RECENTLY, wireless sensor networks have attracted ex-
tensive research interest as a new approach to providing

clever interaction with the physical world [1]–[4]. In this
paper, we address the issue of developing an energy-efficient
distributed parameter estimation method for applications in
wireless sensor networks. The proposed methods can be ap-
plied in many civilian and military applications, such as the
estimation of a diffusive source [5]–[7], the localization and
tracking of an acoustic target [8], [13], and most other passive
sensing applications.
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In a typical wireless sensor network, each sensor node oper-
ates unattended with limited battery power and communicates
with others through wireless links that consume the dominant
part of the energy in the network [4]. Therefore, a challenge in
wireless sensor network research is to develop energy-efficient
processing methods that can decrease the power usage while still
maintaining a required processing performance, thus increasing
the lifetime of the whole sensor network. In traditional central-
ized processing methods, the data measured at each sensor are
transmitted to a fusion center for processing. However, even
though centralized methods can achieve high processing perfor-
mance, some of their inherent properties, such as the large com-
munication energy consumption and the lack of adaptability to
link failures and dynamical changes in the network topology,
prohibit their use in a wireless sensor network. Hence, recent
research has focused on developing energy-efficient distributed
processing technologies suitable for the applications in wireless
sensor networks.

Most of the current distributed estimation methods fall into
two categories. In one category, the distributed estimation is
developed using the sequential (incremental) Bayesian method
[9]–[14]. With this method, a state belief (posterior density
function) is propagated in the sensor network according to
an information theoretic criterion. A typical method is the
distributed particle filter [12]. A difficulty in this type of
methods is that the convergence of the estimation is not easy
to be proven. In another category, the distributed estimation is
obtained by implementing the ordinary centralized estimation
methods, such as the maximum likelihood estimation and the
least-squares method in a distributed fashion [15]–[19]. These
type of methods maintains the optimality of the centralized
methods, whereas the required communication amount is large.
In this paper, we develop a new framework for the distributed
data exploration in wireless sensor networks, in which we join
the advantages of the above two types of methods.

The recent relevant work is presented in [15] and [16]. In
[15], a distributed Gauss-Newton method is derived. However,
the difference from our work is that: i) the goal of this method
is for sensor node self-localization; and ii) all sensor nodes
are involved in data communications in each iteration. In
[16], a space-time diffusion scheme is derived for least-square
parameter estimation using peer-to-peer communication. This
method relies on the information exchange among all sensor
nodes during a long sampling times. The convergence is proven
under a linear measurement model assumption. However, in
this paper, the essential point is that under an framework of
maximum likelihood estimation, we apply a information utility
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measure to choose an optimal sequence of sensor node to
collect measurements such that we reduce the required data
communications.

More specifically, we derive our new methods by combining
the distributed implementation of a Gauss-Newton-based max-
imum likelihood estimation and the information-driven sensor-
node scheduling. We first modify the ordinary implementation
of the Gauss-Newton method such that an update of the estimate
in each Gauss-Newton iteration can be divided into a sequence
of updates at each sensor node (we do not need to wait for the
collection of data from all the sensor nodes). A performance
criterion is used to determine when the estimation process will
stop. Then we implement the idea of information-driven col-
laborative signal processing [20], i.e., we use the sensor-node
scheduling to optimally allocate the limited resources such as
the energy and bandwidth in a wireless sensor network. Specif-
ically, according to a certain information measure, we find an
optimal subset and/or a sensor-node querying route to process
the estimation such that we can decrease energy consumption
and response time while maintaining an acceptable processing
performance.

We derive the information measure based on the Fisher
information matrix. We find that in our distributed estimation
method, calculation of the Fisher information matrixes is an
intrinsic part of the algorithm, hence they can be obtained
without any extra computation and data transmission, which
is suitable for the application in wireless sensor networks.
Another advantage of our new method is that we also take into
consideration the limited processing capability of each sensor
node in wireless sensor networks. For example, we propose a
statistical measurement model in which we separate the linear
parameters from the overall parameters such that estimation
computation can be substantially decreased.

The paper is organized as follows. In Section II, we present
the statistical measurement model and use the diffusive
source as an example. In Section III, we derive the standard
maximum likelihood estimation and analyze the distributed
implementation of the Gauss-Newton method. In Section IV,
we propose our new fully distributed estimation method and the
sensor-node scheduling scheme. Numerical examples are used
to demonstrate the performances of the proposed methods in
Section V. Conclusions and ideas for future work are presented
in Section VI.

II. STATISTICAL MEASUREMENT MODEL

In this section, we propose a statistical measurement model
based on which we derive our distributed maximum likelihood
(ML) estimation method. In this model, we assume the param-
eters are stationary. The model can also be extended to the dy-
namic parameter cases. This measurement model is suitable for
a broad range of applications in wireless sensor networks. We
present an example of monitoring a diffusive source using wire-
less sensor networks.

To model the measurements, we suppose that a spatially
distributed wireless sensor network has been deployed. Each
sensor node in this network is located at a known position and
can take measurements at a sequence of time instants. We denote
the sensor node locations at the positions ;

the sensor node takes the measurements at time samples
. Then we consider the following

statistical measurement model at each sensor node:

(1)

where
• is the measurement of sensor node at time ;

• is a
-dimensional vector, related to the underlying physical

mechanism of the source we want to estimate, where
, is a real scalar function de-

pending (generally nonlinearly) on ;
• is a parameter vector related to the source we

are interested in; its relation to the observation

through is nonlinear;
• is a parameter vector representing the linear part

of the model (1);
• represents additive noise. We assume it is a real

random variable with zero mean and Gaussian distribution.
We also assume that this additive noise is correlated in the
time domain but independent in the space domain, i.e.,

In this measurement model, the term represents
the underlying physical mechanism. Both parameter vectors
and are related to the unknown source and the environment
and may include the parameters we are interested in. Note that
in our model, instead of using a general nonlinear function to
describe the relationship between the unknown parameters and
the measurements, we represent the signal into a regression form
that is a linear combination of certain regression basis functions.
By providing this structure to the signal, we reduce the compu-
tation complexity of the corresponding distributed estimation
methods. This is because i) the unknown parameters in can be
estimated using closed-form formulas; and ii) the nuisance pa-
rameters in can be removed from the unknown parameter list
by applying a subspace projection method.

To simplify the presentation, we assume that each sensor
node takes measurements at the same sequence of time instants

(this assumption can be relaxed without
significant changes to the derived methods). We also denote

, and . Then
we can rewrite the measurement model (1) as

(2)

When we lump all the measurements taken at sensor node into
vector form, we obtain

(3)

where
• , which is an vector;
• , which is an

matrix;
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• which is an -dimension Gaussian
distributed random vector with mean 0 and covariance ma-
trix . It is also independent in the space domain, i.e.,

when .
This statistical measurement model can be used in many ap-

plications in wireless sensor networks, e.g., the monitoring of
a diffusive source, the localization and tracking of an acoustic
or electromagnetic target, and most other passive sensing appli-
cations. In the following, we show an example of the proposed
model in the application of estimating a diffusive source which
is important in the homeland security applications and environ-
ment monitoring.

A. Measurement Model of a Diffusive Source

We assume that a continuous point diffusive source is located
at position and that it releases a diffusive sub-
stance at time . A wireless sensor network is deployed to mon-
itor this diffusive source. The measurement taking by sensor
node at time can be written as

(4)

where is the concentration of the substance of interest at
position and time . The term represents the under-
lying physical mechanism of substance dispersion, and it can be
obtained by solving diffusion equations under certain boundary
and initial conditions. If we assume the environment to be a
semi-infinite medium with an impermeable boundary, and the
constant substance release rate from the source is , we obtain
the concentration distribution

(5)

where and is the medium diffusivity [21].
The other items in (4) are defined as follows (see [22] for de-
tails):

• is a bias term, representing the sensor’s response to for-
eign substances, which is assumed to be an unknown con-
stant;

• is the sensor’s noise, assumed to be Gaussian dis-
tributed, independent in time and space.

If we denote , and
, we can rewrite (4) as

(6)

which is an instance of the measurement model in the (2). Here
• ;
• is the linear parameter vector, in which is

the parameter of interest and is the nuisance parameter;
• represents the nonlinear source and

medium parameters.

III. STANDARD MAXIMUM LIKELIHOOD ESTIMATION

In this section, we first derive the standard maximum likeli-
hood estimation for the parameters and in the proposed mea-
surement model (3); then we study the realization of this ML es-
timation using an iterative Gauss-Newton method and thereby
develop a distributed implementation scheme motivated by the
idea of distributed EM algorithms in [19]. Even though this
distributed implementation can be used in wireless sensor net-
works, some important limitations of this method restrict its ap-
plications. This restriction motivates us to design a new frame-
work for the distributed ML estimation.

A. Maximum Likelihood Estimation

We assume that sensor nodes are activated to process an
estimation task in a wireless sensor network. At sensor node ,
measurement follows the proposed measurement model (3).
Here we assume the covariance matrix is known, since in
practical applications this matrix can be estimated during the
calibration step.

We can collect the measurements from all
sensor nodes into vector form as

(7)

where
• , which is an vector;
• , which is an

matrix;
• which represents the additive Gaussian

noise. According to our assumptions, it follows an
-dimension multiple normal distribution with mean

0 and covariance matrix , i.e., with
. Here, since the covariance

matrix is assumed to be positive definite, is also
positive definite and can be factored as
where is an invertible matrix. Accordingly, the
covariance matrix can also be factored as
where .

In this measurement model, the variables and are the un-
known parameters to be estimated.

According to the above measurement model (7), we find that
the log-likelihood function of the measurements is

(8)
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Maximizing this log-likelihood function, we obtain the ML es-
timates of and

(9)

(10)

where . We also find that the optimization in (9)
can be simplified as

(11)

where and is the projecting matrix on the column
space of

1) Nuisance Parameters: If there exist nuisance parameters
in the linear parameter vector , the ML estimates in (10)
can be simplified. Assume the vector is partitioned into two
parts

where includes parameters of interest, includes
nuisance parameters, and . Correspondingly,
matrix can also be partitioned into two parts

where includes the first columns of while
includes the last columns of . If we define

, and , we can ob-
tain the ML estimate for the parameters of interest as

(12)

where we denote

which is the complementary projection of on the
column space of .

In a special case when the matrix is not dependent on
, i.e., is a constant matrix as in (6), the ML estimate for

in (9) can also be simplified as

(13)

where the complexity to calculate is much less than the
calculation of in (9).

B. Implementation With Gauss-Newton Method

For a centralized ML estimation, the measurements from all
sensors are transmitted to a fusion center, and the fusion center
applies (9) and (10) to calculate the ML estimates directly. How-
ever, the severe energy restriction in wireless sensor networks
prohibits the transmission of raw data from all sensor nodes
to a fusion center. Therefore, the estimation results in (9) and
(10) are not enough to derive a distributed estimation method. In
this section, we analyze the realization of ML estimation using
a Gauss-Newton method and develop a distributed implemen-
tation scheme. In this distributed implementation, in stead of
transmitting all the measurements to a center for processing,
only several sufficient statistics are transmitted between nearby
sensor nodes; hence, we lower the communication cost.

1) Gauss-Newton Method: To obtain the ML estimates, we
observe that the nonlinear optimization problem in (9) to calcu-
late is a nonlinear weighted least squares (LS) problem (see
[23] and [24]) under the assumption that the covariance matrix

is known. Then we can solve it using the effective and effi-
cient Gauss-Newton method. Note that an iterative method such
as Gauss-Newton method can only converge to a local max-
imum value. In general this method does not yield the max-
imum-likelihood estimate unless the optimization problem can
be formulated as, e.g., a convex optimization problem. There-
fore, the choice of the initial value for this iterative method is
very important.

When employing the Gauss-Newton method to solve the non-
linear weighted LS problem in (9), we obtain an iterative process
to update the estimate of as

(14)

where

(15)

is an Jacobian matrix. In order to obtain a distributed
estimation, we study the details of the implementation in (14).
First, we can partition as

(16)

where is the th column of and can be derived as

(17)
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Hence, the second term on the right-hand side (RHS) of (14) can
be rewritten as

...
. . .

...

... (18)

In this formula, the term can be fur-
ther derived as

(19)

where .
From the (17) and (19), we make the following two

observations.
1) In order to update using (14), we need only

statistics. Each statistic is a vector, denoted by
, as follows:

(20)

(21)

Therefore, for the estimation we do not need to collect the
actual raw data but only these statistics.

2) We can rewrite and as

(22)

(23)

which means that each of these statistics is a summation of
the local statistics at each sensor node.

From these two observations, we obtain a distributed implemen-
tation of the ML estimation of , motivated by the idea of dis-
tributed EM algorithms in [19], as follows.

2) Distributed Implementation: An initial value of , denoted
as , is provided at the beginning. Assume that at iteration
step , node has the current parameter estimate .

The next ML estimate can be computed by performing
one message cycle through all the nodes. To begin, initialize
the sufficient statistic to zero. When the
messages are transmitted to the sensor node , the node performs
the following two steps.
Step 1: It computes the local sufficient statistics using

(24)

(25)

Note that the statistics are computed using only
and the local measurements ; hence, these calcu-
lations can be implemented completely locally.

Step 2: It then increments the global sufficient statistics ac-
cording to

(26)

(27)

After that the current node passes
and to the node

.
At the last sensor node , the node obtains the complete

sufficient statistics and , and uses
them to calculate by applying (14). We observe that for
each iteration, real valued numbers are transmitted be-
tween two sensor nodes. Hence, the transmission volume is in-
dependent of the number of measurements taken by each sensor
node.

3) Discussion: Compared with the centralized ML estima-
tion method, this distributed implementation algorithm avoids
the necessity of transmitting raw data to the fusion center (only
several sufficient statistics are transmitted between the nearby
sensor nodes); hence, the algorithm decreases the required com-
munication burden. However, several inherent properties of this
algorithm limit its application in wireless sensor networks.

• Since the Gauss-Newton is an iterative algorithm, in order
to obtain the ML estimate, the messages should cycle
though all the sensor nodes several times (each cycle
corresponding to one iteration). Even though the volume
of communication for one cycle is not large, the potential
total communication burden is still heavy, especially in
cases where the algorithm converges very slowly.

• In order to update the estimate once, the messages need to
cycle through all the sensor nodes, which is time costly and
not suitable for some applications where a rapid response
is required.

• A predetermined message transmission route is needed to
guarantee that the messages pass through all the sensor
nodes. This requirement is not suitable for applications in
wireless sensor networks, because the network topology
changes dynamically due to the failure of some sensor
nodes or communication links.

• Not all the sensor nodes provide useful information to im-
prove the estimation; furthermore, some information may
be redundant. Therefore, collecting information from all
available sensor nodes is not an optimal strategy for the
distributed processing due to the power restriction.
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In the following, we propose a new and fully distributed estima-
tion method motivated by the above distributed implementation
and the analysis. The new method addresses these limitations
and is suitable for a broader range of applications in wireless
sensor networks.

IV. INFORMATION-DRIVEN DISTRIBUTED MAXIMUM

LIKELIHOOD ESTIMATION

In this section, we develop an information-driven distributed
maximum likelihood estimation method based on the aforemen-
tioned Gauss-Newton implementation. We first derive the basic
distributed estimation algorithm where we assume the linear
parameter is known; then we propose several modifications
of the basic algorithm to improve the estimation performance.
Finally, we extend the algorithm to the case when is un-
known. We introduce information-driven collaborative signal
processing techniques and propose a sensor-node scheduling
scheme.

A. Information-Driven Distributed Estimation Algorithm

For the case in which linear parameter is known, the ML es-
timation of parameter in (9) becomes the following nonlinear
weighted least-squares problem:

(28)

which is equivalent to (9) except that is replaced by a con-
stant vector . Then, the corresponding Gauss-Newton iteration
is

(29)

where

In order to develop our distributed estimation method, we
introduce the following theorem, in which we prove that an
update of the estimate in each iteration of the Gauss-Newton
method can be divided into a sequence of updates at each sensor
node. This theorem implements the Proposition 1 in [25] into the
derivation of distributed estimation methods.

Theorem 4.1: We define

and assume that the matrix is posi-
tive definite. Then, to solve the nonlinear LS problem (28), the

th iteration of the Gauss-Newton method in (29) can be gener-
ated by the algorithm

(30)

where we let and we obtain . The
positive definite matrixes are generated by

(31)

with

Proof: See the Appendix.
In the above theorem, we replace by in (30). Then,

the updating algorithm is modified as

(32)

where

(33)

After we make this modification, in the implementation of the
Gauss-Newton method we linearize the function at the
current estimate rather than at the estimate available
at the start of the iteration. Therefore, the resulting update of
the estimate at the end of each Gauss-Newton iteration is more
close to the true value than the result without this modification.

From Theorem 4.1, we observe that when applying the
Gauss-Newton method to the ML estimation, the update of the
estimate in each iteration can be divided into sequential
updates . In each of these updates, only the
local measurements and the variable and matrix
passed from the previous sensor nodes are needed; hence, these
updates can be processed completely locally. This theorem
motivates us to develop a new distributed estimation method, in
which the messages are transmitted through the chosen sensor
nodes, and the estimate of is updated when the new data at
each sensor node are obtained. Then we do not need to wait
for the accumulation of the measurements from all the sensor
nodes in order to obtain a new estimate.

Another advantage of the new method is that it is convenient
for us to implement information-driven dynamic collaborative
information processing, which is a very useful technique to be
applied in wireless sensor networks. Wireless sensor networks
are characterized by limited battery power, frequent node attri-
tion, and varying data and communication quality. Hence, good
collaboration among distributed sensor nodes is necessary to im-
prove estimation performance and reduce power consumption.

In our case, it is critical to select an optimal subset and an op-
timal order of incorporating these measurements into our esti-
mate update. This process is called the sensor-node scheduling.
Usually this scheduling process provides a faster reduction in
estimation uncertainty compared with blind or nearest neighbor
sensor node selection schemes, and it incurs a lower commu-
nication burden for meeting a required estimation performance
threshold. By applying this idea in our method, instead of trans-
mitting the messages through all the available sensor nodes in
sequence, at each sensor node we use some information mea-
sures to determine to which sensor node in the neighbor of the
current node we should transmit the current messages. This esti-
mation process will continue until the final performance fits our
requirements.
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According to Theorem 4.1 and the above discussion, we
propose a new information-driven distributed ML estimation
method as follows.

Distributed estimation algorithm:
• The distributed estimation algorithm is initialized by

sensor node . We assume an initial value of the
parameter is available at this sensor node, denoted by

; we let .
• At sensor node , we perform the following steps:
Step 1. Data receiving: the sensor node is activated by the

previous node and receives the transmitted data

and . Note: when , this step is
omitted.

Step 2. New variable calculation: Calculate the new ma-

trix as

(34)

then, update the matrix as

(35)

Step 3. Estimate update: Update and obtain the current es-

timate as

(36)

Step 4. Estimation quality test: Test the quality of the up-
dated estimate according to some performance
measure, e.g., the trace or determinant of the co-
variance matrix. If the estimate is “good enough,”
the estimation process is terminated; otherwise,
the algorithm continues with the following steps.

Step 5. Sensor node selection: Select a sensor node from
its neighbor according to certain information
utility criteria (the details are discussed in Sec-
tion IV-D).

Step 6. Data transmission: The current sensor node wakes

up and transmits the current estimate and
to the selected sensor node, and then the current
node returns to sleeping status.

When comparing this new distributed ML estimation algo-
rithm with the ordinary Gauss-Newton method, we observe two
characteristics: i) the new algorithm corresponds to just one iter-
ation of the ordinary Gauss-Newton method; therefore, we de-
crease the required communications and shorten the response
time; and ii) we linearize the nonlinear function at the
current estimate rather than at the estimate available at the be-
ginning of the iteration; hence, we speed the convergence of the
algorithm.

It can be verified that after we make these changes, the new
method has the same update steps as the extended Kalman filter
(EKF) specialized to the case where the state of the underlying
dynamic system stays constant [25]. Because of this relation-
ship, we can obtain a new explanation of the proposed dis-

tributed estimation method under the framework of the sequen-
tial Bayesian estimation. We linearize each new measurement
around the current estimate and treat the measurement as if
it were linear. At that point the belief is approximated by a
Gaussian density function, and it is updated when the new mea-
surement is available, until it is “good enough.” The mean of
the final obtained belief is calculated as the estimate of the un-
known parameters.

B. Modifications to Improve Performance

This algorithm provides a basic framework for the dis-
tributed estimation. However, its estimation performance is
limited under the restriction of the available energy. In this
section, we propose three modifications of the above basic
method to improve estimation performance and reduce pro-
cessing time while still maintaining a low communication
energy consumption.

1) Levenberg-Marquardt Method: One important problem of
the ordinary Gauss-Newton method is that in each iteration to
update the estimate, even though the update is in the correct di-
rection, the Gauss-Newton method may take steps that are too
long, thereby slowing the converge speed. An efficient modifi-
cation is to apply a trust region strategy [26], in which when we
update the estimate, we limit the distance between the new and
old estimates below a bound, i.e., . The so-
lution to this problem when applied to our measurement model
is

(37)

where is a positive scalar. This formulation is known as
the Levenberg-Marquardt method. It can be verified that
we can implement the Levenberg-Marquardt method to
our new distributed estimation method by setting the ini-
tial condition instead of , so that matrix

is positive definite even if

matrix is not.
2) Multiple Local Iteration Implementation: As we dis-

cussed before, the new distributed estimation method can be
implemented as an extended Kalman filter. The basic idea of
the extended Kalman filter is to linearize the measurement
function at the current estimate so it can be treated as a linear
function. In the new distributed estimation algorithm, after we
update the estimate using (36) at sensor node , the new estimate

is probably closer to the true value of than was .
Therefore, if we relinearize function at the new estimate

and perform the update step in (36) at the same sensor node
again, we would on average reduce the approximation error and
increase the estimation accuracy [27]. Hence, instead of using
(36) in Step 3. Estimate update to obtain the new estimate, we
apply the following multiple local iteration updating step:

Step 3. Estimate update: We denote and
. At the sensor node , we update the estimate using

the following multiple iteration scheme

(38)
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where

(39)

When this iteration converges, the values and are

used as new estimate and , respectively.
Another consideration underlying the above modification is
that in wireless sensor networks, communications are the major
source of power consumption, rather than data processing.
Therefore, in this modification we employ more effective and
intensive calculations at each sensor node and thus potentially
reduce the total communication burden.

3) Iterated Kalman Filtering Implementation: In our pro-
posed distributed estimation method, we implement a single it-
eration of the Gauss-Newton method, which becomes an ex-
tended Kalman filter. The consideration for this single iteration
is to decrease the required communications and speed the task
response. However, the estimation accuracy is degraded under
this scenario. Since our new method is not absolutely a ML es-
timation, even though the variance of the estimation error con-
verges to zero, the estimate itself may converge to a biased value
[28].

An improvement designed to address this problem extends
the proposed single iteration method to a multiple global iter-
ation method, which becomes an iterated Kalman filter (IKF)
[29]. To apply this IKF implementation into our distributed
estimation method, we first carry out the single iteration dis-
tributed algorithm and select a subset of the sensor nodes; then
the obtained estimate is transmitted back and cycles through the
chosen sensor nodes and is updated again, until it converges.

Even though we process multiple iterations with this method,
it still has advantages compared with the distributed implemen-
tation of the ordinary Gauss-Newton method in Section III-B–2.

• In the first iteration, we choose a subset of the sensor nodes
that contains information closely related to our estimation
task. Then the messages need to cycle through only the se-
lected sensor nodes. Therefore, we still save much com-
munication energy compared with the ordinary distributed
implementation based on Gauss-Newton.

• Even though we use multiple iterations, an estimate update
is still obtained at each sensor node, rather than at the end
of the current iteration. Therefore, an estimation result can
be provided at any time according to the tradeoff between
the required estimation accuracy and the processing time.

C. Distributed Estimation With Unknown Linear Parameters

The derivation of the above new distributed estimation
method is based on the fact that the cost function we want
to optimize can be written as a summation of several local
component functions; each component function is related only
to the measurements at the current sensor node. However,
when the linear parameter is unknown, its ML estimate is
obtained using the measurements from
all the sensor nodes, as in (10). Hence, the cost function, as
given in (9), cannot be formulated as a summation of several
local component functions. Therefore, the above proposed

distributed estimation method cannot be directly applied to the
cases where is unknown.

A straightforward scheme to implement the proposed dis-
tributed estimation method under such a situation is not to sepa-
rate the linear parameters from the total parameters in the mea-
surement model (7), i.e., we include into the unknown param-
eter . Under this situation, the above proposed distributed esti-
mation method can be directly applied when we replace
with another function, e.g., . However, in this scheme, we
cannot benefit from the separation of linear and nonlinear pa-
rameters in the measurement model, so the resulting computa-
tion complexity and the volume of transmitted data are increased
significantly. Therefore, we propose the following more effi-
cient estimation scheme for the case in which is unknown.

In this new scheme, we still separate the linear parameter
from the total parameters. However, we reformulate the ML es-
timation of and in (9) and (10) as the following iterative
process:

(40)

(41)

This iterative process generates a sequence of estimates

which converges to the ML estimates of and [24].
According to this iterative process, the proposed new dis-

tributed estimation algorithm in Section IV–A can still be ap-
plied after we introduce two new variables, a vector and a
matrix , and make the following two modifications of the dis-
tributed estimation algorithm in Section IV-A at sensor node .

1. Modify Step 2. New variable calculation as follows.

Calculate the new matrix as

(42)

then, update the matrix as

(43)

update the matrix as

(44)

update the vector as

(45)

2. Modify Step 3. Estimate update as follows:
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Update and obtain the current estimate and as

(46)

(47)

D. Sensor-Node Scheduling

Sensor-node scheduling is an important strategy used in wire-
less sensor networks. Through this scheduling, we can deter-
mine the optimal scheme to allocate the limited resources avail-
able in the wireless sensor network and potentially obtain high
processing performance. In our proposed distributed estimation
method, sensor-node scheduling involves two tasks:

1. Sensor node selection. We use an information utility
measure to determine which sensor node in the neighbor
of the current node we should select next and include its
measurements into our estimation task. This sensor node
should provide the information that has the most potential
to decrease the estimation uncertainty and increase the
performance.

2. Termination strategy. We need to find a proper estima-
tion performance criterion to determine when we should
stop including the new sensor nodes into our estimation
process, such that we can obtain an optimal subset from
all available sensor nodes. The nodes in this subset should
carry the necessary and sufficient information for our esti-
mation task.

The neighbor of the current sensor node is defined as a subset
of the sensor nodes that are located within the communication
range of the current node. Note that in our sensor node selection
scheme we want to choose the next node that is the most infor-
mative. However, consider a tradeoff between the communica-
tion cost and the processing performance, we can only choose
the sensor nodes that are within certain radio range of the cur-
rent node.

The measures for the estimation performance and the in-
formation utility include: covariance-based measures, Fisher
information matrix-based measures, entropy of estimation
uncertainty, volume of high probability region, sensor ge-
ometry-based measures, mutual information-based measures,
and so on [4]. Different measures will be used according to
the sensor measurement models, the available computation
capabilities and energy resources, and the required estimation
accurate and processing time. In our method, we propose to use
the Cramér–Rao bound (CRB) as the estimation performance
and information utility measures. The reasons are: 1) The
proposed distributed estimation is based on the ML estimation
which is asymptotically efficient, i.e., its variance attains the
CRB asymptotically [30]. The CRB is the lower bound on
the variance of any unbiased estimators; it equals the inverse
of the Fisher information matrix (FIM). Hence, we calculate
our measures directly from the FIM. 2) We will find that the
calculation of the FIM as a performance measure is an intrinsic
part of the algorithm, i.e., they can be obtained without any
extra computation and data transmission. This is suitable for the

applications in wireless sensor networks. 3) When we use the
FIM as an information measure to select the next sensor node,
the FIM is computed by averaging over all possible values of
the measurements from the next sensor node; therefore, the
current sensor node does not require the transmission of mea-
surements from its neighbor and hence avoids communicating
useless information. The similar idea has been used in [31] for
adaptive electromagnetic-induction sensing of buried targets.

In order to compute the measures, we first derive a recur-
sive process to update the FIM when information from the new
sensor node is obtained. We denote the matrix in the se-
quence as the FIM of the nonlinear param-
eter when we collect the measurements from the first sensor
nodes, i.e., ; we have a similar notation for the
FIM sequence for the linear parameter .
According to the definition of FIM, we have

(48)

The second term on the RHS of (48) can be calculated as

(49)

where

(50)

Hence, we obtain the recursive equation for the FIM sequence

(51)

with . Similarly, we can obtain the recursive equation
for as

(52)

with . By using the recursive equations in (51) and
(52), we can obtain measures for estimation performance and
information utility. Here, we observe an interesting result that
when we compare (51) and (52) with (43) and (44) in the pro-
posed distributed estimation algorithm, we find that the updating
formulas for the matrixes and are the same as the FIM

and , respectively. These equivalences represent the
essential significance of the matrixes and used in our
method. It also shows that using FIM as the performance mea-
sure will not increase the computation complexity and the re-
quired transmission.
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We can directly calculate the estimation performance mea-
sure using the determinant or the trace of the FIM and

. At sensor node , we first update the FIMs according to
(51) and (52); then we compare their determinants or traces with
a predetermined threshold: if their determinants or traces equal
or exceed the threshold, we will not include further measure-
ments from the new sensor nodes into our estimation task.

For the sensor-node selection, among the neighbors of the
current sensor node, we want to choose a node that will pro-
vide the most important information to reduce the estimation
uncertainty. For this purpose, we use the following recursive
equations to predict the FIM when we include the measurements
from the next sensor node:

(53)

(54)

Since and are always the same for any sensor nodes
in the neighbor of the current node , we can use only the ma-
trixes and to calculate
the information utility measure. Here, and is a col-
lection of the sensor nodes that are in the neighborhood of the
current sensor node . For example, if we use the trace of the
matrix (denoted as ) as the information measure, we can
create an information utility function:

(55)

where the parameter determines the tradeoff between the con-
tributions from the FIM of and . Then, we will select the
sensor node that maximizes this information utility function
as the next sensor node

(56)

Since we need the values of and to compute this information

utility, we can use the current estimates and to replace
their true values.

V. NUMERICAL EXAMPLES

In this section we use numerical examples of localizing a dif-
fusive source to analyze and demonstrate the performance of the
proposed distributed estimation methods. The proposed basic
distributed estimation and its modifications can be summarized
as the following four methods.

1. Single local iteration implementation. This method is the
proposed basic Gauss-Newton-based distributed max-
imum likelihood estimation method in Section IV-A. It
processes a single iteration at each sensor node. Since
this method is equivalent to an extended Kalman filter, we
denote it as the single iteration Kalman filtering (SIKF).

2. Multiple local iterations implementation. This is a modi-
fication of the above basic distributed estimation method,
as we presented in Section IV-B-2. In this algorithm, we
process multiple iterations at each sensor node to improve

the estimation performance. We denote this method as the
multiple iteration Kalman filtering (MIKF).

3. Iterated Kalman filter implementation with single local
iteration. This is another modification of the basic
distributed estimation method, as we presented in Sec-
tion IV-B-3. In this method, we process several iterations
over all the selected sensor nodes to increase the estimation
accuracy. At each sensor node, we apply a single iteration
Gauss-Newton step. Hence, we denote this method as the
iterated Kalman filtering with single iteration (IKFSI).

4. Iterated Kalman filtering implementation with multiple
local iterations. This method is similar to the IKFSI,
except that at each sensor node, we process multiple local
Gauss-Newton iterations. Hence, we denote it as the iter-
ated Kalman filtering with multiple iterations (IKFMI).

Now we use numerical examples to compare the performance of
these four methods. Through these comparisons, we investigate
the properties of the proposed distributed estimation methods,
and draw a conclusion concerning which method best fits the
applications in wireless sensor networks when considering both
estimation performance and consumption of the network re-
sources, particularly energy.

In these numerical examples, we use the measurement model
for a diffusive source in (6). Here, source position is the
unknown we need to estimate. We apply the Levenberg-Mar-
quardt method, i.e., instead of setting the initial value for
to be 0, we let where is chosen according to various
scenarios to obtain a possible best performance. For the setup of
the sensor network, we use 100 wireless sensor nodes randomly
deployed in a square area of 100 100 m. We define a pair of
neighboring sensor nodes whose distance is less than 20 m. For
the diffusion model, we consider the environment as a homo-
geneous semiinfinite medium with an impermeable boundary,
which can represent dispersion in air above the ground. We use
a scenario of a stationary impulse source located at position

meter. The bias term in (4) is g/m ,
and the noise standard deviation is g/m . We
take 10 temporal samples at each sensor node with a sampling
interval of 5 s. The other parameters , and are taken to be
1 g/s, 20 m /s, and 0 s, respectively.

In the first example, we compare the estimation performance
of the SIKF method and the MIKF method. In Fig. 1 we show
the message transmission route (sensor-node selection route)
when applying the MIKF method and the proposed sensor-node
scheduling scheme. We observe that even though the initial
sensor node, located at meter, is relatively
far from the source, the messages are still transmitted to the
neighbor of the source. This demonstrates the optimality of the
sensor node selection algorithm: according to the dispersion
mechanism, the concentration near the diffusive source is
relatively high; hence, the data measured by the nodes close the
source have a high signal-to-noise ratio (SNR) and provide sig-
nificant contributions to improve the accuracy of the distributed
estimation method.

In Figs. 2 and 3 we compare the estimation bias
and the log-determinant of the CRB matrix of with respect to
the number of the chosen sensor nodes for the methods SIKF
and MIKF. We find that the estimation performance of MIKF is
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Fig. 1. Message transmission routing for localizing a diffusion source in a
square area with 100 sensor nodes randomly placed. “Star” denotes the source
position; “square” denotes the initial sensor node; “circle” denotes the selected
sensor nodes.

Fig. 2. Estimation bias versus number of selected sensor nodes for methods
SIKF and MIKF.

much better than the SIKF, which means that multiple iterations
at each sensor node can greatly improve the accuracy of the
estimation without increasing the communication burden.

In the second example, we compare the performance of the
SIKF with the IKFSI. Here, the initial sensor node is located at

meter. In the IKFSI method, the first iteration is
used to select a subset of the sensor nodes that carries the most
information. We set the threshold of the log-determinant of the
CRB to be , and 8 sensor nodes around the source are
chosen. The comparison results are shown in Figs. 4 and 5. We
find that for the SIKF, the bias and the log-determinant of the
CRB nearly do not decrease after 10 sensor nodes are included.
This means the chosen sensor nodes provide little in-
formation to improve the estimation performance. We also find
that the performance of the IKFSI is substantially better than
the SIKF even though these two methods use the same trans-
mission, which demonstrates that global multiple iterations over
all the selected sensor nodes can decrease estimation bias and
improve performance. However, the cost is that the IKFSI con-
sumes more communication energy to obtain this improvement.

Fig. 3. Log determinant of the CRB versus number of selected sensor nodes
for methods SIKF and MIKF.

Fig. 4. Estimation bias versus number of selected sensor nodes for methods
SIKF and IKFSI.

Fig. 5. Log determinant of the CRB versus number of selected sensor nodes
for methods SIKF and IKFSI.

In the last example, we compare the performance of the
MIKF, the IKFSI, and the IKFMI methods. The comparison
results are shown in Figs. 6 and 7. We observe that the estima-
tion accuracy and performance of the MIKF is better than the
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Fig. 6. Estimation bias versus number of selected sensor nodes for methods
MIKF, IKFSI, and IKFMI.

Fig. 7. Log determinant of the CRB versus number of selected sensor nodes
for methods MIKF, IKFSI, and IKFMI.

IKFSI, even though in the MIKF we use only a single iteration
over the selected sensor nodes. And the performance of the
MIKF is worse than the IKFMI; however, the difference is not
very large.

Note that the results from the above examples show not only
the comparison between the performance but the comparison
between the required communications to reach a performance
threshold. According to our methods, the data transmission
between neighbored sensor nodes is the same. Therefore, the
number of data transmission hops approximates the required
communications (we assume the sensor nodes are uniformly
distributed in an area). For example, in Fig. 7, if we set the
threshold of the log-determinant of the CRB to be , then
the MIKF and IKFMI methods need four transmission hops to
reach this performance threshold, but the IKFSI method needs
25 hops. This means the MIKF and IKFMI are more energy
efficient than IKFSI.

To summarize the above results, when comparing the estima-
tion performance of these four methods, we obtain the following
order:

That is, the performance of the iterative Kalman filtering is
better than the extended Kalman filtering implementation,
and the multiple local iteration is better than the single local
iteration implementation. When comparing the required com-
munications to reach their performance limits, we obtain

Therefore, when considering both estimation performance and
energy consumption, the MIKF method has the most advantages
for applications in wireless sensor networks, since it can obtain
a high processing performance using relatively low communi-
cation energy. By fully taking advantage of the local operation
at each sensor node, we can obtain a substantial improvement
in processing performance while still keeping energy consump-
tion low.

VI. CONCLUSION

In this paper, we addressed the problem of developing an
energy-efficient distributed estimation method for applications
in wireless sensor networks. We first proposed a statistical
measurement model in which we separated the linear and
nonlinear parameters. This modelling strategy can reduce the
corresponding processing complexity. Based on this model,
we analyzed the implementation of the maximum likelihood
estimation using the Gauss-Newton method and derived a
basic framework of a fully distributed estimation method. This
method is motivated by the analysis of incremental least squares
methods by Bertsekas [25]. In our method, we decreased the
energy usage while still maintaining an acceptable estimation
performance. We also proposed three modifications of the basic
distributed estimation method to improve processing perfor-
mance. We introduced information-driven collaborative signal
processing and proposed a sensor-node scheduling scheme to
reduce further the communication energy consumption. Finally,
we used numerical examples to study the performance of the
proposed methods and determined that of the methods consid-
ered here the multiple iterations Kalman filtering method is
the most suitable approach to be applied in the wireless sensor
network, considering both the estimation accuracy and required
communication burden. In future work, we will extend the
proposed distributed estimation method to the dynamic signal
model. We will study the distributed implementation of other
numerical methods, such as the full Newton-type methods. We
will also investigate the application of the proposed distributed
method to solve additional practical problems.

APPENDIX

PROOF OF THEOREM 4.1

Recall that the recursive equation (29) in the th iteration of
the Gauss-Newton method is obtained by linearizing the non-
linear signal model at the current estimate and applying the
linear least squares procedure to solve it. We denote the error
function as ,
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where represents the Euclidean norm of a vector. Then we
can linearize this error function at as

(57)

Then, by applying the linear least squares procedure, we have

(58)

which is equivalent to (29).
Next, according to Proposition 1 proved in [25], we have the

following results.
Assuming that matrix is positive definite, the linear

least squares estimates

(59)

can be generated by the algorithm

(60)

where is an arbitrary vector, and the positive definite ma-
trixes are generated by

(61)

with .
Comparing the linear least squares problem (59) with the lin-

earized error function (57), we find that when we apply the
identifications

(62)

(63)

and let , we can generate using the incremental
algorithm in Theorem 4.1.
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